
Content

0 Introduction 1
1 Fall from Paradise 1
2 Billiards and Broken Geodesics 4
3 An Ancestor of Symplectic Topology 8

1 Twist Maps of the Annulus 11
4 Monotone Twist Maps of the Annulus 11

A Definitions 11
B Comments on the Definition 12
C Twist Maps of the Cylinder 16

5 Generating Functions and Variational Setting 17
A Generating Functions 17
B Variational Principle 18
C Periodic Orbits 20
D Rotation Numbers 21

6 Examples 21
A Standard Map 21
B Elliptic Fixed Points of Area Preserving Maps 23
C The Frenkel–Kontorova Model 24
D Billiard Maps 25
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