Content

0	In	tro	duction	1
	1	Fal	I from Paradise	1
	2	Bill	liards and Broken Geodesics	4
	3	An	Ancestor of Symplectic Topology	8
1	Т٧	vist	t Maps of the Annulus	11
	4	Мо	notone Twist Maps of the Annulus	11
		А	Definitions	11
		В	Comments on the Definition	12
		С	Twist Maps of the Cylinder	16
	5	Ge	nerating Functions and Variational Setting	17
		А	Generating Functions	17
		В	Variational Principle	18
		С	Periodic Orbits	20
		D	Rotation Numbers	21
	6	Exa	amples	21
		А	Standard Map	21
		В	Elliptic Fixed Points of Area Preserving Maps	23
		С	The Frenkel–Kontorova Model	24
		D	Billiard Maps	25
	7	The	e Poincaré–Birkhoff Theorem	27
2	Tł	ne A	Aubry–Mather Theorem	31
	8	Inti	roduction	31
		А	Motivation And Statement Of The Theorem	31
		В	From The Annulus To The Cylinder	33
	9	Су	clically Ordered Sequences And Orbits	34
	10	Μ	inimizing Orbits	36
	11	С	O Orbits Of All Rotation Numbers	40
		А	Existence Of CO Periodic Orbits	40
		В	Existence of CO Orbits Of Irrational Rotation Numbers	41
	12	Α	ubry-Mather Sets	41

	13	Appendix: Cyclically Ordered Sequences and Circle Maps	46
		A Proofs Of Lemmas 9.1 And 9.2	47
		B Dynamics Of Circle Homeomorphisms	49
3	Gh	ost Circles	53
	14	Gradient Flow of the Action	54
		A Definition of the Flow	54
		B Order Properties of the Flow	55
	15	The Gradient Flow and the Aubry-Mather Theorem	57
	16	Ghost Circles	59
	17	Construction of Ghost Circles	63
		A Ghost Circles Through Any Aubry-Mather Sets	63
		B Smooth, Rational Ghost Circles	64
	18	Construction of Disjoint Ghost Circles	67
	19	Proof of Lemma 18.5	70
	20	Proof of Theorem 18.1	73
		A Rational C_{ω} 's	74
		B Irrational C_{ω} 's	74
	21*	Remarks and Applications	78
		A* Remarks	78
		B Approximate Action-Angle Variables for an Arbitrary Twist Map	79
		C* Partition for Transport	80
		D* An Extension of Aubry's Fundamental Lemma	81
	22	Proofs of Monotonicity and of the Sturmian Lemma	82
		A Proof of Strict Monotonocity	82
		B Proof of the Sturmian Lemma	83
4	Sy	mplectic Twist Maps	87
	23	Symplectic Twist Maps of ${\mathbb T}^n imes {\mathbb R}^n$	88
		A Definition	88
		B Comments on the Definition	89
		C The Variational Setting	89
	24	Examples	91
		A The Generalized Standard Map	91
		B Hamiltonian Systems	92
		C Elliptic Fixed Points	93
	25	More on Generating Functions	95
		A Homeomorphism Between Twist Maps and Generating Functions	95
		B Local vs. Global Twist	96
		C Differential of the Map vs. Generating Function	98
	26	Symplectic Twist Maps on General Cotangent Bundles	
		of Compact Manifolds	99
		A Definition	99
		B Maps vs. Functions, Revisited	100
		C Examples	101

5	Ре	riodic Orbits for Symplectic Twist Maps of $\mathbb{T}^n imes \mathbb{R}^n$	103
	27	Presentation Of The Results	103
		A Periodic Orbits and Rotation Vectors	103
		B Theorems of Existence of Periodic Orbits	104
		C Comments on the Asymptotic Conditions	105
		D History	106
	28	Finite Dimensional Variational Setting	107
	29	Second Variation and Nondegenerate Periodic Orbits	110
	30	The Coercive Case	112
	31	Asymptotically Linear Systems	114
	32	Ghost Tori	116
	33	Hyperbolicity Vs. Action Minimizers	118
6	In۱	variant Manifolds	123
	34	The Theory of Kolmogorov–Arnold–Moser	123
	35	Properties of Invariant Tori	127
		A Recurrent Invariant Toric Graphs are Lagrangian	127
		B Orbits on Lagrangian Invariant Tori Are Minimizers	128
		C Birkhoff's Graph Theorem	129
		D* Aubry-Mather Theorem Via Trimming	132
		E* Generalizations of Birkhoff's Graph Theorem to Higher Dimensions	133
	36	(Un)Stable Manifolds and Heteroclinic orbits	135
		A (Un)stable Manifolds	135
		B Variational Approach to Heteroclinic Orbits	136
		C Splitting of Separatrices and Poincaré–Melnikov Function	138
	37*	Instability, Transport and Diffusion	141
		A* Some Questions About Stability	141
		B* Answer to Question 1: Shadowing of Aubry-Mather Sets	141
		C* Partial Answer to Question 2: Unbounded Orbits	142
		D* Partial Answer to Question 3: Converse KAM Theory	143
7	На	miltonian Systems vs. Twist Maps	145
	38	Case Study: The Geodesic Flow	146
		A A Few Facts About Riemannian Geometry	146
		B The Geodesic Flow as a Twist Map	149
		C The Method of Broken Geodesics	151
		D The Standard Map on Cotangent Bundles of Hyperbolic Manifolds	152
	39	Decomposition of Hamiltonian Maps into Twist Maps	154
		A Legendre Condition Vs. Twist Condition	154
		B Lagrangian Formulation Of Theorem 39.1	157
		C Global Twist: The Case of the Torus	159
		D Decomposition of Hamiltonian Maps into Twist Maps	162
	40	Return Maps in Hamiltonian Systems	164
	41	Suspension of Symplectic Twist Maps by Hamiltonian Flows	165
		A Suspension with Fiber Convexity	166
		B Suspension without Convexity	170

Content

8	Pe	riodic Orbits for Hamiltonian Systems	173
	42	Periodic Orbits in the Cotangent of the n-Torus	174
		A Optical Hamiltonians	174
		B Asymptotically Quadratic Hamiltonians	175
		C Remarks About the Above Results	176
	43	Periodic Orbits in General Cotangent Spaces	177
		A The Discrete Variational Setting	178
		B The Isolating Block	179
		C End of Proof of Theorem 43.1	182
		D Periodic Orbits of Different Homotopy Classes	184
	44	Linking of Spheres	186
9	Ge	eneralizations of the Aubry-Mather Theorem	191
	45*	Theory for Functions on Lattices and PDE's	192
		A* Functions on Lattices	192
		B* PDE's	193
		C* Laminations by Minimal Surfaces	195
		Monotone Recurrence Relationst	196
		Anti–Integrable Limit	197
	48*	Mather's Theory of Minimal Measures	199
		A* Lagrangian Minimizers	200
		B* Ergodic Theory	201
		C* Minimal Measures	204
	10+	D* Examples and Counterexamples	209
	49^	The Case of Hyperbolic Manifolds	212
		A* Hyperbolic Counterexample	212
	F0*	B* All Rotation Directions in Hyperbolic Manifolds	213
	5U"	Concluding Remarks	216
10		nerating Phases and Symplectic Topology	217
	51	Chaperon's Method and the Theorem Of Conley-Zehnder	218
		A A New Action Function \tilde{I}	218
		B Interpretation of \tilde{W} as Action of Broken Geodesic	221 222
	52	C The Conley-Zehnder Theorem Generating Phases and Symplectic Geometry	222
	52	A Generating Phases and Lagrangian Manifolds	224
		B Symplectic Properties of Generating Phases	224
		C The Action Function Generates the Graph of F	220
		D Symplectic Reduction	229
		E Further Applications of Generating Phases	231
A 1	Ov	verview of Symplectic Geometry	233
	53	Symplectic Vector Spaces	233
	54	Subspaces of a Symplectic Vector Space	236
	55	Symplectic Linear Maps	238
	56	Symplectic Manifolds	241
	57	Cotangent Bundles	243
		A Some Definitions	243

XVI

		B Cotangent Bundles as Symplectic Manifold	244
		C Notable Lagrangian Submanifolds of Cotangent Bundles	246
	58	Hamiltonian Systems	247
		A Lagrangian Systems Versus Hamiltonian Systems	247
		B Hamiltonian Systems on Symplectic Manifolds	251
		C Invariants of the Hamiltonian Flow	252
A2	So	me Topological Tools	259
	59*	Hands on Introduction to Homology Theory	260
		A* Finite Cell Complexes	260
		B* Cellular Homology	262
		C* Cohomology	266
	60*	Morse Theory	267
	61	Controlling the Topology of Invariant Sets	273
	62	Topological Proofs	276
		A Proof of the Cuplength Estimate in Theorem 61.2	276
		B* The Betti Number Estimate of Theorem 61.2 and Conley's Theory	278
		C Floer's Lemma	280
		D Proof of Proposition 61.4	282
		E* Floer's Theorem of Global Continuation of Hyperbolic Invariant Sets	283
	63	Generating Phases Quadratic at Infinity	284
		Generating Phases on Product Spaces	284
		Generating Phases on Vector Bundles	285
	64*	Covering Spaces, Lifts and Fundamental Group	288
	Bil	oliography	293
	Inc	lex	303