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Chapter 7

Periodicity

In seeking to describe and understand natural processes, we search for pat-
terns. Patterns that repeat are particularly useful, because we can predict
what they will do in the future. The sun rises every day and the seasons Many patterns

are periodicrepeat every year. These are the most obvious examples of cyclic, or peri-
odic, patterns, but there are many more of scientific interest, too. Periodic
behavior is the subject of this chapter. We shall take up the questions of de-
scribing and measuring it. To begin, let’s look at some intriguing examples
of periodic or near-periodic behavior.

7.1 Periodic Behavior

Example 1: Populations. In chapter 4 we studied several models that
describe how interacting populations might change over time. Two of those
models—one devised by May and the other by Lotka and Volterra—predict
that when one species preys on another, both predator and prey populations
will fluctuate periodically over time. How can we tell if that actually happens
in nature? Ecologists have examined data for a number of species. Some of Predator and

prey populations
fluctuate periodically

the best evidence is found in the records of Hudson’s Bay Company, which
trapped fur-bearing animals in Canada for almost 200 years. The graph on
the next page gives the data for the numbers of lynx pelts harvested in the
Mackenzie River region of Canada during the years 1821 to 1934 (Finerty,
1980). (The lynx is a predator; its main prey is the snowshoe hare.) Clearly
the numbers go up and down every 10 years in something like a periodic
pattern. There is even a more complex pattern, with one large bulge and
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three smaller ones, that repeats about every 40 years. Data sets like this
appear frequently in scientific inquiries, and they raise important questions.
Here is one: If a quantity we are studying really does fluctuate in a periodic
way, why might that happen? Here is another: If there appear to be several
periodic influences, what are they, and how strong are they? To explore
these questions we will develop a language to describe and analyze periodic
functions.
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Example 2: The earth’s orbit. The earth orbits the sun, returning to itsThe position and the
shape of the earth’s
orbit both fluctuate
periodically

original position after one year. This is the most obvious periodic behavior; it
explains the cycle of seasons, for example. But there are other, more subtle,
periodicities in the earth’s orbital motion. The orbit is an ellipse which turns
slowly in space, returning to its original position after about 23,000 years.
This movement is called precession. The orbit fluctuates in other ways that
have periods of 41,000 years (the obliquity cycle) and 95,000, 123,000, and
413,000 years (the eccentricity cycles).

Example 3: The climate. In 1941 the Serbian geophysicist Milutin Mi-
lankovitch proposed that all the different periodicities in the earth’s orbitFluctuations in the

climate appear in the
geological record

affect the climate—that is, the long-term weather patterns over the entire
planet. Therefore, he concluded, there should also be periodic fluctuations in
the climate, with the same periods as the earth’s orbit. In fact, it is possible
to test this hypothesis, because there are features of the geological record
that tell us about long-term weather patterns. For example, in a year when
the weather is warm and wet, rains will fill streams and rivers with mud that
is eventually carried to lake bottoms. The result is a thick sediment layer. In
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a dry year, the sediment layer will be thinner. Over geological time, lakes dry
out and their beds turn to clay or shale. By measuring the annual layers over
thousands of years, we can see how the climate has varied. Other features
that have been analyzed the same way are the thickness of annual ice layers
in the Antarctic ice cap, the fluctuations of CO2 concentrations in the ice
caps, changes in the O18/O16 ratio in deep-sea sediments and ice caps. In
chapter 12 we will look at the results of one such study.
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Example 4: Sunspot cycles. The number of sunspots fluctuates, reaching
a peak every 11 years or so. The graph above shows the average daily number
of sunspots during each year from 1821 to 1934. Compare this with the lynx
graph which covers the same years. Some earthbound events (e.g., auroras,
television interference) seem to follow the same 11-year pattern. According
to some scientists, other meteorological phenomena—such as rainfall, average
temperature, and CO2 concentrations in the atmosphere—are also “sunspot
cycles,” fluctuating with the same 11-year period. It is difficult to get firm Data can have

both periodic and
random influences

evidence, though, because many fluctuations with different possible causes
can be found in the data. Even if there is an 11-year cycle, it may be
“drowned out” by the effects of these other causes.

The problem of detecting periodic fluctuations in “noisy” data is one
that scientists often face. In chapter 12 we will introduce a mathematical
tool called the power spectrum, and we will use it to detect and measure
periodic behavior—even when it is swamped by random fluctuations.
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7.2 Period, Frequency, and

the Circular Functions

We are familiar with the notions of period and frequency from everyday
experience. For example, a full moon occurs every 28 days, which means
that a lunar cycle has a period of 28 days and a frequency of once per 28
days. Moreover, whatever phase the moon is in today, it will be in the same
phase 28 days from now. Let’s see how to extend these notions to functions.

The function y = g(x) whose graph is sketched below has a patternDefining a
periodic function that repeats. The space T between one high point and the next tells us the

period of this repeating pattern. There is nothing special about the high
point, though. If we take any two points x and x + T that are spaced one
period apart, we find that g has the same value at those point.

x x + T

g(x) g(x + T)

x

y

y = g(x)

T

(This is analogous to saying that the moon is in the same phase on any two
days that are 28 days apart.) The condition g(x + T ) = g(x) for every x
guarantees that g will be periodic. We make it the basis of our definition.

Definition. We say that a function g(x) is periodic

if there is a positive or negative number T for which

g(x + T ) = g(x) for all x.

We call T a period of g(x).
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Since the graph of g repeats after x increases by T , it also repeats after A periodic function
has many periods. . .x increases by 2T , or −3T , or any integer multiple (positive or negative) of

T . This means that a periodic function always has many periods. (That’s
why the definition refers to “a period” rather than “the period.”) The same
is true of the moon; its phases also repeat after 2× 28 days, or 3× 28, days. . . . but we call the

smallest positive one
the period

Nevertheless, we think of 28 days as the period of the lunar cycle, because we
see the entire pattern precisely once. We can say the same for any periodic
function:

Definition. The period of a periodic function is its
smallest positive period. It is the size of a single cycle.

Another measure of a periodic function is its frequency. Consider first the Frequency

lunar cycle. Its frequency is the number of cycles—or fractions of a cycle—
that occur in unit time. If we measure time in days, then the frequency is
1/28-th of a cycle per day. If we measure time in years, though, then the
frequency is about 13 cycles per year. Here is the calculation:

365 days/year

28 days/cycle
≈ 13 cycles/year.

Using this example as a pattern, we make the following definition.

Definition. If the function g(x) is periodic, then its
frequency is the number of cycles per unit x.

Notice that the period and the frequency of the lunar cycle are reciprocals: The frequency of
a cycle is the

reciprocal of its period
the period is 28 days—the time needed to complete one cycle—while the
frequency is 1/28-th of a cycle per day. In the example below, t is measured
in seconds and g has a period of .2 seconds. Its frequency is therefore 5 cycles
per second.

0 1 2 3

seconds
t

y
y = g(t)

Period:  .2  seconds per cycle Frequency:  5  cycles per second

.2 seconds
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In general, if f is the frequency of a periodic function g(x) and T is its
period, then we have

f =
1

T
and T =

1

f
.

The units are also related in a reciprocal fashion: if the period is measured
in seconds, then the frequency is measured in cycles per second.

Because many quantities fluctuate periodically over time, the input vari-
able of a periodic function will often be time. If time is measured in seconds,The units for

measuring frequency
over time

then frequency is measured in “cycles per second.” The term Hertz is a
special unit used to measure time frequencies; it equals one cycle per sec-
ond. Hertz is abbreviated Hz; thus a kilohertz (kHz) and a megahertz

(MHz) are 1,000 and 1,000,000 cycles per second, respectively. This unit is
commonly used to describe sound, light, radio, and television waves. For
example, an orchestra tunes to an A at 440 Hz. If an FM radio station
broadcasts at 88.5 MHz, this means its carrier frequency is 88,500,000 cycles
per second.

Quantities may also be periodic in other dimensions. For instance, a
scientist studying the phenomenon of ripple formation in a river bed mightFunctions can be

periodic over other
units as well

be interested in the function h(x) measuring the height of a ripple as a
function of its distance x along the river bed. This would lead to a function
of period, say, 10 inches and corresponding frequency of .1 cycle per inch.

x

y
t

(cos t , sin t )

1

Circular functions. While there are innumerable
examples of periodic functions, two in particular are
considered basic: the sine and the cosine. They are called
circular functions because they are defined by means of a
circle. To be specific, take the circle of radius 1 centered
at the origin in the x, y-plane. Given any real number t,
measure a distance of t units around the circumference
of the circle. Start on the positive x-axis, and measure

counterclockwise if t is positive, clockwise if t is negative. The coordinates
of the point you reach this way are, by definition, the cosine and the sine
functions of t, respectively:

x = cos(t),

y = sin(t).
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The whole circumference of the circle measures 2π units. Therefore, if we Why cos t and sin t

are periodicadd 2π units to the t units we have already measured, we will arrive back
at the same point on the circle. That is, we get to the same point on the
circle by measuring either t or t + 2π units around the circumference. We
can describe the coordinates of this point two ways:

(cos(t), sin(t)) or (cos(t + 2π), sin(t + 2π)).

Thus
cos(t + 2π) = cos(t) sin(t + 2π) = sin(t),

so cos(t) and sin(t) are both periodic, and they have the same period, 2π.
Here are their graphs. By reading their slopes we can see (sin t)′ = cos t and
(cos t)′ = − sin t.

t

x
x = cos( t)

−π π 2π 3π 4π
−1

1

t

y
y = sin( t)

−π π
2π

3π
4π

−1

1

t

1

The circular functions are constructed without reference to angles; the Radian measure

variable t is measured around the circumference of a circle (of radius 1).
Nevertheless, we can think of t as measuring an angle, as shown at the right.
In this case, t is called the radian measure of the angle. The units are very
different from the degree measurement of an angle: an angle of 1 radian is
much larger than an angle of 1 degree. The radian measure of a 90◦ angle is
π/2 ≈ 1.57, for instance. If we thought of t as an angle measured in degrees,
the slope of sin(t) would equal .017 cos t! (See the exercises.) Only when we
measure t in radians do we get a simple result: (sin t)′ = cos t. This is why
we always measure angles in radians in calculus.

Compare the graph of y = sin(t) above with that of y = sin(4t), below. Changing the
frequency

t

yy = sin(4t)

−π π 2π 3π 4π
−1

1
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Their scales are identical, so it is clear that the frequency of sin(4t) is four
times the frequency of sin(t). The general pattern is described in the following
table.

function period frequency

sin(t) cos(t) 2π 1/2π
sin(4t) cos(4t) 2π/4 4/2π
sin(bt) cos(bt) 2π/b b/2π

Notice that it is the frequency—not the period—that is increased by a factor
of b when we multiply the input variable by b.

By using the information in the table, we can construct circular functionsConstructing a
circular function with
a given frequency

with any period or frequency whatsoever. For instance, suppose we wanted
a cosine function x = cos(bt) with a frequency of 5 cycles per unit t. This
means

5 = frequency =
b

2π
,

which implies that we should set b = 10π and x = cos(10πt). In order to see
the high-frequency behavior of this function better, we magnify the graph a
bit. In the figure below, you can compare the graphs of x = cos(10πt) and
x = cos(t) directly. We still have equal scales on the horizontal and vertical
axes. Finally, notice that cos(10πt) has exactly 5 cycles on the interval
0 ≤ t ≤ 1.

t

x

x = cos(10πt)

x = cos(t)

1 2

−1

1
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We will denote the frequency by ω, the lower case letter omega from the Frequency ω

Greek alphabet. If

ω = frequency =
b

2π
,

then b = 2πω. Therefore, the basic circular functions of frequency ω are
cos(2πωt) and sin(2πωt).

Suppose we take the basic sine function sin(2πωt) of frequency ω and Amplitude

multiply it by a factor A:

y = A sin(2πωt).

The graph of this function oscillates between y = −A and y = +A. The
number A is called the amplitude of the function.

t

y
y = Asin(2πωt)

amplitude

−1/ω 1/ω 2/ω 3/ω

−A

A

The sine function of amplitude  A  and frequency  ω

Physical interpretations. Sounds are transmitted to our ears as fluctu-
ations in air pressure. Light is transmitted to our eyes as fluctuations in a
more abstract medium—the electromagnetic field. Both kinds of fluctuations
can be described using circular functions of time t. The amplitude and the
frequency of these functions have the physical interpretations given in the
following table.

frequency
amplitude frequency range

sound loudness pitch 10–15000 Hz

light intensity color 4 × 1014 – 7.5 × 1014 Hz
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Exercises

Circular functions

1. Choose ω so that the function cos(2πωt) has each of the following periods.

a) 1 b) 5 c) 2π d) π e) 1/3

2. Determine the period and the frequency of the following functions.

a) sin(x), sin(2x), sin(x) + sin(2x)

b) sin(2x), sin(3x), sin(2x) + sin(3x)

c) sin(6x), sin(9x), sin(6x) + sin(9x)

3. Suppose a and b are positive integers. Describe how the periods of
sin(ax), sin(bx), sin(ax) + sin(bx) are related. (As the previous exercise
shows, the relation between the periods depends on the relation between a
and b. Make this clear in your explanation.)

4. a) What are the amplitude and frequency of g(x) = 5 cos(3x)?

b) What are the amplitude and frequency of g′(x)?

5. a) Is the antiderivative

∫

x

0

5 cos(3t) dt periodic?

b) If so, what are its amplitude and frequency?

6. Use the definition of the circular functions to explain why

sin(−t) = − sin(t), sin
(π

2
− t

)

= cos(t),

cos(−t) = + cos(t), sin(π − t) = sin(t),

hold for all values of t. Describe how these properties are reflected in the
graphs of the sine and cosine functions.

7. a) What is the average value of the function sin(s) over the interval
0 ≤ s ≤ π? (This is a half-period.)

b) What is the average value of sin(s) over π/2 ≤ s ≤ 3π/2? (This is also a
half-period.)

c) What is the average value of sin(s) over 0 ≤ s ≤ 2π? (This is a full
period.)
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d) Let c be any number. Find the average value of sin(s) over the full period
c ≤ s ≤ c + 2π.

e) Your work should demonstrate that the average value of sin(s) over a full
period does not depend on the point c where you begin the period. Does it?
Is the same true for the average value over a half period? Explain.

8. a) What is the period T of P (t) = A sin(bt)?

b) Let c be any number. Find the average value of P (t) over the full period
c ≤ t ≤ c + T . Does this value depend on the choice of c?

c) What is the average value of P (t) over the half-period 0 ≤ t ≤ T/2?

Phase

There is still another aspect of circular functions to consider besides am-
plitude and frequency. It is called phase difference. We can illustrate this
with the two functions graphed below. They have the same amplitude and
frequency, but differ in phase.

t

y

y = Asin(bt − ϕ)

y = Asin(bt )

ϕ/b

ϕ/b : phase shift

Specifically, the variable u in the expression sin(u) is called the phase. In
the dotted graph the phase is u = bt, while in the solid graph it is u = bt−ϕ.
They differ in phase by bt − (bt − ϕ) = ϕ. In the exercises you will see why
a phase difference of ϕ produces a shift—which we call a phase shift—of
ϕ/b in the graphs. (ϕ is the Greek letter phi.)

9. The functions sin(x) and cos(x) have the same amplitude and frequency;
they differ only in phase. In other words,

cos(x) = sin(x − ϕ)
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for an appropriately chosen phase difference ϕ. What is the value of ϕ?

10. The functions sin(x) and − sin(x) also differ only in phase. What is
their phase difference? In other words, find ϕ so that

sin(x − ϕ) = − sin(x).

[Note: A circular function and its negative are sometimes said to be “180
degrees out of phase.” The value of ϕ you found here should explain this
phrase.]

11. What is the phase difference between sin(x) and − cos(x)?

12. a) Graph y = sin(t) and y = sin(t − π/3) on the same plane.

b) What is the phase difference between these two functions?

c) What is the phase shift between their graphs?

13. a) Graph together on the same coordinate plane y = cos(t) and y =
cos(t + π/4).

b) What is the phase difference between these two functions?

c) What is the phase shift between their graphs?

14. We know y = cos(t) has a maximum at the origin. Determine the
point closest to the origin where y = cos(t + π/4) has its maximum. Is the
second maximum shifted from the first by the amount of the phase shift you
identified in the previous question?

15. Repeat the last two exercises for the pair of functions y = cos(2t) and
cos(2t + π/4). Is the phase difference equal to the phase shift in this case?

16. Verify that the graph of y = A sin(bt−ϕ) crosses the t-axis at the point
t = ϕ/b. This shows that A sin(bt−ϕ) is “phase-shifted” by the amount ϕ/b
in relation to A sin(bt). (Refer to the graph on page 429.)

17. a) At what point nearest the origin does the function A cos(bt − ϕ)
reach its maximum value?

b) Explain why this shows A cos(bt − ϕ) is “phase-shifted” by the amount
ϕ/b in relation to A cos(bt).
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18. a) Let f(x) = sin(x) − .7 cos(x). Using a graphing utility, sketch the
graph of f(x).

b) The function f(x) is periodic. What is its period? From your graph,
estimate its amplitude.

c) In fact, f(x) can be viewed as a “phase-shifted” sine function:

f(x) = A sin(bx − ϕ).

From your graph, estimate the phase difference ϕ and the amplitude A.

19. a) For each of the values ϕ = 0, π/4, π/2, 3π/4, π, sketch the graph
y = sin(x) · sin(x − ϕ) over the interval 0 ≤ x ≤ 2π. Put the five graphs on
the same coordinate plane.

b) For which graphs is the average value positive, for which is it negative,
and for which is it 0? Estimate by eye.

20. The purpose of this exercise is to determine the average value

F (ϕ) =
1

2π

∫

2π

0

sin(x) sin(x − ϕ) dx

for an arbitrary value of the parameter ϕ. To stress that the average value
is actually a function of ϕ, we have written it as F (ϕ). Here is one way
to determine a formula for F (ϕ) in terms of ϕ. First, using a “sum of two
angles” formula and exercise 6, above, write

sin(x − ϕ) = cos(ϕ) sin(x) − sin(ϕ) cos(x)

Then consider

1

2π

[

cos(ϕ)

∫

2π

0

(sin(x))2dx − sin(ϕ)

∫

2π

0

sin(x) cos(x) dx

]

,

and determine the values of the two integrals separately.

21. a) Sketch the graph of the average value function F (ϕ) you found in
the previous exercise. Use the interval 0 ≤ ϕ ≤ π.

b) In exercise 19 you estimated the value of F (ϕ) for five specific values of
ϕ. Compare your estimates with the exact values that you can now calculate
using the formula for F (ϕ).
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22. Sketch the graph of y = cos(x) sin(x−ϕ) for each of the following values
of ϕ: 0, π/2, 2π/3, π. Use the interval 0 ≤ x ≤ 2π. Estimate by eye the
average value of each function over that interval.

23. a) Obtain a formula for the average value function

G(ϕ) =
1

2π

∫

2π

0

cos(x) sin(x − ϕ) dx.

and sketch the graph of G(ϕ) over the interval 0 ≤ ϕ ≤ π.

b) Use your formula for G(ϕ) to compute the average value of the function
cos(x) sin(x−ϕ) exactly for ϕ = 0, π/2, 2π/3, π. Compare these values with
your estimates in the previous exercise.

24. How large a phase difference ϕ is needed to make the graphs of y =
sin(3x) and y = sin(3x − ϕ) coincide?

25. Sketch the graphs of the following functions.

a) y = 3 sin(2x − π/6) − 1

b) y = 4 sin(2x − π) + 2.

c) y = 4 sin(2x + π) + 2.

26. The function whose graph is sketched
at the right has the form

G(x) = A sin(bx − ϕ) + C.

Determine the values of A, b, C, and ϕ.
t

y y = Asin(bt - ϕ) + c

−2

5

−2 2 4 6

27. Write equations for three different functions that all have amplitude 4,
period 5, and whose graphs pass through the point (6, 7). Be sure the func-
tions are really different—if g(t) is one solution, then h(t) = g(t + 5) would
really be just the same solution.

Derivatives with degrees

28. a) In this exercise measure the angle θ in degrees. Estimate the deriva-
tive of sin(θ) at θ = 0◦ by calculating sin(θ)/θ for θ = 2◦, 1◦, .5◦.
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b) Estimate the derivative of sin(θ) at θ = 60◦ in a similar way. Is (sin(30◦))′ =
cos(30◦)?

29. a) Your calculations in the previous exercise should support the claim
that (sin(θ))′ = k cos(θ) for a particular value of k, when θ is measured in
degrees. What is k, approximately?

b) If t is the radian measure of an angle, and if θ is its degree measure, then
θ will be a function of t. What is it? Now use the chain rule to get a precise
expression for the constant k.

7.3 Differential Equations with Periodic Solutions

The models of predator–prey interactions constructed by Lotka–Volterra and
May (see chapter 4) provide us with examples of systems of differential equa-
tions that have periodic solutions. Similar examples can be found in many
areas of science. We shall analyze some of them in this section. In particu-
lar, we will try to understand how the frequency and the amplitude of the
periodic solutions depend on the parameters given in the model.

Oscillating Springs

We want to study the motion of a weight that hangs from the end
of a spring. First let the weight come to rest. Then pull down on
it. You can feel the spring pulling it back up. If you push up on
the weight, the spring (and gravity) push it back down. The force
you feel is called the spring force. Now release the weight; it will

m x

cm

0
rest
position




move. We’ll assume that the only influence on the motion is the spring force.
(In particular, we will ignore the force of friction.) With this assumption we
can construct a model to describe the motion. We’ll suppose the weight has
a mass of m grams, and it is x centimeters above its rest position after t
seconds. (If the weight goes below the rest position, then x will be negative.)

The linear spring

The simplest assumption we can reasonably make is that the spring force is A linear spring

proportional to the amount x that the spring has been displaced:

force = −c x.
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In this case the spring is said to be linear. The multiplier c is called the
spring constant. It is a positive number that varies from one spring to
another. The minus sign tells us the force pushes down if x > 0, and it pushes
up if x < 0. Because this model describes an oscillating spring governed by
a linear spring force, it is called the linear oscillator.

To see how the spring force affects the motion of the weight, we useNewton’s laws of
motion Newton’s laws. In their simplest form, they say that the force acting on a

body is the product of its mass and its acceleration. Suppose v = dx/dt is
the velocity of the weight in cm/sec, and dv/dt is its acceleration in cm/sec2.
Then

force = m
dv

dt
gm-cm/sec2.

If we equate our two expressions for the force, we get

m
dv

dt
= −c x or

dv

dt
= −b2x cm/sec2,

where we have set c/m = b2. It is more convenient to write c/m as b2 here,
because then b =

√

c/m itself will be measured in units of 1/sec. (To see
why, note that −b2x is measured in units of cm/sec2.)

Suppose we move the weight to the point x = a cm on the scale, hold it

The linear oscillator motionless for a moment, and then release it at time t = 0 sec. This gives us
the initial value problem

x′ = v, x(0) = a,

v′ = −b2x, v(0) = 0.

If we give the parameters a and b specific values, we can solve this initialThe solution with
fixed parameters value problem using Euler’s method. The figure below shows the solution

x(t) for two different sets of parameter values:

a = 4 cm, a = −5 cm,

b = 5 per sec, b = 9 per sec.

t

x

sec

cm
a = −5 cm
b = 9 /sec

a = 4 cm
b = 5 /sec−5

4

1 2 3
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The graphs were made in the usual way, with the differential equation solver
of a computer. They indicate that the weight bounces up and down in a
periodic fashion. The amplitude of the oscillation is precisely a, and the
frequency appears to be linked directly to the value of b. For instance, when
b = 9 /sec, the motion completes just under 3 cycles in 2 seconds. This is a
frequency of slightly less than 1.5 cycles per second. When b = 5 /sec, the
motion undergoes roughly 2 cycles in 2.5 seconds, a frequency of about .8
cycles per second. If the frequency is indeed proportional to b, the multiplier
must be about 1/6:

frequency ≈ b

6
cycles/sec.

We can get a better idea how the parameters in a problem affect the solu- The solution
for arbitrary

parameter values
tion if we solve the problem with a method that doesn’t require us to fix the
values of the parameters in advance. This point is discussed in chapter 4.2,
pages 214–218. It is particularly useful if we can express the solution by a
formula, which it turns out we can do in this case. To get a formula, let us
begin by noticing that

(x′)′ = v′ = −b2x.

In other words, x(t) is a function whose second derivative is the negative of
itself (times the constant b2). This suggests that we try

x(t) = sin(bt) or x(t) = cos(bt).

You should check that x′′ = −b2x in both cases.
Turn now to the initial conditions. Since sin(0) = 0, there is no way to

modify sin(bt) to make it satisfy the condition x(0) = a. However,

x(t) = a cos(bt)

does satisfy it. Finally, we can use the differential equation x′ = v to define
v(t):

v(t) = (a cos(bt))′ = −ab sin(bt).

Notice that v(0) = −ab sin(0) = 0, so the second initial condition is satisfied.
In summary, we have a formula for the solution that incorporates the The formula proves the

motion is periodicparameters. With this formula we see that the motion is really periodic—a
fact that Euler’s method could only suggest. Furthermore, the parameters
determine the amplitude and frequency of the solution in the following way:

position : a cos(bt) cm from rest after t sec
amplitude : a cm
frequency : b/2π cycles/sec
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We can see the relation between the motion and the parameters in the graph
below (in which we take a > 0).

Graph of the general
linear oscillator

t

x

sec

cm

a x = acos(bt )

2π/b 4π/b 6π/b

Here are some further properties of the motion that follow from our for-
mula for the solution. Recall that the parameter b depends on the mass m
of the weight and the spring constant c: b2 = c/m.

• The amplitude depends only on the initial conditions, not on the mass
m or the spring constant c.

• The frequency depends only on the mass and the spring constant, not
on the initial amplitude.

These properties are a consequence of the fact that the spring force is linear.
As we shall see, a non-linear spring and a pendulum move differently.

The non-linear spring

The harder you pull on a spring, the more it stretches. If the stretch
is exactly proportional to the pull (i.e., the force), the spring is linear.

x

force
non-linear

(hard) spring

linear
spring

force = −cx

linear
range

In other words, to double the stretch you must
double the force. Most springs behave this way
when they are stretched only a small amount.
This is called their linear range. Outside that
range, the relation is more complicated. One pos-
sibility is that, to double the stretch, you must
increase the force by more than double. A spring
that works this way is called a hard spring. The
graph at the left shows the relation between the
applied force and the displacement (or stretch x)
of a hard spring.
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In a nonlinear spring, force is no longer proportional to displacement.
Thus, if we write

force = −c x

we must allow the multiplier c to depend on x. One simple way to achieve
this is to replace c by c + γx2. (We use x2 rather than just x to ensure that
−x will have the same effect as +x. The multiplier γ is the Greek letter
gamma.) Then

force = −c x − γx3.

Since force = m dv/dt as well, we have

m
dv

dt
= −c x − γx3 or

dv

dt
= −b2x − βx3 cm/sec2.

Here b2 = c/m and β = γ/m. By taking the same initial conditions as before,
we get the following initial value problem:

A non-linear oscillatorx′ = v, x(0) = a,

v′ = −b2x − βx3, v(0) = 0.

To solve this problem using Euler’s method, we must fix the values of the
three parameters. For the two parameters that determine the spring force,
we choose:

b = 5 per sec β = .2 per cm2-sec2.

We have deliberately chosen b to have the same value it did for our first
solution to the linear problem. In this way, we can compare the non-linear Comparing a hard

spring to a linear springspring to the linear spring that has the same spring constant. We do this in
the figure below. The dashed graph shows the linear spring when its initial
amplitude is a = 4 cm. The solid graph shows the hard spring when its
initial amplitude is a = 1.5 cm. Note that the two oscillations have the same
frequency.

t

x

sec

cm

1.5

4

1 2 3
hard spring

linear spring
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The non-linear spring behaves like the linear one because the amplitudesThe effect of amplitude
on acceleration are small. To understand this reason, we must compare the accelerations

of the two springs. For the linear spring we have v′ = −25x, while for
the non-linear spring, v′ = −25x − .2x3. As the following graph shows,
these expressions are approximately equal when the amplitude x lies between
+2 cm and −2 cm. In other words, the linear range of the hard spring is

x

cm

v′cm
sec2

linear: = −25x

non-linear: = −25x − .2x3

−8 −4 4 8

200

−200

−2 ≤ x ≤ 2 cm. Since the initial amplitude was 1.5 cm—well within the
linear range—the hard spring acts like a linear one. In particular, its fre-
quency is approximated closely by the formula b/2π cycles per second. This
is 5/2π ≈ .8 Hz.

A different set of circumstances is reflected in the following graph. TheLarge-amplitude
oscillations hard spring has been given an initial amplitude of 8 cm. As the graph of

v′ shown above indicates, the hard spring experiences an acceleration about
50% greater than the linear spring at the that amplitude.

t

x

sec

cm

4

8

1 2 3

linear spring 
≈ 21/2 cycles

hard spring 
≈ 3 cycles
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As a consequence, the hard spring oscillates with a noticeably higher fre- The frequency of a
non-linear spring

depends on
its amplitude

quency! It completes 3 cycles in the time it takes the linear spring to com-
plete 21

2
—or 6 cycles while the linear spring completes 5. The frequency of

the hard spring is therefore about 6/5-th the frequency of the linear spring,
or 6/5 × 5/2π = 3/π ≈ .95 Hz.

The solutions of the non-linear spring problem still look like cosine func-
tions, but they’re not. It’s easier to see the difference if we take a large
amplitude solution, and look at velocity instead of position. In the graph
below you can see how the velocity of a hard spring differs from a pure sine A mathematical

commentfunction of the same period and amplitude. Since there are no sine or cosine
functions here, we can’t even yet be sure that the motion of a non-linear
spring is truly periodic! We will prove this, though, in the next section by
using the notion of a first integral.

time

velocity

sec

cm
sec

pure sine function
velocity of hard spring

There are other ways we might have modified the basic equation v′ = Other non-linear
springs−b2x to make the spring non-linear. The formula v′ = −b2x − βx3 is only

one possibility. Incidentally, our study of a hard spring was based on choosing
β > 0 in this formula. Suppose we choose β < 0 instead. As you will see
in the exercises, this is a soft spring: we can double the stretch in a soft
spring by using less than double the force. The pendulum, which we will
study next, behaves like a soft spring.

Although we can use sine and cosine functions to solve the linear oscillator
problem, there are, in general, no formulas for the solutions to the non-linear
oscillator problems. We must use numerical methods to find their graphs—as
we have done in the last three pages.

The basic differential equation for a linear spring is also used to model a
vibrating string. Think of a tightly-stretched wire, like a piano string or a The harmonic oscillator

guitar string. Let x be the distance the center of the string has moved from
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rest at any instant t. The larger x is, the more strongly the tension on the
string will pull it back towards its rest position. Since x is usually very small,
it makes sense to assume that this “restoring force” is a linear function of x:
−c x. If v is the velocity of the string, then mv′ = −c x by Newton’s laws of
motion. Because of the connection between vibrating strings and music, this
differential equation is called the harmonic oscillator.

The Sine and Cosine Revisited

The sine and cosine functions first appear in trigonometry, where they are
defined for the acute angles of a right triangle. Negative angles and angles
larger than 90◦, are outside their domain. This is a serious limitation. To
overcome it, we redefine the sine and cosine on a circle. The main conse-
quence of this change is that the sine and cosine become periodic.

However, neither circles nor triangles are particularly useful if we wantA computable
definition of the
sine and cosine

to calculate the values of the sine or the cosine. (How would you use one of
them to determine sin(1) to four—or even two—decimal places accuracy?)
Our experience with the harmonic oscillator gives yet another way to define
the sine and the cosine functions—a way that conveys computational power.

The idea is simple. With hindsight we know that u = sin(t) and v = cos(t)
are the solutions to the initial value problem

u′ = v, u(0) = 0,

v′ = −u v(0) = 1.

Now make a fresh start with this initial value problem, and define u = sin(t)
and v = cos(t) to be its solution! Then we can calculate sin(1), for instance,
by Euler’s method. Here is the result.

number estimate of
of steps sin(1)

100
1 000

10 000
100 000

1 000 000

.845671

.841892

.841513

.841475

.841471

So we can say sin(1) = .8415 to four decimal places accuracy.
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Our point of view here is that differential equations define functions. In
chapter 10, we shall consider still another method for defining and calculating
these important functions, using infinite series.

The Pendulum

x

v

0

1

We are going to study the motion of a pendulum that can swing in a full 360◦

circle. To keep the physical details as simple as possible, we’ll assume its mass
is 1 unit, and that all the mass is concentrated in the center of the pendulum
bob, 1 unit from the pivot point. Assume that the pendulum is x units from
its rest position at time t, where x is measured around the circular path
that the bob traces out. Assume the velocity is v. Take counterclockwise
positions and velocities to be positive, clockwise ones to be negative. When
the pendulum is at rest we have x = v = 0.

x

x
G

F

G sinx = F

When the pendulum is moving, there must be forces at work. Let’s ignore
friction, as we did with the spring. The force that pulls the pendulum back
toward the rest position is gravity. However, gravity itself—G in the figure
at the right—pulls straight down. Part of the pull of G works straight along
the arm of the pendulum, and is resisted by the pivot. (If not, the pendulum
would be pulled out of the pivot and fall to the floor!) It is the other part,
labelled F, that moves the pendulum sideways.

The size of F depends on the position x of the pendulum. When x = 0,
the sideways force F is zero. When x = π/2 (the pendulum is horizontal),
the entire pull of G is “sideways”, so F = G. To see how F depends on x
in general, note first that we can think of x as the radian measure of the
angle between the pendulum and the vertical (because x is measured around
a circle of radius 1). In the small right triangle, the hypotenuse is G and
the side opposite the angle x is exactly as long as F. By trigonometry, F =
G sin x.

Let’s choose units which make the size of G equal to 1. Then the size Newton’s laws
produce a model
of the pendulum

of F is simply sin x. Since F points in the clockwise (or negative) direction
when x is positive, we must write F = − sin x. According to Newton’s laws
of motion, the force F is the product of the mass and the acceleration of the
pendulum. Since the mass is 1 unit and the acceleration is v′ = x′′, we finally
get x′′ = − sin x, or

x′ = v v′ = − sin x.
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Now that we have an explicit description of the restoring force, we canThe pendulum is
a soft spring see that the pendulum behaves like a non-linear spring. However, it is true

that doubling the displacement x always less than doubles the force, as the
graph below demonstrates. Thus the pendulum is like a soft spring.

x

v′

1 2 3
−1−2−3

a linear spring

the pendulum
a soft spring

v′ = −sin x

v′ = −x

Because a swinging pendulum is used keep time, it is important to control
the period of the swing. Physics analyzes how the period depends on the
pendulum’s length and mass. We will confine ourselves to analyzing how the
period depends on its amplitude.

Let’s draw on our experience with springs. According to the graph above,Small-amplitude
oscillations the restoring force of the pendulum is essentially linear for small amplitudes—

say, for −.5 ≤ x ≤ .5 radians. Therefore, if the amplitude stays small, it is
reasonable to expect that the pendulum will behave like a linear oscillator.
As the graph indicates, the differential equation of the linear oscillator is
v′ = −x. This is of the form v′ = −b2x with b = 1. The period of such
a linear oscillator is 2π/b = 2π ≈ 6.28. Let’s see if the pendulum has this
period when it swings with a small amplitude. We use Euler’s method to
solve the initial value problem

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0,

for several small values of a. The results appear in the graph below.

t

x

6 12
−.4

.2

.5

As you can see, small amplitude oscillations have virtually the same period.
Thus, we would not expect the fluctuations in the amplitude of the pendulum
on a grandfather’s clock to affect the timekeeping.
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What happens to the period, though, if the pendulum swings in a large Large-amplitude
oscillationsarc? The largest possible initial amplitude we can give the pendulum would

point it straight up. The pendulum is then 180◦ from the rest position,
corresponding to a value of x = π = 3.14159 . . .. In the graph below we
see the solution that has an initial amplitude of x = 3, which is very near
the maximum possible. Its period is much larger than the period of the
solution with x = .5, which has been carried over from the previous graph for
comparison. Even the solution with x = 2 has a period which is significantly
larger that the solution with x = .5.

t

x

3 6 9 12

.5

2

3

x = .5

x = 2

x = 3

We saw that the period of a hard spring got shorter (its frequency increased)
when its amplitude increased. But the pendulum is a soft spring and shows
motions of longer period as its initial amplitude is increased. Notice how
flat the large-amplitude graph is. This means that the pendulum lingers
at the top of its swing for a long time. That’s why the period becomes so
large. Check the graph now and confirm that the period of the large swing
is about 17.
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Although we can’t get formulas to describe the motion of the pendulumThe pendulum at rest

for most initial conditions, there are two special circumstances when we can.
Consider a pendulum that is initially at rest: x = 0 and v = 0 when t = 0.
It will remain at rest forever: x(t) = 0, v(t) = 0 for all t ≥ 0. What we really
mean is that the constant functions x(t) = 0 and v(t) = 0 solve the initial
value problem

x′ = v, x(0) = 0,

v′ = − sin x, v(0) = 0.

There is another way for the pendulum to remain at rest. The key is thatThe pendulum
balanced on end v must not change. But v′ = − sin x, so v will remain fixed if v′ = − sin x = 0.

Now, sin x = 0 if x = 0. This yields the rest solution we have just identified.
But sin x is also zero if x = π. You should check that the constant functions
x(t) = π, v(t) = 0 solve this initial value problem:

x′ = v, x(0) = π,

v′ = − sin x, v(0) = 0.

Since the pendulum points straight up when x = π radians, this motionless
solution corresponds to the pendulum balancing on its end.

These two solutions are called equilibrium solutions (from the LatinStable and unstable
equilibrium solutions æqui-, equal + libra, a balance scale). If the pendulum is disturbed from its

rest position, it tends to return to rest. For this reason, rest is said to be
a stable equilibrium. Contrast what happens if the pendulum is disturbed
when it is balanced upright. This is said to be an unstable equilibrium. We
will take a longer look at equilibria in chapter 8.

Predator–Prey Ecology

Many animal populations undergo nearly periodic fluctuations in size. It isWhy do populations
fluctuate? even more remarkable that the period of those fluctuations varies little from

species to species. This fascinates ecologists and frustrates many who hunt,
fish, and trap those populations to make their livelihood. Why should there
be fluctuations, and can something be done to alter or eliminate them?

There are models of predator-prey interaction that exhibit periodic be-
havior. Consequently, some researchers have proposed that the fluctuations
observed in a real population occur because that species is either the preda-
tor or the prey for another species. The models themselves have different
properties; we will study one proposed by R. May. As we did with the spring



DVI file created at 9:40,  28 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

7.3. DIFFERENTIAL EQUATIONS WITH PERIODIC SOLUTIONS 445

and the pendulum, we will ask how the frequency and amplitude of periodic
solutions depend on the initial conditions.

May’s model involves two populations that vary in size over time: the
predator y and the prey x. The numbers x and y have been set to an
arbitrary scale; they lie between 0 and 20. The model also has six adjustable
parameters, but we will simply fix their values:

prey: x′ = .6 x
(

1 − x

10

)

− .5 xy

x + 1
,

predator: y′ = .1 y
(

1 − y

2x

)

.

These equations will be our starting point. However, if you wish to learn
more about the premises behind May’s model, you can refer to chapter 4.1
(page 191).

To begin to explore the model, let’s see what happens to the prey popu- A predator-free
equilibrium . . .lation when there are no predators (y = 0). Then the size of x is governed by

the simpler differential equation x′ = .6x(1 − x/10). This is logistic growth,
and x will eventually approach the carrying capacity of the environment,
which in this case is 10. (See chapter 4.1, pages 183–185.) In fact, you
should check that

x(t) = 10, y(t) = 0,

is an equilibrium solution of May’s original differential equations. Now sup-
pose we introduce a small number of predators: y = .1. Then the equilibrium . . . upset by predators

is lost, and the predator and prey populations fall into cyclic patterns with
the same period:

t

x, y

10

.1
0 50 100 150 200

x: prey

y: predator

period ≈ 39
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In the other models of periodic behavior we have studied, the frequencySolutions with various
initial conditions . . . and amplitude have depended on the initial conditions. Is the same true

here? The following graphs illustrate what happens if the initial populations
are either

x = 8, y = 2, or x = 1.1, y = 2.2.

For the sake of comparison, the solution with x = 10, y = .1 is also carried
over from the previous page.

t

x, y

8

2

0 50 100 150 200

x: prey

y: predator

t

x, y

1.1
2.2

0 50 100 150 200

x: prey

y: predator

t

x, y

10

.1
0 50 100 150 200

x: prey

y: predator

In all of these graphs, periodic behavior eventually emerges. What is
most striking, though, is that it is the same behavior in all cases. The. . . all have the

same amplitude
and frequency

amplitude and the period do not depend on the initial conditions. Moreover,
even though the populations peak at different times on the three graphs (i.e.,
the phases are different), the y peak always comes about 14 time units after
the x peak.
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Proving a Solution Is Periodic

The graphs in the last ten pages provide strong evidence that non-linear Can we prove that
systems have periodic

oscillations?
springs, pendulums, and predator-prey systems can oscillate in a periodic
way. The evidence is numerical, though. It is based on Euler’s method,
which gives us only approximate solutions to differential equations. Can we
now go one step further and prove that the solutions to these and other
systems are periodic?

Notice that we already have a proof in the case of a linear spring. The
solutions are given by formulas that involve sines and cosines, and these are The virtue

of a formulaperiodic by their very design as circular functions. But we have no formulas
for the solutions of the other systems. In particular, we are not able to say
anything about the general properties of the solutions (the way we can about
sine and cosine functions). The approach we take now does not depend on
having a formula for the solution.

It may seem that what we should do is develop more methods for finding formulas for solutions.
In fact, two hundred years of research was devoted to this goal, and much has been accomplished.
However, it is now clear that most solutions simply have no representation “in closed form” (that
is, as formulas). This isn’t a confession that we can’t find the solutions. It just means the
formulas we have are inadequate to describe the the solutions we can find.

The pendulum—a qualitative approach

x = a

v = 0

Stage 1:

Let’s work with the pendulum and model it by the following initial value
problem:

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0.

We’ll assume 0 < a < π. Thus, at the start the pendulum is motionless and
raised to the right. Call this stage 1. We’ll analyze what happens to x and
v in a qualitative sense. That is, we’ll pay attention to the signs of these
quantities, and whether they’re increasing or decreasing, but not their exact
numerical values.

x = 0

v = −V1

Stage 2:

According to the differential equations, v determines the rate at which x
changes, and x determines the rate at which v changes. In particular, since
we start with 0 < x < π, the expression − sin x must be negative. Thus v′ is
negative, so v decreases, becoming more and more negative as time goes on.
Consequently, x changes at an ever increasing negative rate, and eventually
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its value drops to 0. The moment this happens the pendulum is hanging
straight down and moving left with some large negative velocity −V1. This
is stage 2.

Immediately after the pendulum passes through stage 2, x becomes neg-
ative. Consequently, v′ = − sin x now has a positive value (because x is
negative). So v stops decreasing and starts increasing. Since x gets more
and more negative, v increases more and more rapidly. Eventually v must
become 0. Suppose x = −B1 at the moment this happens. The pendulum is
then poised motionless and raised up B1 units to the left. We have reached
stage 3.

x = −B1

v = 0

Stage 3:

x = 0

v = V2

Stage 4:

x = B2

v = 0

Stage 5:

The situation is now similar to stage 1, because v = 0 once again. The
difference is that x is now negative instead of positive. This just means that
v′ is positive. Consequently v becomes more and more positive, implying
that x changes at an ever increasing positive rate. Eventually x reaches 0.
The moment this happens the pendulum is again hanging straight down (as
it was at stage 2), but now it is moving to the right with some large positive
velocity V2. Let’s call this stage 4. It is similar to stage 2.

Immediately after the pendulum passes through stage 4, x becomes pos-
itive. This makes v′ = − sin x negative, so v stops increasing and starts
decreasing. Eventually v becomes 0 again (just as it did in the events that
lead up to stage 3). At the moment the pendulum stops, x has reached some
positive value B2. Let’s call this stage 5.

The “trade-off” between speed and height

We appear to have gone “full circle.” The pendulum has returned to the
right and is once again motionless—just as it was at the start. However, weAre we back

where we started? don’t know that the current position of the pendulum (which is x = B2) is
the same as its initial position (x = a). This is a consequence of working
qualitatively instead of quantitatively. But it is also the nub of the problem.
For the motion of the pendulum to repeat itself exactly we must have B2 = a.
Can we prove that B2 = a?

Since a and B2 are the successive positive values of x that occur when
v = 0, it makes sense to explore the connection between x and v. In a real
pendulum there is an obvious connection. The higher the pendulum bob
rises, the more slowly it moves. If you review the sequence of stages we just
went through, you’ll see that the same thing is true of our mathematical
model. This suggests that we should focus on the height of the pendulum
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bob and the magnitude of the velocity. This is called the speed; it is just
the absolute value |v| of the velocity.

x 1
1

cos x

h

A little trigonometry shows us that when the pendu-
lum makes an angle of x radians with the vertical, the
height of the pendulum bob is

h = 1 − cos x.

When x is a function of time t, then h is too and we have

h(t) = 1 − cos(x(t)).

Our intuition about the pendulum tells us that every change in height
is offset by a change in speed. (This is the “trade-off.”) It makes sense,
therefore, to compare the rates at which the height and the speed change
over time. However, the speed |v(t)| involves an absolute value, and this Changes in speed

. . . modifiedis difficult to deal with in calculus. (The absolute value function is not
differentiable at 0.) Since we are using |v| simply as a way to ignore the
difference between positive and negative velocities, we can replace |v| by v2.
Then we find

d

dt
(v(t))2 = 2 · v(t) · v′(t) = −2 · v · sin x.

Notice that we needed the chain rule to differentiate (v(t))2. After that we
used the differential equations of the pendulum to replace v′ by − sin x.

The height of the pendulum changes at this rate: Changes in height

d

dt
h(t) = sin(x(t)) · x′(t) = sin x · v.

We needed the chain rule again, and we used the differential equations of the
pendulum to replace x′ by v.

The two derivatives are almost exactly the same; except for sign, they
differ only by a factor 2. If we use 1

2
v2 instead of v2, then the trade-off is

exact: every increase in 1

2
v2 is exactly matched by a decrease in h, and vice

versa. Therefore, if we combine 1

2
v2 and h to make the new quantity

E = 1

2
v2 + h = 1

2
v2 + 1 − cos x,

then we can say that the value of E does not change as the pendulum moves.
Since E depends on v and h, and these are functions of the time t, E Showing E is a

constantitself is a function of t. To say that E doesn’t change as the pendulum moves
is to say that this function is a constant—in other words, that its derivative
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is 0. This was, in fact, the way we constructed E in the first place. Let’s
remind ourselves of why this worked. Since E = 1

2
v2 + h,

dE

dt
= v · v′ + h′ = v · (− sin x) + sin x · v = 0.

To get the second line we used the fact that v′ = − sin x and x′ = v when
x(t) and v(t) describe pendulum motion.

The quantity E is called the energy of the pendulum. The fact that E
doesn’t change is called the conservation of energy of the pendulum. A
number of problems in physics can be analyzed starting from the fact that
the energy of many systems is constant.

Let’s calculate the value of E at the five different stages of our pendulum:

stage v x h E

1 0 a 1 − cos a 1 − cos a
2 −V1 0 0 1

2
(−V1)

2

3 0 −B1 1 − cos B1 1 − cos B1

4 V2 0 0 1

2
V2

2

5 0 B2 1 − cos B2 1 − cos B2

By the conservation of energy, all the quantities in the right-hand column
have the same value. Looking at the value for E in stages 2 and 4, we see that
V1 = V2—whenever the pendulum is at the bottom of its swing (x = 0), it is
moving with the same speed, the velocity being positive when the pendulum
is swinging to the right, negative when it is swinging to the left. Similarly,
if we look at the value of E at stages 1, 3, and 5, we see that

1 − cos a = 1 − cos B1 = 1 − cos B2.

We can put this another way: whenever the pendulum is motionless, it must
be back at its starting height h = 1 − cos a.

In particular, we have thus shown that B2 (the position of the pendulum
after it’s gone over and back) = a (the position of the pendulum at the be-
ginning). Thus the value for x and the value for v are the same in stage 5 and
in stage 1—the two stages are mathematically indistinguishable. Since the. . . and that the

oscillations are periodic solution to an initial value problem depends only on the differential equation
and the initial values, what happens after stage 5 must be identical to what
happens after stage 1—the second swing of the pendulum must be identical
to the first! Thus the motion is periodic, which completes our proof.
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You can also use the fact that the value of E doesn’t change to determine
the velocities −V1 and V2 that the pendulum achieves at the bottom of its
swing. In the exercises you are asked to show that

V1 = V2 =
√

2 − 2 cos a.

First Integrals

Notice in what we have just done that we haven’t solved the differential
equation for the pendulum in the sense of finding explicit formulas giving x
and v in terms of t. Instead we found a combination of x and v that remained
constant over time and used this to deduce some of the behavior of x and v.
Such a combination of the variables that remains constant is called a first First integrals

integral of the differential equation. A surprising amount of information
about a system can be inferred from first integrals (when they exist). They
play an important role in many branches of physics, giving rise to the basic
conservation laws for energy, momentum, and angular momentum. We will
have more to say about first integrals and conservation laws in chapter 8.

In the exercises you are asked to explore first integrals for linear and non-
linear springs—and to prove thereby that (frictionless) non-linear springs
have periodic motions.

Exercises

Linear springs

In the text we always assumed that the weight on the spring was motionless
at t = 0 seconds. The first four exercises explore what happens if the weight is
given an initial impulse. For example, instead of simply releasing the weight,
you could hit it out of your hand with a hammer. This means v(0) 6= 0. The
general initial value problem is

x′ = v, x(0) = a,

v′ = −b2x, v(0) = p.

The aim is to see how the period, amplitude, and phase of the solution depend
on this new condition.

1. Pure impulse. Take b = 5 per second, as in the first example in the
text, but suppose

a = 0 cm, p = 20 cm/sec.
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(In other words, you strike the weight with a hammer as it sits motionless
at the rest position x = 0 cm.)

a) Use the differential equation solver on a computer to solve the initial
value problem numerically and graph the result.

b) From the graph, estimate the period and the amplitude of the solution.

c) Find a formula for this solution, using the graph as a guide.

d) From the formula, determine the period and amplitude of the solution.
Does the period depend the initial impulse p, or only on the spring constant
b? Does the amplitude depend on p?

2. Impulse and displacement. Take a = 4 cm and b = 5 per second, as
in the first example on page 434. But assume now that the weight is given
an initial downward impulse of p = −20 cm/sec.

a) Solve the initial value problem numerically and graph the result.

b) From the graph, estimate the period and the amplitude of the solution.
Compare these with the period and the amplitude of the solution obtained
in the text for p = 0 cm/sec.

3. Let a and b have the values they did in the last exercise, but change p
to +20 cm/sec. Graph the solution, and compare the amplitude and phase
of this solution with the solution of the previous exercise.

4. Let a, b, and p have arbitrary values. The last two exercises suggest that
the solution to the general initial value problem for a linear spring can be
given by the formula x(t) = A sin(bt − ϕ). The amplitude A and the phase
difference ϕ depend on the initial conditions. Show that the formula for x(t)
is correct by expressing A and ϕ in terms of the initial conditions.

5. Strength of the spring. Take two springs, and suppose the second is
twice as strong as the first. That is, assume the second spring constant is
twice the first. Put equal weights on the ends of the two springs, and use
the initial value v(0) = 0 in both cases. Which weight oscillates with the
higher frequency? How are the frequencies of the two related—e.g., is the
frequency of the second equal to twice the frequency of the first, or should
the multiplier be a different number?

6. a) Effect of the weight. Hang weights from two identical springs (i.e.,
springs with the same spring constant). Suppose the mass of the second
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weight is twice that of the first. Which weight oscillates with the higher
frequency? How much higher—twice as high, or some other multiplier?

b) Do this experiment in your head. Measure the frequency of the oscilla-
tions of a 200 gram weight on a spring. Suppose a second weight oscillates
at twice the frequency; what is its mass?

A reality check. Do your results in the last two exercises agree with your
intuitions about the way springs operate?

7. a) First integral. Show that E = 1

2
v2 + 1

2
b2x2 is a first integral for the

linear spring

x′ = v, x(0) = a,

v′ = −b2x, v(0) = p.

In other words, if the functions x(t) and v(t) solve this initial value problem,
you must show that the combination

E = 1

2
(v(t))2 + 1

2
b2 (x(t))2

does not change as t varies.

b) What value does E have in this problem?

c) If x is measured in cm and t in sec, what are the units for E?

8. a) This exercise concerns the initial value problem in the previous ques-
tion. When x = 0, what are the possible values that v can have?

b) At a moment when the weight on the spring is motionless, how far is it
from the rest position?

9. You already know that initial value problem in exercise 7 has a solution
of the form x(t) = A sin(bt − ϕ) and therefore must be periodic. Given a
different proof of periodicity using the first integral from the same exercise,
following the approach used by the book in the case of the pendulum.

Non-linear springs

10. a) Suppose the acceleration v′ of the weight on a hard spring depends
on the displacement x of the weight according to the formula v′ = −16x−x3
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cm/sec2. If you pull the weight down a = 2 cm, hold it motionless (so p = 0
cm/sec) and then release it, what will its frequency be?

b) How far must you pull the weight so that its frequency will be double
the frequency in part (a)? (Assume p = 0 cm/sec, so there is still no initial
impulse.)

11. Suppose the acceleration of the weight on a hard spring is given by v′ =
−16x− .1 x3 cm/sec2. If the weight is oscillating with very small amplitude,
what is the frequency of the oscillation?

12. a) Suppose a weight on a spring accelerates according to the formula

dv

dt
= − 25x

1 + x2
cm/sec2.

This is a soft spring. Explain why. [Graph v′ as a function of x.]

b) If the initial amplitude of the weight is a = 4 cm, and there is no initial
impulse (so p = 0 cm/sec), what is the frequency of the oscillation?

c) Double the initial amplitude, making a = 8 cm but keeping p = 0 cm/sec.
What happens to the frequency?

d) Suppose you make the initial amplitude a = 100 cm. Now what happens
to the frequency?

13. First integrals. Suppose the acceleration on a non-linear spring is

v′ = −b2x − βx3, where v = x′.

Show that the function

E = 1

2
v2 + 1

2
b2x2 + 1

4
βx4

is a first integral. (See the text (page 451) and exercise 7, above.)

14. Suppose the acceleration on a non-linear spring is v′ = −16x − x3

cm/sec2, and initially x = 2 cm and v = 0 cm/sec.

a) The first integral of the preceding exercise must have a fixed value for
this spring. What is that value?

b) How fast is the spring moving when it passes through the rest position?
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c) Can the spring ever be more than 2 cm away from the rest position?
Explain your answer.

15. Construct a first integral for the initial value problem

x′ = v, x(0) = a,

v′ = −b2x − βx3, v(0) = p,

and use it to show that the solution to the problem is periodic.

16. a) Show that the function

E = 1

2
v2 + 25

2
ln(1 + x2)

is a first integral for the soft spring in exercise 12.

b) If the initial amplitude is a = 4 cm and the initial velocity is 0 cm/sec,
what is the speed of the weight as it moves past the rest position?

c) Prove that the motion of this spring is periodic.

17. Suppose the acceleration on a non-linear spring has the general form
v′ = −f(x). Can you find a first integral for this spring? In other words,
you are being asked to show that a first integral always exists whenever the
rate of change of the velocity depends only on the position x (and not, for
instance, on v itself, or on the time t).

The pendulum

These questions deal with the initial value problem

x′ = v, x(0) = a,

v′ = − sin x, v(0) = p.

In particular, we want to allow an initial impulse p 6= 0.

18. Take a = 0 and given the pendulum three different initial impulses:
p = .05, p = .1, p = .2. Use the differential equation solver on a computer to
graph the three motions that result. Determine the period of the motion in
each case. Are the periods noticeably different?

19. What is the period of the motion if p = 1; if p = 2?



DVI file created at 9:40,  28 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

456 CHAPTER 7. PERIODICITY

20. By experiment, find how large an initial impulse p is needed to knock the
pendulum “over the top”, so it spins around its axis instead of oscillating?
Assume x(0) = 0. (Note: when the pendulum spins, x just keeps getting
larger and larger.) Of course any enormous value for p will guarantee that
the pendulum spins. Your task is to find the threshold ; this is the smallest
initial impulse that will cause spinning.

21. a) Suppose the initial position is horizontal: a = +π/2. If you give the
pendulum an initial impulse p in the same direction (that is, p > 0), find by
experiment how large p must be to cause the pendulum to spin? Once again,
the challenge is to find the threshold value.

b) Reverse the direction of the initial impulse: p < 0, and choose p so the
pendulum spins. What is the smallest |p| that will cause spinning?

22. First integrals. Consider the initial value problem described in the
text:

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0.

Use the first integral for this problem found on page 449 to show that v =√
2 − 2 cos a when x = 0.

23. a) Suppose the pendulum described in the previous exercise is at rest
(x(0) = 0), but given an initial impulse v(0) = p. What value does the first
integral have in this case?

b) Redo exercise 20 using the information the first integral gives you. You
should be able to find the exact threshhold value of the impulse that will
push the pendulum “over the top.”

24. Redo exercise 21 using an appropriate first integral. Find the threshhold
value exactly.

Predator-prey ecology

25. a) The May model. The differential equations for this model are on
page 445. Show that the constant functions

x(t) = 10, y(t) = 0,
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are a solution to the equations. This is an equilibrium solution, as defined
in the discussion of the pendulum (page 444).

b) Is x(t) = 0, y(t) = 0 an equilibrium solution?

c) Here is yet another equilibrium solution:

x(t) =
−23 ±

√
889

6
, y(t) =

−23 ±
√

889

3
.

Either verify that it is an equilibrium, or explain how it was derived.

26. a) Use a computer differential equation solver to graph the solution to
the May model that is determined by the initial conditions

x(0) = 1.13, y(0) = 2.27.

These initial conditions are very close to the equilibrium solution in part (c)
of the previous exercise. Does the solution you’ve just graphed suggest that
this equilibrium is stable or that it is unstable (as described on page 444).

b) Change the initial conditions to

x(0) = 5, y(0) = 5,

and graph the solution. Compare this solution to those determined by the
initial conditions used in the text. In particular, compare the shapes of the
graphs, their periods, and the time interval between the peak of x and the
peak of y.

27. Consider this scenario. Imagine that the prey species x is an agricultural
pest, while the predator y does not harm any crops. Farmers would like to
eliminate the pest, and they propose to do so by bringing in a large number
of predators. Does this strategy work, according to the May model? Suppose
that we start with a relatively large number of predators:

x(0) = 5, y(0) = 50.

What happens? In particular, does the pest disappear?

28. The Lotka–Volterra model. We use the differential equations found
in chapter 4, page 193, modified so that relevant values of x and y will be
roughly the same size:

x′ = .1x − .005xy,

y′ = .004xy − .04y.
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Take x(0) = 20 and y(0) = 10. Use a computer differential equation solver to
graph the solution to this initial value problem. The solutions are periodic.
What is the period? Which peaks first, the prey x or the predator y? How
much sooner?

29. Solve the Lotka–Volterra model with x(0) = 10 and y(0) = 5. What
is the period of the solutions, and what is the difference between the times
when the two populations peak? Compare these results with those of the
previous exercise.

30. Show that x(t) = 0, y(t) = 0 is an equilibrium solution of the Lotka–
Volterra equations. Test the stability of this solution, take these nearby
initial conditions:

x(0) = .1, y(0) = .1,

and find the solution. Does it remain near the equilibrium? If so, the equi-
librium is stable; if not, it is unstable.

31. Show that x(t) = 10, y(t) = 20 is another equilibrium solution of these
Lotka–Volterra equations. Is this equilibrium stable? (We will have more to
say about stability of equilibria in chapter 8.)

32. This is a repeat of the biological pest control scenario you treated above,
using the May model. Solve the Lotka–Volterra model when the initial pop-
ulations are

x(0) = 5, y(0) = 50.

What happens? In particular, does the pest disappear?

33. First integrals. As remarkable as it may seem, the Lotka–Volterra
model has a first integral. Show that the function

E = a ln y + d lnx − by − cx

is a first integral of Lotka–Volterra model given in the general form

x′ = ax − bxy,

y′ = cxy − dy.

34. Prove that the solutions of the Lotka–Volterra equations are periodic.
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The van der Pol oscillator

One of the essential functions of the electronic circuits in a television or radio
transmitter is to generate a periodic “signal” that is stable in amplitude and
period. One such circuit is described by the van der Pol differential equations.
In this circuit x(t) represents the current, and y(t) the voltage, at time t.
These functions satisfy the differential equations

x′ = y, y′ = Ay − By3 − x, with A, B > 0.

35. Take A = 4, B = 1. Make a sketch of the solution whose initial values
are x(0) = .1, y(0) = 0. Your sketch should show that this solution is not
periodic at the outset, but becomes periodic after some time has passed.
Determine the (eventual) period and amplitude of this solution.

36. Obtain the solution whose initial values are x(0) = 2, y(0) = 0, and then
the one whose initial values are x(0) = 4, y(0) = 0. What are the periods
and amplitudes of these solutions? What effect does the initial current x(0)
have on the period or the amplitude?

7.4 Chapter Summary

The Main Ideas

• There are many phenomena which exhibit periodic and near-periodic
behavior. They are modelled by differential equations with periodic
solutions.

• A periodic function repeats: the smallest number T for which g(x +
T ) = g(x) for all x is the period of the function g. Its frequency is
the reciprocal of its period, ω = 1/T .

• The circular functions are periodic; they include the sine, cosine
and tangent functions. The period of sin(t) and cos(t) is 2π and the
frequency is 1/2π. The frequency of A sin(bt) and A cos(bt) is b/2π,
and the amplitude is A. In A sin(bt + ϕ), the phase is shifted by ϕ.

• A linear spring is one for which the spring force is proportional to
the amount that the spring has been displaced. The motion of a linear
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spring is periodic. Its amplitude depends only on the initial conditions,
and its frequency only on the mass and the spring constant.

• In a non-linear spring, the force is no longer proportional to the
displacement. The motion of a non-linear spring can still be periodic,
although it is no longer described simply by sines and cosines. Its fre-
quency depends on its amplitude. A pendulum in a non-linear spring.
It has two equilibria, one stable and one unstable.

• Many quantities oscillate periodically, or nearly so. Frequently the
behavior of these quantities can be modelled by systems of differential
equations. Pendulums, electronic components, and animal populations
are some examples.

• In some initial value problems, it may still be possible to find a first

integral—a combination of the variables that remains constant—even
when we can’t find formulas for the variables separately. We can often
derive important properties of the system (such as periodicity) from
these constant combinations.

Expectations

• You should be able to find the period, frequency and amplitude of
sine and cosine functions.

• You should be able to convert between radian measure and degrees.

• You should be able to find a formula for the solution of the differential
equation describing a linear spring.

• You should be able to use Euler’s method to describe the motion of a
non-linear spring.

• You should be able to analyze oscillations of various kinds to determine
their periodicity.


