Appendix 1 or SG

OVERVIEW OF SYMPLECTIC GEOMETRY

(Oct 17 1999)

Action to be taken: Correct typos, decide whether to make this chapter an appendix or
set it in the middle of the book (Jan 13 1999). Something weird in the header of last page!

Symplectic geometry is the language underlying the theory of Hamiltonian systems. This chapter is a
short review of the main concepts, especially as they apply to Hamiltonian systems and symplectic maps
in cotangent bundles. These spaces are natural when considering mechanical systems, where the base, or
configuration space describes the position and the momentum belongs to the fiber of the cotangent bundle of
the configuration space. In our optic of symplectic twist maps , one important concept studied in this chapter
is that of exact symplectic map. Theorem SGhamexactsymp proves that Hamiltonian systems give rise to
exact symplectic maps. We assume here some familiarity with the notions of manifold, vector bundles and
differential forms. The reader who is uncomfortable with these concepts should consult any of the following
references :Guillemin & Pollack (1974) or Spivak (1970) . For more on symplectic geometry and Hamiltonian
systems, see Arnold (1978), Weinstein (1979), Abraham & Marsden (1985) or McDuff & Salamon (1996).

55. Symplectic Vector Spaces

In this section, we review some essentials of the linear theory of symplectic vector spaces and transformations.
They will be our tools in understanding the infinitesimal behavior of symplectic maps and Hamiltonian systems
in cotangent bundles. A symplectic formon areal vector space V' is a bilinear form {2 which is skew symmetric

and nondegenerate:
Q2(av + bv', w) = al(u,w) + b2 (v, w), (u,v’,weV, abeR).
Qu,w) = —2(w,u)
u # 0 = Jw such that 2(u,w) # 0

A symplectic vector space is a vector space V' together with a symplectic form.

Example 55.1 The determinant in IR? is a symplectic form. More generally, the canonical symplectic form

on IR2n, is given by:

0 -—Id
_QO(’U,,’LU)—<J’U,,’LU>, J_<](1 0 )
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where the brackets ( , ) denote the usual dot product. We will see that all symplectic vector spaces “look™ like

this, in particular, their dimension is always even. Usually, one denotes:

n
29 =dpNdq= dek/\ko
k=1

where it is understood that dgy,, dpy, are elements of the dual basis for the coordinates (q1, . . ., ¢n, P1,- -+, Pn)
of IR2n. The symplectic space (IR2n, {2y) can also be interpreted as IR" ¢ (IR")*, equipped with the canonical
symplectic form:

2(a®b,c®d) =d(a)— b(c).

It is often convenient to view a bilinear form as a matrix. To do this, fix a basis (ey, ..., e,) of V,and set:
Ag = Q(ei, ej)
Equivalently, if (, ) is the dot product associated with the basis (e, .. ., e, ), then A is the matrix satisfying:
Qu, w) = (A%, w).

We now show that all symplectic vector spaces are isomorphic to the canonical (IR2n, £2)).

Theorem 55.2 (Linear Darboux) If (V, (2) is a symplectic space, one can find a basis for V in which
the matriz A? of £2 is given by A? = J = (IOd _éd>.

Hence, the isomorphism that sends each vector in V' to its coordinate vector in the basis given by the
theorem will be an isomorphism between (V, §2) and (IR*", £2;). In classical notation, the coordinates in the

Darboux coordinates are denoted by(!%)

(qap) = (qla"'7QTL7p17"' apn)

Proof. Since (2 is non degenerate, given any v # 0 € V, we can find a vector w € W such that
2(v,w) = —1. In particular, the plane P spanned by v and w is a symplectic plane and the bilinear form

induced by {2 on P with this basis has matrix:
0 -1
(55.1) (1 0 > .
Since {2 is nondegenerate on P, we must have P- N P = {0}. Furthermore V = P + P+ sinceifu eV,
u — Q(u,v)w + 2(u,w)v € P+,

(2 must be nondegenerate on the dimV — 2 dimensional subspace P, so we can proceed by induction, and
decompose P into (2—-orthogonal planes on which the matrix of (2 is as in (55.1) . A permutation of the

vectors of the basis we have found gives A = J. a

0 Id

'5Tn the litterature, one also sees frequently (p, q), with —J = (—Id 0

) as canonical matrix.
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With any bilinear form {2 on a vector space comes a notion of orthogonal subspace W+ to a given
subspace (or vector) W :
Wt ={ueV|Qu,w) =0\ YweW}

In the case of symplectic forms, the analogy with the usual notion of orthogonality can be quite misleading,

as a subspace and its orthogonal will often intersect.

Exercise 55.3 Show that the linear transformation whose matrix is J in the cannonical basis is orthogonal
(i.e belongs to O(2n)), that it satisfies J> = —Id (i.e. J is a complex structure) as well as

20(Jv, Jw) = (v, w)
(that is, J is symplectic, see section 57.)

Exercise 55.4 Show that a one dimensional vector subspace in a symplectic vector space is included in its
own orthogonal subspace.

Exercise 55.5 Show that in a Darboux basis for a symplectic plane,
2(v,w) = det(v, w).

If (q1,p1) are the corresponding coordinates for the plane in this basis, this determinant form is denoted by
q1 N p1. Show that, in Darboux coordinates for a symplectic space of dimension 2n,

n
Q:q/\P:ZQk/\pk
1

Exercise 55.6 Prove that a general skew symmetric form (2 has “normal form”:

0 —Idx
A% = 1d, O
0;

where k,l do not depend on the basis chosen.

56. Subspaces of a Symplectic Vector Space

Let V' be a symplectic vector space of dimension 2n, W C V a subspace, and {2y the symplectic form
restricted to . The previous exercise shows that we can find a basis for W in which :
O —Idi
A% = | Id;, 0 dimW = 2k + 1
O

In other words, (W, 2y) is determined up to isomorphism by k& and its dimension. We will say that 1 is:
e null or isotropicif k = 0 (and [ = dimW),
e coisotropicif k +1 = n.
e Lagrangianif k = 0 and [ = n . (i.e. W is isotropic and coisotropic.)
e symplecticif | = 0 and k # 0.
The rank of W is the integer 2k.

The next theorem tells us that the qualitatively different subspaces of a symplectic space can be represented

by coordinate subspaces in some Darboux coordinates.
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Theorem 56.1 A subspace W of rank 2k and dimension 2k+1 in a symplectic space can be represented,

in appropriate Darboux coordinates, by the coordinate plane:

((hv <oy Gk+15,P1s - - - 7p1€)

In particular, in some well chosen bases, an isotropic space is made entirely of ¢’s and a coisotropic one
must have at least n ¢’s (the role of p’s and ¢’s can be reversed, of course) and a symplectic space has the same

number of ¢’s and p’s.

Proof. From the definition of the rank of W, there is a subspace U of W of dimension 2k which is symplectic,
on which we can put Darboux coordinates. U 1 N W, the null space of {2y, is in the subspace U-+, which is
symplectic (see Exercise 56.0.) The next lemma shows that we can complete any basis of /" N W into a
symplectic basis of /. The union of this basis and the one in U is a symplectic basis with coordinates (q, p),

in which W can be expressed as advertised. O

Lemma 56.2 Let U be a null space in a symplectic space V. Then one can complete any basis of U

into a symplectic basis of V.

Proof. Without loss of generality, V' is IR2n with its standard dot product and canonical symplectic form.
Choose an orthornormal basis (u1,. .., u;) for U. Using the results of Exercise 55.3, the reader can easily
check that JU is orthogonal to U ( in the sense of the dot product) and that (uq,...,u;, Juy,...,Ju;) is a
symplectic basis for £ = U @ JU . From Exercise 56.4, E+ @ E = V and E~ is symplectic. We can complete
the symplectic basis of £ by any symplectic basis of £ and get a symplectic basis for V. a

As a simple consequence of Theorem 56.1, we also get:

Corollary 56.3 If U is an isotropic subspace of a symplectic space V', one can find a coisotropic W

such that V-=U @& W. One can also find a Lagrangian subspace in which U is included.

This applies in particular to Lagrangian subspaces: given any lagrangian subspace L, we can find another
one L' such that V = L & L’. In the normal coordinates of the theorem, L would be the g coordinate space,

L’ the p coordinate space.

Exercise 56.4 Let W be a subspace of a symplectic space V. Show that: W is symplectic <= W @ W+ =
V <= W+ is symplectic (Hint: see the proof of the Linear Darboux theorem).

Exercise 56.5 Show that:

W isotropic <= W C W+.

W coisotropic <= W+ C W.

W is Lagrangian <= W is a maximal isotropic subspace, or minimal coisotropic subspace (for the inclusion).

Exercise 56.6 This exercise shows how symmetric matrices can be used to locally parametrize Lagrangian
planes. Suppose you are given a basis wui,...u, for a Lagrangian subspace L of IR2n. In the canonical
coordinates (g, p), write ur = (ug,wy). Let V and W be the n x n matrices whose columns are the vy’s and
wy’s respectively. Suppose that L is a graph over the ¢ plane.
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(a) Show that V is invertible and that the column vectors of (Wél ) form a basis for L.

(b) Show that the matrix WV ~! is symmetric.
(¢) Deduce from this that the (Grassmanian) space of Lagrangian subspaces of IR2n has dimension n(n+1)/2.

57. Symplectic Linear Maps

The Linear Darboux Theorem tells us that, up to changes of coordinates, all symplectic vector spaces are
identical to (IRQ”, £2y). Therefore, as we define and study the transformations that preserve the symplectic

form on a vector space, we need only consider the case (IR*", £2).

Definition 57.1 A symplectic linear map & of (IR*", {2y) is a 1 to 1 linear map which leaves invariant the
symplectic form:
&* 2y = 2y, where & (v, w) := y(Pv, Pw).

The group formed by symplectic linear maps is called the symplectic group and is denoted by Sp(2n; IR),
or in short Sp(2n). Because of the Linear Darboux Theorem, this group is naturally identified with the group

of 2n x 2n real matrices ¢ that satisfy:

N (0 -Id
(57.1) @JQS_J,J_(M 0

Examples 57.2
(a) The group Sp(2) is exactly the group of 2 x 2 matrices of determinant 1.

e transformation £ (q,p) = (q + p, p), with matrix 1s symplectic in IR™", and so 1s an
(b) Th ; ion F ith . Iod ﬁli is symplectic in TR>", and so is any

0 Id
dimensional foliation of (affine) lagrangian planes {p = constant}.

with matrix Id A ) ,where A® = A. These maps are called completely integrable as they preserve the n

(c) A primordial example will be given by the differential of the time 1 map of Hamiltonian flows. (see Section
60.C

Symplectic linear maps have striking spectral properties:

Theorem 57.3 Symplectic linear maps have determinant 1. If A is an eigenvalue of a symplectic
linear map, so is A™t, and they appear with the same multiplicity. If X is a complex eigenvalue, then

s0 are AL, X_l, all with the same multiplicity.

The origin is a hyperbolic fixed point for a linear symplectic map when all the eigenvalues are real and
distinct from +1. In this case the stable and unstable manifold (the n—dimensional union of eigen—subspaces
with eigenvalues larger (resp. smaller) than 1 in absolute value) are each n dimensional. These manifolds are

also Lagrangian (Exercise 57.6).

Proof. Let @ be a symplectic map. It is not hard to see that :
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(—1)ln/2

dgr A...Ndgy Ndpy A ... Ndp, = '
n!

QoA A Qo

where [n/2] is the integer part of n/2. Since @ preserves the right hand side of this equation, it must preserves
the left hand side, i.e., the volume. Hence det & = 1. The rest of the theorem is a consequence of the fact
that the characteristic polynomial C'()\) of a symplectic transformation & has real coefficients and that @* is
similar to @~ 1:

&t = Jo—1j 1.

Exercise 57.4 (a) Show that if a 2n x 2n matrix @ is given by its n x n block representation:

a b

then @ is symplectic if and only if ab® = ba!, cd® = dc', ad! — bet = Id,.
(b) Show that
- d -
o = (—ct I ) :

In particular, if @ is symplectic, so are $~' and &' (this can also be shown directly from (57.1) .)

Exercise 57.5 The groups of 2n x 2n real matrices Gl(n,C) and O(2n) are defined by:
D cGln,C)ed]=Jd;, PcO(2n) e d'd=1Id

Show that if @ is in any two of the groups Sp(2n), O(2n), Gi(n, €), it is in the third. Show that, in this case,

we can write:
_ tp _ pt
=% ") it {"t”*”t“
b a a‘a+b'b=1Id

that is, the complex matrix a + ib is in the unitary group U(n).

Exercise 57.6 (a) Show that, when *1 is an eigenvalue of @ € Sp(n) , it must appear with even multiplicity.
(b) Show that if A\, \’ are eigenvalues of @ with eigenvectors v, v’ and A\ # 1 then (2y(v,v") = 0.
(c¢) Deduce from (b) that, if @ is hyperbolic, its (un)stable manifold is Lagrangian.

Exercise 57.7 Any nonsingular, real matrix & has the polar decomposition: & = PO where P = ($&*)*/?
is symmetric positive definite, and O = #P~! is orthogonal. (Check this.)

(a) Show that if @ is symplectic, then P and O are also symplectic.(Hint. Prove it for P by decomposing
IR2n into eigenspaces for ®@' and using the previous exercise. Notice, in particular, that O € U(n), by
Exercise 57.5.

(b) Show more generally that (#®%)® is symplectic for all real «, and deduce from this that U(n) is a
deformation retract of Sp(2n).

58. Symplectic Manifolds

Let N be a differentiable manifold. A symplectic structure on N is a family of symplectic forms on the
tangent spaces of N which depends smoothly on the base point and has a certain nondegeneracy condition.

Technically, a symplectic structure is given by a closed nondegenerate differential 2—form (2:

df? =0and,forall v #0 € T,M,3w € T, M such that (v, w) # 0.
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12 is called a symplectic form and (M, £2) a symplectic manifold. A symplectic map or symplectomorphism

between two symplectic manifolds (N, §21) and (Na, 25) is a differentiable map F' : N; — Ns such that:
F*y = 0.

In other words, the tangent space at each point of a symplectic manifold is a symplectic vector space, and

the differential of a symplectic map at a point is a symplectic linear map between symplectic vector spaces.

Example 58.1

(a) Once again , the canonical example is given by (IR*", £2y), where IR*" is thought of as a manifold. The
tangent space at a point is identified with IR*" itself, and the form (2, is a constant differential form on this
manifold.

(b) Any surface with its volume form is a symplectic manifold. Symplectic maps in dimension 2 are just area
preserving maps.

(c) Kéhler manifolds (see McDuff & Salamon (1996) ) are symplectic.

(d) Cotangent bundles are non compact symplectic manifolds (see Section 59) and time 1 maps of Hamiltonian

vector fields on them are symplectic maps.

The fundamental theorem by Darboux (of which we have proven the linear version) says that locally,
all symplectic manifolds are isomorphic to (IR*™, £2;). See Arnold (1978), Weinstein (1979) or McDuff &
Salamon (1996) for a proof of this.

Theorem 58.2 (Darboux) Let (N, 2) be a symplectic manifold. Around each point of N, one can find
a coordinate chart (q,p) such that :

2= dg Ndpy := dq A dp.
1

Hence all 2n—dimensional symplectic manifolds are locally symplectomorphic. This is in sharp contrast
with Riemannian geometry, where for example the curvature, is an obstruction for two manifolds to be locally
isometric.

Submanifolds of a symplectic manifold can inherit the qualitative features of their tangent spaces: A
submanifold Z C (N, (2) is (co)isotropic if each of its tangent spaces is (co)isotropic in the symplectic
tangent space of N. Hence a Lagrangian submanifoldis an isotropic submanifold of dimension n = %dimN .
Any curve on a surface is a Lagrangian submanifold. The 0-section and the fiber of the cotangent bundle of a

manifold (see next Section) is a Lagrangian submanifold, and so is the graph of any closed differential form.

Exercise 58.3 Show the following:

(a) Any symplectic manifold has even dimension.

(b) If (N, £2) is a 2n dimensional symplectic manifold, then 2™ is a volume form .
(¢) A symplectomorphism is a volume preserving diffeomorphism.

Exercise 58.4 Let (IV, £2) be a symplectic manifold and F : N — N a symplectomorphism. Show that the
set graph F is a Lagrangian submanifold of (N x N, 2 & (—2))
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59. Cotangent Bundles

A. Some definitions

Let M be a differentiable manifold of dimension n. Its cotangent bundle T*M = M is the fiber bundle
whose fiber 7,7 M at a point g of M is the dual to the fiber 7, M of the tangent bundle. The elements of 77, M
are cotangent vectors or linear 1-forms, based at ¢. Given local coordinates (¢1, ..., g,) in a chart of M ,

one usually denotes a tangent vector v by:

v = zl:vk@

where % denotes the tangent vector to the k th coordinate line at the point ¢ considered. A cotangent vector

p at the point ¢ takes the form:
n
p= Zpk dqp,
1

Where dg;. denotes the 1-form dual to a%k:

0
dqi(@) = Ojk-

Once the system of coordinates ¢ = (q1, - - -, ¢n) is chosen, the coordinates p = (p1, .. .,pn) for Ty M are
uniquely determined, and we call them the conjugate coordinates. The cotangent bundle 7* M as a smooth
union of the fibers 7 M is a differentiable manifold of dimension 2n, with local coordinates (g, p) as presented

above. More precisely, if g Z Q is a coordinate change between two charts U and V' of M, then :

@) '(q.p) = (Q, P) = (¥(q). (D¥}) 'p)

is a change of coordinates in the corresponding charts U x IR"™ and V' x IR™ of T* M. This law of change
of coordinates is what distinguishes tangent vectors from cotangent vectors. More generally, whenever we
have a (local) diffeomorphism F' : M — N between two manifolds M and N, there is (locally) an induced
pull-back map: F* : T*N — T*M which can be written F*(q, p) = (F~'(q), DF}(p)) in coordinates.

Example 59.1

(@IR* = IR™ @ (IR")* can be seen as the cotangent bundle of the manifold IR": this bundle is trivial, as any
bundle over a contractible manifold.

(b)The cotangent bundle of T" is T" x IR™. That T*T" is trivial is a consequence of the fact that T" = IR"* /Z",

where Z" acts as a group of translations on IR", whose differentials are the Id. See the following exercise.

Exercise 59.2 More generally, if M = IR™/I" where I is a group of diffecomorphisms of IR™ acting properly
discontinuously (i.e. around each point q of M there is a neighborhood U(q) such that U N (I'\Id)(U) = 0),
then

T"M = R*™/I™*

where I'* is the set of diffeomorphisms of IR?" of the form ~*, where v € I'.
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B. Cotangent Bundles as Symplectic Manifold

We now show that there is a natural symplectic structure on 7 M . We first construct a canonical differential
1-form called the Liouville form which, we will prove, has the following expression in any set of conjugate

coordinates:

A= prdqe = pdq.
1
We then obtain a symplectic form by differentiating \:
2=—d\ (2=dqANdp,

the latter holding in any conjugate coordinate system.

We first present a coordinate free construction of A. To define a 1-form on 7™ M, it suffices to determine
how it acts on any given tangent vector v in a fiber T,, (7T* M) of the tangent plane of 7* M. Since the base
point «v is in 7 M, it is a linear 1-form. Let 7 : T*M — M be the canonical projection. The derivative
7 : T(T*M) — T M takes a vector v to the vector 7, v in Tﬂ(a)]V[ . We can evaluate the 1-form « on that
vector, and define:

A(v) = a(m.v)

See Figure 59. 5

Fig.59. 5. The Liouville form on T M.

We now compute ) in local, conjugate coordinates. If (g, p) are the conjugate coordinates of 7 M, we can

write:

9
Op’

Then 7. (v) = uqa% and a(m.u) = Y ayv,, which exactly says that A = pdq. O

0
a= Zakqu and v = uq% + uyp

The fact that the symplectic form (2 is exact (i.e. the differential of another form, here \) on a cotangent
bundle enables us to single out an important class of symplectic map: one way to say that F' : T*M — T*M

is symplectic in 7" M is to say that the form F'*\ — \ is closed:

A(F*A—A\) = F*dA —d\ = —(F*2 — 2) =0

Definition 59.3 A map F': T*M — T* M is exact symplectic if F’*\ — ) is exact:
F*AX—)X=dS

for some real valued function S on T* M.

We will see in Section 60 that time ¢ maps of flows arising in classical mechanics (i.e. Hamiltonian

flows) are all exact symplectic, and so are most of the maps in this book. Note that in IR2n, since any closed
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form is exact, symplectic and exact symplectic are two equivalent properties. On the other hand, the map
(z,y) — (z,y + a), a # 0, of the cylinder is a good example of a map which is symplectic but not exact

symplectic.

Remark 59.4 The term ezact diffeomorphism, or even exzact symplectic diffeomorphism is sometimes used
to denote the time 1 map of a (time dependent) Hamiltonian system. We will see in Section 60 that, on

cotangent bundles, these time—1 maps are indeed exact symplectic in the sense of our definition. It can be
shown that the map (q,p) — (q + Ap,p), A = <? 1) is exact symplectic but not isotopic to Id (true

more generally whenever A is not homotopic (cannot be deformed) to I on T?). Hence these maps cannot
be time—1 maps of Hamiltonians. Cotangent bundles are just one example, albeit the most important one, of
exact symplectic manifolds: symplectic manifolds whose symplectic form is exact. Many facts that are true

for cotangent bundles also hold for exact symplectic manifolds.

Exercise 59.5 Show that the set of exact symplectic maps forms a group under composition. In particular,
show that generating functions if G * A — X = Sg and F*\ — A = SF then

(FoG)*A—A=d[(SroG) + S¢]

Exercise 59.6 Let F : T*$! — T*$!. The net flux of F through a non contractible simple closed loop C is
the difference between the area above C' but below F'(C), and the area above F(C) but below C.

(a) Show that, if F' is symplectic, the net flux is independent of the choice of C.

(b) Show that if F' is symplectic then: F' is exact symplectic < F has zero net flux . In particular, an area
preserving map of the annulus that has an invariant circle is automatically exact symplectic.

Exercise 59.7 Show that a map F of T* M is exact symplectic if and only if :

/ pdq = / pdq
Fy Y

for all differentiable closed curve ~.

C. Notable Lagrangian Submanifolds of Cotangent Bundles

It is not hard to see that the fibers of 7* M are Lagrangian submanifolds of 7* M : in coordinates they are
given by {q = g, } and hence their tangent space is of the form {g = 0}. Likewise, the zero section 0%,
of T*M is Lagrangian. Another class of example will be of importance to us in Chapter CZ. Consider a
function W : M — IR. Its differential dWW can be seen as a section of 7% M ,i.e. a map M — T M whose
image dW (M) can be written as {(q, dW (q)) | ¢ € M}. A basis for the tangent space of dW (M) at a point
(g,dW(q)) is given by:

Uk an ]2: aQJan ap]

It is not hard to see that: 82W( ) 82W( )
q q

R(vg,v) = - =0
SO Oqi0q 0q0qy,

so that dW (M) is a Lagrangian submanifold of M. We can generalize this argument somewhat. Any 1-

form « can be seen as a map from M to T M, so we can ask the question: for what « is «(M') a Lagrangian

manifold ? To answer this question, one can check (Exercise 59.8) the following formula:
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(59.1) a*A=a.

where A is the Liouville form (the reader has to get used to the fact that we see « either as a form or a map,
at our convenience. When seen as a map, « is actually an embedding of M into 7% M .)

The manifold «(M) is Lagrangian exactly when:
0=a"2=a"(—d\) = —d(a")) = —do,

that is, exactly when « is a closed form. In particular, if the form « is exact with o = dW, this gives another
proof that dW (M) is Lagrangian. W is the simplest instance of generating function for the Lagrangian
manifold (M) = dW (M) (generating phase or generating phase function is also used). We will expend
on this important notion of symplectic topology in Chapter CZ.

Exercise 59.8 Verify Formula (59.1) , using local coordinates.

60. Hamiltonian Systems
A. Lagrangian Systems versus Hamiltonian systems

A lot of mechanical problems can be put in terms of a variational problem: under the principle of least action,

trajectories are critical points of an action functional of the form:

A(y) = / ! L(q, q,t)dt,

to

with boundary condition y(t9) = g,,7(t1) = q;. The function L is twice differentiable in each variables,
say (absolute continuity is enough). It is called the Lagrangian function of the system. As this is a somewhat
heuristic discussion, we will not specify here the functional space to which -y belongs. In concrete cases (say
v € CY([to,t1]),IR™) or C*([to,t1], M), or some Sobolev space of curves...), the following can be made
quite rigorous.

To compute the differential of A, one applies a small variation v = (dg, dp) toy, with 5y (tg) = 6vy(t1) =
0. Then:

9L oL
SA(7) = (g, q.0)5q + —(q,q,t)5q | dt.
(7) /to (aq(q,q,)Q+aq(q,q,)q>

performing an integration by parts on the second term of this integral, we get:

b /oL d AL
A'\ — S —
SA(7) /to <aq dtc’)c’;)éth

Since this should be true for any variation J-y, we must have:

(60.1) e~ 5=

which is a second order differential equation in g called the Euler- Lagrange equations. (The plural to
“equations” just refers to the fact that the dimension is usually greater than 1.) As an example, a large number

of mechanical systems have a Lagrangian function of the form:

) 1.
L(g.q,t) = 3 lall* = Vi(a).
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(“Kinetic - potential”. The time dependance of V usually refers to some forcing) where V' : R" — IR, f :

IR — IR" . The Euler-Lagrange equations for such a system are:
i+ VVi(q) =0

To solve such an O.D.E., one usually proceeds by introducing p = ¢ to get a system of first order ODE’s:

q=p
p=-VV(qg).
As we will see presently, we have just put the Lagrangian problem into a Hamiltonian form. In general, if
0*L
60.2 det —5 # 0,
(60.2) o *
we can introduce
oL
b= 04

to transform the Euler—Lagrange equations (60.1) into a system of first order O.D.E.’s: because of the
nondegeneracy condition (60.2) , the implicit function theorem implies that, locally, we can make a change

of variables :

(60.3) L:(q,q9) — (g, p=57)

This is, when g is seen as a point on a manifold 1/, a local diffeomorphism between 7, M and 7,/ M. This
change of variables is called the Legendre transformation.(15)

Define the Hamiltonian function by:

H(qapa t) = pq - L(qaiIat>7

Where it is understood that ¢ = ¢ o L~ '(q, p). We can compute:
OH 0q OL 0LOJq  OL

g "dq 0q 0q0q  0q’
oH 0q O0LOq
5 =4qTPp - =
op Op 0qOp
But the Euler-Lagrange equations imply that:

_doL 9L  OH
p_dtaq 9q  0q’
Combining this with the previous formula yields Hamilton's equations:
q = Hp

(60.4) ]
p=—H,.

Remark 60.1
(a) The Legendre transformation is involutive: it is its own inverse, in the following sense. The map
'6Tn the classical literature the term Legendre transformation refers to the complete process of changing

the Lagrangian L into the Hamiltonian H as shown in this section, and H is then called the Legendre
transformation of L. It is grammatically less awkward to call H the Legendre transformed of L.
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(g,9) — (q, %—é = p) has inverse:

(q,p) — (q, o = q)

and L is the Legendre transformed of H in the sense that:

L(qa q7t> :pq_H(qap7t>

where p = p(q, g, t) is given implicitly by %—2’ =q.

(b) In the new coordinates, the action functional becomes:
Aly) = /pdq ~ Hdt
¥
where - is seen as a curve (q(t), p(t), t) in the space R2n x IR, or T*M x IR.
Hamilton’s equations have a natural expression in the symplectic setting. We assume now that q is in IR".

Using the notation H;(q, p) = H(q, p,t), we can rewrite (60.4) as

. def

2 =—JVH(z) := Xg(z,1).
where VH, = (gq) is the gradient of H, with respect to the scalar product on IR*":

<VHt, ’U> = dHt(’U)
Likewise, X i, which we call the Hamiltonian vector field should be seen as the symplectic gradient of H;:
Q0(Xpgr,v) = (—J*VHy;,v) = (VH;, v) = dHy(v).
This can be written using the contraction operator on differential forms:
ix, 2 =dH,;

Exercise 60.2

(a) Compute the Legendre transformed of L(q, q,t) = %(Ai], q) —V(q).
(b) Show that, in general, if H is the Legendre transformed of L, then

LagHyp = Id.

B. Hamiltonian Systems on a Symplectic Manifold

Motivated by the last expression that we found for the Hamiltonian vector field in IR*", we extend the definition

to symplectic manifolds:

Definition 60.3 Let (/V, {2) be a symplectic manifold and H(z,t) = H;(z) be a real valued function on

N x IR. The Hamiltonian vector field associated with H is the (time dependent) vector field X ;; defined by:
2(Xg,v) =dH(v), Yv e TM.

Equivalently:
ixy {2 =dH;
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The (time dependent) O.D.E.:
(60.5) 2= Xpg(z,t)

is called Hamilton's equations.

In local Darboux coordinate charts (eg. in conjugate coordinates chart of a cotangent bundles), these
equations take the form of (60.4) . If H is time independent, then (60.5) generates a (local) flow on N .If H
is time dependent, then X ;7 generates a (local) flow in the space N X IR, called the extended phase space in

mechanics. Specifically, one solves the following time independent system on IV x IR:

z2=Xg(z,s)
s=1

which generates a flow ¢! in N x IR satisfying:
(rbt(zv 5) = (h§+s(z)7 s+ t)v

where h?, is a family of C*~! diffeomorphims of IV ,depending C*~! on s and . This is a general procedure for
time dependent vector field. The diffeomorphism A4 is called a Hamiltonian mapand, for each fixed s the curve
t — ht is a Hamiltonian isotopy (an isotopy is a smoothly varying 1-parameter family of diffeomorphisms).
Another way of describing h’(z) is by saying that it is the unique solution z(¢) of Hamilton’s equation with
initial condition z(s) = z. In practice, one often fixes s = 0 and denotes h{, by h'.

The following exercise shows the one to one correspondence between time dependent vector fields and
isotopies. It also shows that, even though the time O of a solution flow to a time dependent vector field is the

Identity, the flow does not in general form a group.

Exercise 60.4 Let X; be a vector field (not necessarily Hamiltonian) on a manifold N. Let h% be the
solution flow to the O.D.E. 2 = X(z), s = 1. Prove that:

(i) hS = Id, Vs,

(ii)h;l = hﬁ, o ht, so that in particular hl = h' o (R®)~'. Compute (R%)™'.

(iii) Conversely, given any (sufficiently smooth) isotopy ¢¢ in N, with ¢° = Id, show that the time dependent

vector field:
.t i
9= ds

t+ ty—1
o9 Tolg)

has solution h{ = g’ o (¢°) "

C. Invariants of the Hamiltonian Flow
We analyze here how different objects vary under the Hamiltonian flow. If G is a function on a differentiable
manifold IV, and X is a vector field, we recall that the Lie derivative of G along X is:

LxG() = | 6(6'(2) = dG(X ()

where ¢! is the flow solution for X .
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Theorem 60.5 Let H be a time independent Hamiltonian function on (M, (2) . Then H is constant

under the Hamiltonian flow it generates:

Lx, H =0.

Proof. Lx,H =dH(Xyg)= 2(Xg, Xg) =0 .

Remark 60.6 Lx,G = 2(Xg,Xpg) = —Lx.H is also denoted by {G, H} and it is called the Poisson
bracket of H and GG. Hence, the poisson bracket measures how far the function G (resp. H) is from being
constant along the flow of X g (resp.X). When { H, G} = 0, one says that G (resp. H) is a first integral of
the Hamiltonian flow of H (resp. G), or that the functions H and G are in involution. One can show (see eg.
Arnold (1978), Abraham & Marsden (1985)) that the set of Hamiltonian vector fields form a Lie sub— algebra

of the Lie algebra of vector fields on a manifold, in the sense that:
Ximay = [Xu, Xal-

In particular, the poisson bracket of two functions measures how far from commuting their Hamiltonian flows

are.

One can also compute how a differential form « varies along an isotopy g¢; by the Lie derivative. Let
us first extend the notion of Lie derivative to differential forms. If X is any vector field, we define the Lie

derivative in the direction of X by:

d
Lxa=~| gia.
XE= ),

where g is the flow generated by X. At time ¢ # 0,
7 g = g; Lxa.
Hence, the isotopy g; preserves the form « whenever this Lie derivative is zero:
gia=a, YVt <= Lxa =0.
We have the important homotopy formula (see eg. McDuff & Salamon (1996) ):
(60.6) Lxa=ixda+d(ixc)
and again, at time ¢ # 0,

d . .. )
%= 9 (ixda+d(ixa))

A symplectic isotopy g; on (M, £2) is an isotopy such that g, is a symplectic map for all ¢. By the homotopy

formula (and the fact that a symplectic form is closed), this can be reworded:
(60.7) g+ is a symplectic isotopy <= Lx 2 =0 <= d(ix{2) =0

The following theorem characterises Hamiltonian isotopies, at least in cotangent bundles (or in any exact

symplectic manifold, i.e. one whose symplectic form is exact)
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Theorem 60.7 (a) On any symplectic manifold, Hamiltonian isotopies are symplectic.
(b) On a cotangent bundle T*M, a Hamiltonian isotopy with Hamiltonian H(z,t) is also exact
symplectic:

RN =\ = h'"pdg — pdq = dS,, with S; = /pdq — Hdr
2l
where 7y is the curve (h7(z),7), T € [0,t] solution of Hamilton’s equations in the extended phase
space T*M x IR, and z is the point at which the form is evaluated.
(¢c) Conversely, if an isotopy g¢ is exact symplectic then it is Hamiltonian, with the Hamiltonian
function given by:
Hy = ix,pdg — (9{1)*%(53)-

where Xy(z) = %(g;l(z)).

Proof. The first assertion (a) is an immediate consequence of (60.7) : if k! is a Hamiltonian isotopy then
i(ht)_Q = dH, is exact, and therefore closed. In cotangent bundles, it is also a consequence of the second

assertion. We look for < (S,) in the statement (b):

d, . .l . . . . ,
Eht)\ =h} (ixgd\+ d(ix,\) = hijd(—Hy + ix, \) = dh; (—Hy + ix, \)

From this we get:

t
hd—A=d / hi(—H. +ix, \dr < ds,
JO

that is, h? is exact symplectic. We leave it to the reader to rewrite the integral as the one advertised in the

theorem. This finishes the proof of (b). To prove the converse (c), let g; be an exact symplectic isotopy:
9¢pdq — pdq = dS,
for some S; differentiable in all of (g, p, t). We claim that the (time dependent ) vector field:
d -
Xu(z) = T (9,1 (2))

whose time ¢ is g;, is Hamiltonian. To see this, we compute:

5 \48) = g9;pda = g; Lx,pdq = g; (ix,d(pdq) + d(ix,pdq)),
from which we get

) , e d

ix,dgNdp =d (thpdq —(g;Y) df(St)> = dH;

which exactly means that X, is Hamiltonian with H; as Hamiltonian function. O

A less formal proof of (b) in the above theorem yields extra information. We follow Chapter 9 in Arnold
(1978). We first prove that the vector field (X g, 1) in T*M X IR generates the kernel of the form d(pdq —
Hdt) = dp ANdq — Hqdg A dt — Hpdp A dt. The matrix of this form in the (Darboux) coordinate (g, p, ¢) is:

0 —Id H,
A=| 14 o H,
~H, —H, 0

since the upper left 2n x 2n matrix is the nonsingular matrix J, A is of rank (at least) 2n. It is easy to see that

the vector (H,, —Hy, 1) generates its kernel.
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Now, take a closed curve v in 7% M x IR. The image under the Hamiltonian flow of v forms an embedded
tube in 7* M x IR. Since the tangent space to this tube at any of its point z contains the vector X (z), the
form d(pdq — Hdt) restricted to this tube is null. As a result, because of Stokes’ theorem, if v; and 72 in
T*M x IR encircle the same tube of orbits of the extended flow, we must have:

(60.8) / pdq — Hdt = / pdq — Hdt

71 2
since y; — y2 is the boundary of a region of the tube. The form pdqg — Hdt is called the integral invariant of
Poincaré-Cartan. As a particular case, if 7, is of the form (v,¢1) and vy, = (hif 7, t2), the form Hdt is null
on these curves and hence Equation (60.8) reads:

(60.9) /{ pia = /h }

ty

pdq
~
This last equation implies the statement (b) in Theorem 60.7: it proves that the function

z
(60.10) Sy = / h'"pdq — pdq
z

0
is well defined, i.e. the integral does not depend on the path chosen between z( and z. This proves in turn that
ht is exact symplectic. O

The next theorem, due to Jacobi, runs somewhat against the title of this subsection, in the sense that we
show that symplectic diffeomorphisms conserve Hamilton’s equations. This property in fact characterises
symplectic transformations, which are for this reason called canonical transformations in the classical
litterature. Even though we will not need this theorem in the sequel, we include it here since it explains why

symplectic geometry came to exist.

Theorem 60.8 Let I': (M,wy) — (N,wn) be a diffeomorphism. Then F is symplectic if and only
if for all function H : N — IR,

(60.11) F.Xpor = Xm.
In this case, F' conjugates the Hamiltonian flows ht and gt of H and H o F respectively:
¢ =F 1lohloF.

This holds also when H is time dependent.

Proof. Reminding the reader that by definition F, X (F(z)) = DF, X (z) for any vector field X, we also
use the notation F*Y to mean (F~1).Y. It is not hard to check that the following formula holds:

(60.12) F*?IXa = iF*XF*Oz
for any vector field X and differential form «.. Coming back to our statement, we have on one hand:
Fix,wny =F*dH =dH o F

by tracking down definitions, and on the other hand,



190 Appendix 1 or SG: SYMPLECTIC GEOMETRY (Oct 17 1999)
Frix awy = ipxy Fron = ip-x,wp

because of (60.12) and the fact that F' is symplectic. This proves (60.11) . Conversally, if (60.11) holds for

any H , the same kind of computation shows that,

. % .
7’XH0FF UJN :7’XHQFWJW

and since any tangent vector at a point of M is of the form X, for some H, we must have F*wy = wyy,
i.e. F' is symplectic. The conjugacy statement, a general fact about O.D.Es, is left to the reader, as well as

checking that everything still works with time dependent systems. O

Exercise 60.9 The Lie derivative of a function can be defined, in the obvious way, along any differentiable
isotopy. What fails in Theorem 60.5 when H is time dependent?

Exercise 60.10 Show that in Darboux coordinates:

OH 0G 0H 0G
HGy =229 9297
{H. G} dq O0p Op Oq

Exercise 60.11 Prove that the function S; defined in (60.10) satisfies:
Si(z) = /pdq — Hdt + C(zo,t),
Y

for some C, and v as in Theorem 60.10. (Hint. Apply Stokes on the appropriate surface.)

Exercise 60.12 Prove that hf is exact symplectic (i.e. even for s # 0), where h%(z) is, as in subsection B,
the solution of Hamilton’s equation such that z(s) = z.

Exercise 60.13 Let H be autonomous , or of period 7. Show that Xy (z) is preserved by Dh"(z), i.e. Xu
is an eigenvector of Dh™ with eigenvalue 1.

D. Symplectic Maps as Return Maps of Hamiltonian Systems

Consider a time independent Hamiltonian on IR?" "2 with its standard symplectic structure 2y = Yoo dag A
dpy,. Assume that we have a periodic trajectory -y for the Hamiltonian flow. It must then lie in an energy level
H = Hy = H(v(0)), since H is time independent. Take any 2n + 1 dimensional open disk % which is
transverse to -y at 7(0), and such that 5 intersects ~ only at (0).

Such a disk clearly always exists, if +y is not a fixed point. In fact, one can assume that, in a local Darboux
chart, X is the hyperplane with equation gy = 0: this is because in the construction of Darboux coordinates,
one can start by choosing an arbitrary nonsingular differentiable function as one of the coordinate function
(see [Ar78], section 43, or [We77], Extension Theorem, lecture 5.)

Define & = ¥ N {H = Hy}. It is a standard fact (true for periodic orbits of general flows ) that the
Hamiltonian flow /* admits a Poincaré return map R, defined on X around z¢, by R(2z) = ht(*)(z), where
t(z) is the first return time of z to X’ under the flow (see Hirsh & Smale (1974), Chapter 13).

We claim that R is symplectic, with the symplectic structure induced by {2; on X

Since X is transverse to v, we may assume that:

_ OH

o= 5—
Opo
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Fig. 60. 2.
on X. Hence, by the Implicit Function Theorem, the equation

H(qul'-'v(b’l:po’"'apn) :HO

implies that pg is a function of (qi,...,qn,P1,..-,Pn). This makes the latter variables a system of local

coordinates for X, and since dgy = 0 on X, the restriction of (2 is in fact

w= Q|5 =" dg. Adp.
k=1

To prove that R is symplectic, remember that, by (60.9) , for any closed curve in 2, or more generally for

/ pdq—Hdt:/pdq—Hdt
Re c

since ¢ and Rc are on the same trajectory tube. Here Rc represent the chain in IR*"™2 x IR given by
(R(c(s)), t°*)).This equality implies that the function S(z) = [ R*(pdg — Hdt) — (pdq — Hdt) is well
defined. But, on X, the differential of the form inside this integral is R*w — w, since both dgy and dH are

any closed 1—chain cin X,

zero there. Hence R*w — w = d?S = 0,ie., R is symplectic.

Remark SGleginv is 60.1,Theorem SGthmcanva is 56.1Theorem SGhamexactsymp is 60.7, Formula
SGintinv is (60.9) , Formula SGst is (60.10) , Exercise SGexoexactsympcurve is 59.7, Exercise SGexoxhev
is 60.13, Exercise SGexoisotopy is 60.4, Formula SGformhomotopy is (60.6) , Exo SGexolagsym is 56.6.



