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Chapter 4

Differential Equations

The rate equations with which we began our study of calculus are called
differential equations when we identify the rates of change that appear
within them as derivatives of functions. Differential equations are essential
tools in many area of mathematics and the sciences. In this chapter we
explore three of their important uses:

• Modelling problems using differential equations;

• Solving differential equations, both through numerical techniques like
Euler’s method and, where possible, through finding formulas which
make the equations true;

• Defining new functions by differential equations.

We also introduce two important functions—the exponential function and
the logarithmic function—which play central roles in the theory of solving
differential equations. Finally, we introduce the operation of antidifferen-

tiation as an important tool for solving some special kinds of differential
equations.

4.1 Modelling with Differential Equations

To analyze the way an infectious disease spreads through a population, we
asked how three quantities S, I, and R would vary over time. This was
difficult to answer; we found no simple, direct relation between S (or I or
R) and t. What we did find, though, was a relation between the variables
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S, I, and R and their rates S ′, I ′, and R′. We expressed the relation as a
set of rate equations. Then, given the rate equations and initial values for S,
I, and R, we used Euler’s method to estimate the values at any time in the
future. By constructing a sequence of successive approximations, we were
able to make these estimates as accurate as we wished.

There are two ideas here. The first is that we could write down equations
for the rates of change that reflected important features of the process we
sought to model. The second is that these equations determined the variables
as functions of time, so we could make predictions about the real process we
were modelling. Can we apply these ideas to other processes?

To answer this question, it will be helpful to introduce some new terms.Differential equations
and initial value
problems

What we have been calling rate equations are more commonly called dif-

ferential equations. (The name is something of an historical accident.
Since the equations involve functions and their derivatives, we might bet-
ter call them derivative equations.) Euler’s method treats the differential
equations for a set of variables as a prescription for finding future values of
those variables. However, in order to get started, we must always specify
the initial values of the variables—their values at some given time. We call
this specification an initial condition. The differential equations together
with an initial condition is called an initial value problem. Each initial
value problem determines a set of functions which we find by using Euler’s
method.

If we use Leibniz’s notation for derivatives, a differential equation like S′ = −aSI takes the
form dS/dt = −aSI. If we then treat dS/dt as a quotient of the individual differentials dS
and dt (see page 123), we can even write the equation as dS = −aSI dt. Since this expresses
the differential dS in terms of the differential dt, it was natural to call it a differential equation.
Our approach is similar to Leibniz’s, except that we don’t need to introduce infinitesimally small
quantities, which differentials were for Leibniz. Instead, we write ∆S ≈ −aSI ∆t and rely on the
fact that the accumulated error of the resulting approximations can be made as small as we like.

To illustrate how differential equations can be used to describe a wide
range of processes in the physical, biological, and social sciences, we’ll devote
this section to a number of ways to model and analyze the long-term behavior
of animal populations. To be specific, we will talk about rabbits and foxes,
but the ideas can be adapted to the population dynamics of virtually all living
things (and many non-living systems as well, such as chemical reactions).

In each model, we will begin by identifying variables that describe what
is happening. Then, we will try to establish how those variables change over
time. Of course, no model can hope to capture every feature of the pro-
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cess we seek to describe, so we begin simply. We choose just one or two
elements that seem particularly important. After examining the predictions
of our simple model and checking how well they correspond to reality, we
make modifications. We might include more features of the population dy- Models can

provide successive
approximations

to reality

namics, or we might describe the same features in different ways. Gradually,
through a succession of refinements of our original simple model, we hope for
descriptions that come closer and closer to the real situation we are studying.

Single-species Models: Rabbits

The problem. If we turn 2000 rabbits loose on a large, unpopulated island
that has plenty of food for the rabbits, how might the number of rabbits vary
over time? If we let R = R(t) be the number of rabbits at time t (measured in
months, let us say), we would like to be able to make some predictions about
the function R(t). It would be ideal to have a formula for R(t)—but this is
not usually possible. Nevertheless, there may still be a great deal we can say
about the behavior of R. To begin our explorations we will construct a model
of the rabbit population that is obviously too simple. After we analyze the
predictions it makes, we’ll look at various ways to modify the model so that
it approximates reality more closely.

The first model. Let’s assume that, at any time t, the rate at which the

Constant
per capita growth

rabbit population changes is simply proportional to the number of rabbits
present at that time. For instance, if there were twice as many rabbits, then
the rate at which new rabbits appear will also double. In mathematical
terms, our assumption takes the form of the differential equation

(1)
dR

dt
= k R

rabbits

month
.

The multiplier k is called the per capita growth rate (or the reproductive

rate), and its units are rabbits per month per rabbit. Per capita growth is
discussed in exercise 22 in chapter 1, section 2.

For the sake of discussion, let’s suppose that k = .1 rabbits per month per
rabbit. This assumption means that, on the average, one rabbit will produce
.1 new rabbits every month. In the S-I-R model of chapter 1, the reciprocals
of the coefficients in the differential equations had natural interpretations.
The same is true here for the per capita growth rate. Specifically, we can say
that 1/k = 10 months is the average length of time required for a rabbit to
produce one new rabbit.
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Since there are 2000 rabbits at the start, we can now state a clearly
defined initial value problem for the function R(t):

dR

dt
= .1 R R(0) = 2000.

By modifying the program SIRPLOT, we can readily produce the graph ofUse Euler’s method
to find R(t) the function that is determined by this problem. Before we do that, though,

let’s first consider some of the implications that we can draw out of the
problem without the graph.

Since R′(t) = .1 R(t) rabbits per month and R(0) = 2000 rabbits, we see
that the initial rate of growth is R′(0) = 200 rabbits per month. If this rate
were to persist for 20 years (= 240 months), R would have increased by

∆R = 240 months × 200
rabbits

month
= 48000 rabbits,

yielding altogether

R(240) = R(0) + ∆R = 2000 + 48000 = 50000 rabbits

at the end of the 20 years. However, since the population R is always getting
larger, the differential equation tells us that the growth rate R′ will also

always be getting larger. Consequently, 50,000 is actually an underestimate
of the number of rabbits predicted by this model.

Let’s restate our conclusions in a graphical form. If R′ were always 200
rabbits per month, the graph of R plotted against t would just be a straight
line whose slope is 200 rabbits/month. But R′ is always getting bigger, soThe graph of R

curves up the slope of the graph should increase from left to right. This will make the
graph curve upward. In fact, SIRPLOT will produce the following graph of
R(t):
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Later, we will see that the function R(t) determined by this initial value
problem is actually an exponential function of t, and we will even be able to
write down a formula for R(t), namely

R(t) = 2000 (1.10517)t.

This model is too simple to be able to describe what happens to a rabbit
population very well. One of the obvious difficulties is that it predicts the
rabbit population just keeps growing—forever. For example, if we used the
formula for R(t) given above, our model would predict that after 20 years (t =
240) there will be more than 50 trillion rabbits! While rabbit populations
can, under good conditions, grow at a nearly constant per capita rate for a
surprisingly long time (this happened in Australia during the 19th century),
our model is ultimately unrealistic.

It is a good idea to think qualitatively about the functions determined by a differential equation
and make some rough estimates before doing extensive calculations. Your sketches may help you
see ways in which the model doesn’t correspond to reality. Or, you may be able to catch errors
in your computations if they differ noticeably from what your estimates led you to expect.

The second model. One way out of the problem of unlimited growth is to
modify equation (1) to take into account the fact that any given ecological
system can support only some finite number of creatures over the long term. The carrying capacity

of the environmentThis number is called the carrying capacity of the system. We expect that
when a population has reached the carrying capacity of the system, the pop-
ulation should neither grow nor shrink. At carrying capacity, a population
should hold steady—its rate of change should be zero. For the sake of speci-
ficity, let’s suppose that in our example the carrying capacity of the island
is 25,000 rabbits.

What we would like to do, then, is to find an expression for R′ which is
similar to equation (1) when the number of rabbits R is near 2000, but which
approaches 0 as R approaches 25,000. One model which captures these fea-
tures is the logistic equation, first proposed by the Belgian mathematician
Otto Verhulst in 1845:

Logistic growth(2) R′ = k R

(

1 − R

b

)

rabbits

month
.

In this equation, the coefficient k is called the natural growth rate. It
plays the same role as the per capita growth rate in equation (1), and it has
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the same units—rabbits per month per rabbit. The number b is the carrying

capacity; it is measured in rabbits. (We first saw the logistic equation on
pages 80–86.) Notice also that we have written the derivative of R in the
simpler form R′, a practice we will continue for the rest of the section.

If the carrying capacity of the island is 25,000 rabbits, and if we keep
the natural growth rate at .1 rabbits per month per rabbit, then the logistic
equation for the rabbit population is

R′ = .1 R

(

1 − R

25000

)

rabbits

month
.

Check to see that this equation really does have the behavior claimed for it—
namely, that a population of 25,000 rabbits neither grows or declines. Notice
also that R′ is positive as long as R is less than 25000, so the population
increases. However, as R approaches 25000, R′ will get closer and closer toThe graph of R(t)

levels off near
R = 25000

0, so the graph will become nearly horizontal. (What would happen if the
island ever had more than 25,000 rabbits?)

These observations about the qualitative behavior of R(t) are consistent
with the following graph, produced by a modified version of the program
SIRPLOT. For comparison, we have also graphed the exponential function
produced by the first model. Notice that the two graphs “share ink” when
R near 2000, but diverge later on.
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By modifying the program SIRVALUE, we can even get numerical an-
swers to specific questions about the two models. For example, after 30
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months under constant per capita growth, the rabbit population will be more
than 40,000—well beyond the carrying capacity of the island. Under logistic
growth, though, the population will be only about 16,000.

In the following figure we display several functions that are determined
by the logistic equation

R′ = .1 R

(

1 − R

25000

)

when different initial conditions are given. Each graph therefore predicts
the future for a different initial population R(0). One of the graphs is just
the t-axis itself. What does this graph predict about the rabbit population?
What other graph is just a straight line, and what initial population will lead
to this line?

While the logistic equation above was developed to model a physical problem in which only
values of R with R ≥ 0 have any meaning, the mathematical problem of finding solutions for
the resulting differential equation makes sense for all values of R. We have drawn three graphs
resulting from initial values R(0) < 0. While this growth behavior of ‘anti-rabbits’ is of little
practical interest in this case, there may well be other physical problems of an entirely different
sort which lead to the same mathematical model, and in which the solutions below the t–axis
are crucial.

t

R

25000

60−60

Solutions to the logistic equation R′ = .1R (1 − R/25000)
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Two-species Models: Rabbits and Foxes

No species lives alone in an environment, and the same is true of the rab-Introduce predators

bits on our island. The rabbit population will probably have to deal with
predators of various sorts. Some are microscopic—disease organisms, for
example—while others loom as obvious threats. We will enrich our popula-
tion model by adding a second species—foxes—that will prey on the rabbits.
We will continue to suppose that the rabbits live on abundant native vegeta-
tion, and we will now assume that the rabbits are the sole food supply of the
foxes. Can we say what will happen? Will the number of foxes and rabbits
level off and reach a “steady state” where their numbers don’t vary? Or will
one species perhaps become extinct?

Let F denote the number of foxes, and R the number of rabbits. As
before, measure the time t in months. Then F and R are functions of t:
F (t) and R(t). We seek differential equations that describe how the growth
rates F ′ and R′ are related to the population sizes F and R. We make the
following assumptions.

• In the absence of foxes, the rabbit population grows logistically.

• The population of rabbits declines at a rate proportional to the product
R · F . This is reasonable if we assume rabbits never die of old age—
they just get a little too slow. Their death rate, which depends on the
number of fatal encounters between rabbits and foxes, will then be ap-
proximately proportional to both R and F—and thus to their product.
(This is the same kind of interaction effect we used in our epidemic
model to predict the rate at which susceptibles become infected.)

• In the absence of rabbits, the foxes die off at a rate proportional to the
number of foxes present.

• The fox population increases at a rate proportional to the number of
encounters between rabbits and foxes. To a first approximation, this
says that the birth rate in the fox population depends on maternal fox
nutrition, and this depends on the number of rabbit-fox encounters,
which is proportional to R · F .

Our assumptions are about birth and death rates, so we can convert
them quite naturally into differential equations. Pause here and check that
the assumptions translate into these differential equations:
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R′ = a R

(

1 − R

b

)

− cRF = a R − a

b
R2 − c RF

F ′ = d RF − e F

These are the Lotka–Volterra equations with bounded growth. The Lotka–Volterra
equations with

bounded growth
coefficients a, b, c, d, and e are parameters—constants that have to be
determined through field observations in particular circumstances.

An example. To see what kind of predictions the Lotka–Volterra equations
make, we’ll work through an example with specific values for the parameters.
Let

a = .1 rabbits per month per rabbit
b = 10000 rabbits
c = .005 rabbits per month per rabbit-fox
d = .00004 foxes per month per rabbit-fox
e = .04 foxes per month per fox

(Check that these five parameters have the right units.) These choices give
us the specific differential equations

R′ = .1 R − .00001 R2 − .005 RF

F ′ = .00004 RF − .04 F

To use this model to follow R and F into the future, we need to know
the initial sizes of the two populations. Let’s suppose that there are 2000
rabbits and 10 foxes at time t = 0. Then the two populations will vary in The graphs

of R and Fthe following way over the next 250 months.
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A variant of the program SIRPLOT was used to produce these graphs.
Notice that it plots 100F rather than F itself. This is because the number of
foxes is about 100 times smaller than the number of rabbits. Consequently,
100F and R are about the same size, so their graphs fit nicely together on
the same screen.

The graphs have several interesting features. There are different scales for
the R and the F values, because the program plots 100F instead of F . The
peak fox population is about 30, while the peak rabbit population is about
2300. The rabbit and fox populations rise and fall in a regular manner. They
rise and fall less with each repeat, though, and if the graphs were continued
far enough into the future we would see R and F level off to nearly constant
values.

The illustration below shows what happens to an initial rabbit populationHow rabbits respond to
changes in the initial
fox population

of 2000 in the presence of three different initial fox populations F (0). Note
that the peak rabbit populations are different, and they occur at different
times. The size of the intervals between peaks also depends on F (0).
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Rabbit populations for different initial fox populations

We have looked at three models, each a refinement of the preceding one.
The first was the simplest. It accounted only for the rabbits, and it assumed
the rabbit population grew at a constant per capita rate. The second was also
restricted to rabbits, but it assumed logistic growth to take into account the
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carrying capacity of the environment. The third introduced the complexity
of a second species preying on the rabbits. In the exercises you will have
an opportunity to explore these and other models. Remember that when
you use Euler’s method to find the functions determined by an initial value
problem, you must construct a sequence of successive approximations, until
you obtain the level of accuracy desired.

Exercises

Single-species models

1. Constant per capita Growth. This question considers the initial
value problem given in the text:

R′ = 0.1 R rabbits per month; R(0) = 2000 rabbits.

a) Use Euler’s method to determine how many rabbits there are after 6
months. Present a table of successive approximations from which you can
read the exact value to whole-number accuracy.

b) Determine, to whole-number accuracy, how many rabbits there are after
24 months.

c) How many months does it take for the rabbit population to reach 25,000?

2. Logistic Growth. The following questions concern a rabbit population
described by the logistic model

R′ = 0.1 R

(

1 − R

25000

)

rabbits per month.

a) What happens to a population of 2000 rabbits after 6 months, after 24
months, and after 5 years? To answer each question, present a table of
successive approximations that allows you to give the exact value to the
nearest whole number.

b) Sketch the functions determined by the logistic equation if you start with
either 2000 or 40000 rabbits. (Suggestion: you can modify the program
SIRPLOT to answer this question.) Compare the two functions. How do
they differ? In what ways are they similar?
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3. Seasonal Factors Living conditions for most wild populations are not
constant throughout the year—due to factors like drought or cold, the envi-
ronment is less supportive during some parts of the year than at others. Par-
tially in response to this, most animals don’t reproduce uniformly throughout
the year. This problem explores ways of modifying the logistic model to re-
flect these facts.

a) For the eastern cottontail rabbit, most young are born during the months
of March–May, with reduced reproduction during June–August, and virtually
no reproduction during the other six months of the year. Write a program
to generate the solution to the differential equation R′ = k(1 − R/25000),
where k = .2 during March, April, and May; k = .05 during June, July, and
August; and k = 0 the rest of the year. Start with an initial population
of 2000 rabbits on January 1. You may find that using the IF ... THEN

construction in your program is a convenient way to incorporate the varying
reproductive rate.

b) How would you modify the model to take into account the fact that
rabbits don’t reproduce during their first season?

4. World population. The world’s population in 1990 was about 5 billion,
and data show that birth rates range from 35 to 40 per thousand per year
and death rates from 15 to 20. Take this to imply a net annual growth rate
of 20 per thousand. One model for world population assumes constant per
capita growth, with a per capita growth rate of 20/1000 = 0.02.

a) Write a differential equation for P that expresses this assumption. Use
P to denote the world population, measured in billions.

b) According to the differential equation in (a), at what rate (in billions of
persons per year) was the world population growing in 1990?

c) By applying Euler’s method to this model, using the initial value of 5
billion in 1990, estimate the world population in the years 1980, 2000, 2040,
and 2230. Present a table of successive approximations that stabilizes with
one decimal place of accuracy (in billions). What step size did you have to
use to obtain this accuracy?

5. Supergrowth. Another model for the world population, one that actu-
ally seems to fit recent population data fairly well, assumes “supergrowth”—
the rate P ′ is proportional to a higher power of P , rather than to P itself.
The model is

P ′ = .015 P 1.2.
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As in the previous exercise, assume that P is measured in billions, and the
population in 1990 was about 5 billion.

a) According to this model, at what rate (in billions of persons per year)
was the population growing in 1990?

b) Using Euler’s method, estimate the world population in the years 1980,
2000 and 2040. Use successive approximations until you have one decimal
place of accuracy (in billions). What step size did you have to use to obtain
this accuracy?

c) Use an Euler approximation with a step size of 0.1 to estimate the world
population in the year 2230. What happens if you repeat your calculation
with a step size of 0.01? [Comment: Something strange is going on here. We
will look again at this model in the next section.]

Two-species models

Here are some other differential equations that model a predator-prey inter-
action between two species.

6. The May Model. This model has been proposed by the contemporary
ecologist, R.M. May, to incorporate more realistic assumptions about the
encounters between predators (foxes) and their prey (rabbits). So that you
can work with quantities that are about the same size (and therefore plot
them on the same graph), let y be the number of foxes and let x be the
number of rabbits divided by 100—we are thus measuring rabbits in units of
“hectorabbits”.

While a term like “hectorabbits” is deliberately whimsical, it echoes the common and sensible
practice of choosing units that allow us to measure things with numbers that are neither too
small nor too large. For example, we wouldn’t describe the distance from the earth to the moon
in millimeters, and we wouldn’t describe the mass of a raindrop in kilograms.

In his model, May makes the following assumptions.

• In the absence of foxes, the rabbits grow logistically.

• The number of rabbits a single fox eats in a given time period is a
function D(x) of the number of rabbits available. D(x) varies from 0 if
there are no rabbits available to some value c (the saturation value)
if there is an unlimited supply of rabbits. The total number of rabbits
consumed in the given time period will thus be D(x) · y.



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

192 CHAPTER 4. DIFFERENTIAL EQUATIONS

• The fox population is governed by the logistic equation, and the carry-
ing capacity is proportional to the number of rabbits.

a) Explain why D(x) =
c x

x + d
(d some constant) might be a reasonable

model for the function D(x). Include a sketch of the graph of D in your
discussion. What is the role of the parameter d? That is, what feature of
rabbit – fox interactions is reflected by making d smaller or larger?

b) Explain how the following system of equations incorporates May’s as-
sumptions.

x′ = a x
(

1 − x

b

)

− c xy

x + d

y′ = e y

(

1 − y

fx

)

The parameters a, b, c, d, e and f are all positive.

c) Assume you begin with 2000 rabbits and 10 foxes. (Be careful: x(0) 6=
2000.) What does May’s model predict will happen to the rabbits and foxes
over time if the values of the parameters are a = .6, b = 10, c = .5, d = 1,
e = .1 and f = 2? Use a suitable modification of the program SIRPLOT.

d) Using the same parameters, describe what happens if you begin with 2000
rabbits and 20 foxes; with 1000 rabbits and 10 foxes; with 1000 rabbits and 20
foxes. Does the eventual long-term behavior depend on the initial condition?
How does the long-term behavior here compare with the long-term behavior
of the two populations in the Lotka–Volterra model of the text?

e) Using 2000 rabbits and 20 foxes as the initial values, let’s see how the
behavior of the solutions is affected by changing the values of the parameter
c, the saturation value for the number of rabbits (measured in centirabbits,
remember) a single fox can eat in a month. Keeping all the other parameters
(a, b, d, . . . ) fixed at the values given above, get solution curves for c = .5,
c = .45, c = .4, . . . , c = .15, and c = .1 . The solutions undergo a qualitative
change somewhere between c = .3 and c = .25. Describe this change. Can
you pinpoint the crucial value of c more closely? This phenomenon is an
example of Hopf bifurcation, which we will look at more closely in chapter
8. The May model undergoes a Hopf bifurcation as you vary each of the
other parameters as well. Choose a couple of them and locate approximately
the associated bifurcation values.
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7. The Lotka–Volterra Equations. This model for predator and prey
interactions is slightly simpler than the “bounded growth” version we con-
sider in the text. It is important historically, though, because it was one of
the first mathematical population models, proposed as a way of understand-
ing why the harvests of certain species of fish in the Adriatic Sea exhibited
cyclical behavior over the years. For the sake of variety, let’s take the prey
to be hares and the predators to be lynx.

Let H(t) denote the number of hares at time t and L(t) the number of
lynx. This model, the basic Lotka–Volterra model, differs from the bounded
growth model in only one respect: it assumes the hares would experience
constant per capita growth if there were no lynx.

a) Explain why the following system of equations incorporates the assump-
tions of the basic model. (The parameters a, b, c, and d are all positive.)

H ′ = a H − bHL

L′ = c HL − d L

(These are called the Lotka–Volterra equations. They were developed
independently by the Italian mathematical physicist Vito Volterra in 1925–
26, and by the mathematical ecologist and demographer Alfred James Lotka
a few years earlier. Though simplistic, they form one of the principal starting
points in ecological modeling.)

b) Explain why a and b have the units hares per month per hare and hares
per month per hare-lynx, respectively. What are the units of c and d? Ex-
plain why.

Suppose time t is measured in months, and suppose the parameters have
values

a = .1 hares per month per hare

b = .005 hares per month per hare-lynx

c = .00004 lynx per month per hare-lynx

d = .04 lynx per month per lynx

This leads to the system of differential equations

H ′ = .1 H − .005 HL

L′ = .00004 HL− .04 L.
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c) Suppose that you start with 2000 hares and 10 lynx—that is, H(0) =
2000 and L(0) = 10. Describe what happens to the two populations. A good
way to do this is to draw graphs of the functions H(t) and L(t). It will be
convenient to have the Hare scale run from 0 to 3000, and the Lynx scale
from 0 to 50. If you modify the program SIRPLOT, have it plot H and 60L.
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Hare and lynx populations as a function of time

You should get graphs like those above. Notice that the hare and lynx
populations rise and fall in a fashion similar to the rabbits and foxes, but
here they oscillate—returning periodically to their original values.

d) What happens if you keep the same initial hare population of 2000, but
use different initial lynx populations? Try L(0) = 20 and L(0) = 50. (In
each case, use a step size of .1 month.)

e) Start with 2000 hares and 10 lynx. From part (c), you know the solutions
are periodic. The goal of this part is to analyze this periodic behavior. You
can do this with your program in part (c), but you may prefer to replace
the FOR-NEXT loop in your program by a variety of DO-WHILE loops (see
page 77). First find the maximum number of hares. What is the length
of one period for the hare population? That is, how long does it take the
hare population to complete one cycle (e.g., to go from one maximum to the
next)? Find the length of one period for the lynx. Do the hare and lynx
populations have the same periods?

f) Plot the hare populations over time when you start with 2000 hares and,
successively, 10, 20, and 50 lynx. Is the hare population periodic in each
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case? What is the period? Does it vary with the size of the initial lynx
population?

Fermentation

Wine is made by yeast; yeast digests the sugars in grape juice and produces
alcohol as a waste product. This process is called fermentation. The alcohol
is toxic to the yeast, though, and the yeast is eventually killed by the alcohol.
This stops fermentation, and the liquid has become wine, with about 8–12%
alcohol.

Although alcohol isn’t a “species,” it acts like a predator on yeast. Un-
like the other predator-prey problems we have considered, though, the yeast
does not have an unlimited food supply. The following exercises develop a se-
quence of models to take into account the interactions between sugar, yeast,
and alcohol.

8. a) In the first model assume that the sugar supply is not depleted, that
no alcohol appears, and that the yeast simply grows logistically. Begin by
adding 0.5 lb of yeast to a large vat of grape juice whose carrying capacity
is 10 lbs of yeast. Assume that the natural growth rate of the yeast is 0.2
lbs of yeast per hour, per pound of yeast. Let Y (t) be the number of pounds
of live yeast present after t hours; what differential equation describes the
growth of Y ?

b) Graph the solution Y (t), for example by using a suitable modification
of the program SIRPLOT. Indicate on your graph approximately when the
yeast reaches one-half the carrying capacity of the vat, and when it gets to
within 1% of the carrying capacity.

c) Suppose you use a second strain of yeast whose natural growth rate is
only half that of the first strain of yeast. If you put 0.5 lb of this yeast into
the vat of grape juice, when will it reach one-half the carrying capacity of the
vat, and when will it get to within 1% of the carrying capacity? Compare
these values to the values produced by the first strain of yeast: are they
larger, or smaller? Sketch, on the same graph as in part (b), the way this
yeast grows over time.

9. a) Now consider how the yeast produces alcohol. Suppose that waste
products are generated at a rate proportional to the amount of yeast present;
specifically, suppose each pound of yeast produces 0.05 lbs of alcohol per hour.
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(The other major waste product is carbon dioxide gas, which bubbles out of
the liquid.) Let A(t) denote the amount of alcohol generated after t hours.
Write a differential equation that describes the growth of A.

b) Consider the toxic effect of the alcohol on the yeast. Assume that yeast
cells die at a rate proportional to the amount of alcohol present, and also
to the amount of yeast present. Specifically, assume that, in each pound of
yeast, a pound of alcohol will kill 0.1 lb of yeast per hour. Then, if there are
Y lbs of yeast and A lbs of alcohol, how many pounds of yeast will die in
one hour? Modify the original logistic equation for Y (strain 1) to take this
effect into account. The modification involves subtracting off a new term that
describes the rate at which alcohol kills yeast. What is the new differential
equation?

c) You should now have two differential equations describing the rates of
growth of yeast and alcohol. The equations are coupled, in the sense that
the yeast equation involves alcohol, and the alcohol equation involves yeast.
Assuming that the vat contains, initially, 0.5 lb of yeast and no alcohol,
describe by means of a graph what happens to the yeast. How close does
the yeast get to carrying capacity, and when does this happen? Does the
fermentation end? If so, when; and how much alcohol has been produced by
that time? (Note that since Y will never get all the way to 0, you will need
to adopt some convention like Y ≤ .01 to specify the end of fermentation.)

10. What happens if the rates of toxicity and alcohol production are dif-
ferent? Specifically, increase the rate of alcohol production by a factor of
five—from 0.05 to 0.25 lbs of alcohol per hour, per pound of yeast—and at
the same time reduce the toxicity rate by the same factor—from 0.10 to 0.02
lb of yeast per hour, per pound of alcohol and pound of yeast. How do these
changes affect the time it takes for fermentation to end? How do they affect
the amount of alcohol produced? What happens if only the rate of alcohol
production is changed? What happens if only the toxicity rate is reduced?

11. a) The third model will take into account that the sugar in the grape
juice is consumed. Suppose the yeast consumes .15 lb of sugar per hour, per
lb of yeast. Let S(t) be the amount of sugar in the vat after t hours. Write
a differential equation that describes what happens to S over time.

b) Since the carrying capacity of the vat depends on the amount of sugar in
it, the carrying capacity must now vary. Assume that the carrying capacity
of S lbs of sugar is .4 S lbs of yeast. How much sugar is needed to maintain
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a carrying capacity of 10 lbs of yeast? How much is needed to maintain a
carrying capacity of 1 lb of yeast? Rewrite the logistic equation for yeast so
that the carrying capacity is .4 S lbs, instead of 10 lbs, of yeast. Retain the
term you developed in 9.b to reflect the toxic impact of alcohol on the yeast.

c) There are now three differential equations. Using them, describe what
happens to .5 lbs of yeast that is put into a vat of grape juice that contains
25 lbs of sugar at the start. Does all the sugar disappear? Does all the yeast
disappear? How long does it take before there is only .01 lb of yeast? How
much sugar is left then? How much alcohol has been produced by that time?

Newton’s law of cooling

Suppose that we start off with a freshly brewed cup of coffee at 90◦C and set
it down in a room where the temperature is 20◦C. What will the temperature
of the coffee be in 20 minutes? How long will it take the coffee to cool to
30◦C?

If we let the temperature of the coffee be Q (in ◦C), then Q is a function
of the time t, measured in minutes. We have Q(0) = 90◦C, and we would
like to find the value t1 for which Q(t1) = 30◦C.

It is not immediately apparent how to give Q as a function of t. However,
we can describe the rate at which a liquid cools off, using Newton’s law of

cooling: the rate at which an object cools (or warms up, if it’s cooler than
its surroundings) is proportional to the difference between its temperature
and that of its surroundings.

12. In our example, the temperature of the room is 20◦C, so Newton’s law
of cooling states that Q′(t) is proportional to Q− 20, the difference between
the temperature of the liquid and the room. In symbols, we have

Q′ = −k (Q − 20)

where k is some positive constant.

a) Why is there a minus sign in the equation?

The particular value of k would need to be determined experimentally. It
will depend on things like the size and shape of the cup, how much sugar
and cream you use, and whether you stir the liquid. Suppose that k has the
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value of .1◦ per minute per ◦C of temperature difference. Then the differential
equation becomes:

Q′ = −.1(Q − 20) ◦C per minute.

b) Use Euler’s method to determine the temperature Q after 20 minutes.
Write a table of successive approximations with smaller and smaller step
sizes. The values in your table should stabilize to the second decimal place.

c) How long does it take for the temperature Q to drop to 30◦C? Use
a DO-WHILE loop to construct a table of successive approximations that
stabilize to the second decimal place.

13. On a hot day, a cold drink warms up at a rate approximately propor-
tional to the difference in temperature between the drink and its surround-
ings. Suppose the air temperature is 90◦F and the drink is initially at 36◦F.
If Q is the temperature of the drink at any time, we shall suppose that it
warms up at the rate

Q′ = −0.2(Q − 90) ◦F per minute.

According to this model, what will the temperature of the drink be after
5 minutes, and after 10 minutes. In both cases, produce values that are
accurate to two decimal places.

14. In our discussion of cooling coffee, we assumed that the coffee did not
heat up the room. This is reasonable because the room is large, compared to
the cup of coffee. Suppose, in an effort to keep it warmer, we put the coffee
into a small insulated container—such as a microwave oven (which is turned
off). We must assume that the coffee does heat up the air inside the container.
Let A be the air temperature in the container and Q the temperature of the
coffee. Then both A and Q change over time, and Newton’s law of cooling
tells us the rates at which they change. In fact, the law says that both Q′

and A′ are proportional to Q − A. Thus,

Q′ = −k1(Q − A)

A′ = k2(Q − A),

where k1 and k2 are positive constants.

a) Explain the signs that appear in these differential equations.
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b) Suppose k1 = .3 and k2 = .1. If Q(0) = 90◦C and A(0) = 20◦C, when
will the temperature of the coffee be 40◦C? What is the temperature of the
air at this time? Your answers should be accurate to one decimal place.

c) What does the temperature of the coffee become eventually? How long
does it take to reach that temperature?

S-I-R revisited

Consider the spread of an infectious disease that is modelled by the S-I-R
differential equations

S ′ = −.00001 SI,

I ′ = .00001 SI − .08 I,

R′ = .08 I.

Take the initial condition of the three populations to be

S(0) = 35,400 persons,

I(0) = 13,500 persons,

R(0) = 22,100 persons.

15. How many susceptibles are left after 40 days? When is the largest
number of people infected? How many susceptibles are there at that time?
Explain how you could determine the last number without using Euler’s
method.

16. What happens as the epidemic “runs its course”? That is, as more and
more time goes by, what happens to the numbers of infecteds and suscepti-
bles?

17. One of the principal uses of a mathematical model is to get a qualitative
idea how a system will behave with different initial conditions. For instance,
suppose we introduce 100 infected individuals into a population. How will
the spread of the infection depend on the size of the population? Assume the
same S-I-R differential equations that were used in the previous exercise, and
draw the graphs of S(t) for initial susceptible population sizes S(0) ranging
from 0 to 45,000 in increments of 5000 (that is, take S(0) = 0, 5000, 10000,
. . . , 45000). In each case assume that R(0) = 0 and I(0) = 100. Use these
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graphs to argue that the larger the initial susceptible population, the more
rapidly the epidemic runs its course.

18. Draw the graphs of I(t) for the same initial conditions as in the pre-
vious problem. Using these graphs you can demonstrate that the larger
the susceptible population, the larger will be the fraction of the popula-
tion that is infected during the worst stages of the epidemic. Do this by
constructing a table displaying Imax, tmax, and Pmax, where Imax is the max-
imum value of I(t), tmax is the time at which this maximum occurs (that
is, Imax = I(tmax)), and Pmax is the ratio of Imax to the initial susceptible
population: Pmax = Imax/S(0). The table below gives the first three sets of
values.

S(0) Imax Pmax tmax

5 000
10 000
15 000

100
315

2071

0.02
0.03
0.14

0
> 100

66
...

...
...

...

Your table should show that there is a time when over half the population
is infected if S(0) = 45000, while there is never a time when more than
one-fourth of the population is infected if S(0) = 20000.

Constructing models

Systems in which we know a number of quantities at a given time and would
like to know their values at a future time (or know at what future time they
will attain given values) occur in many different contexts. The following are
some systems for discussion. Can any of these be modelled as initial value
problems? What information would you need to resolve the question? Make
some reasonable assumptions about the missing information and write down
an initial value problem which would model the system.

19. We deposit a fixed sum of money in a bank, and we’d like to know how
much will be there in ten years.

20. We know the diameter of the mold spot growing on a cheese sandwich
is 1/4 inch, and we’d like to know when its diameter will be one inch.
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21. We know the fecal bacterial and coliform concentrations in a local swim-
ming hole, and we’d like to know when they fall below certain prescribed
levels (which the Board of Health deems safe).

22. We know what the temperature and rainfall is today, and we’d like to
know what both will be one week from today.

23. We know what the winning lottery number was yesterday, and we’d like
to know what the winning number will be the day after tomorrow.

24. We know where the earth, sun, and moon are in relation to each other
now, and how fast and in what direction they are moving. We would like to
be able to predict where they are going to be at any time in the future. We
know the gravity of each affects the motions of the others by determining the
way their velocities are changing.

4.2 Solutions of Differential Equations

Differential Equations are Equations

Until now, we have viewed a system of differential equations as a set of Differential equations
give instructions for

Euler’s method
instructions for “stepping into the future” (or the past). Put another way,
an initial value problem was treated as a prescription for using Euler’s method
to determine a set of functions which were then given either graphically or
in tabular form.

In this section we take a new point of view: we will think of differential
equations as equations for which we would like to find solutions in terms of
functions which can be given by explicit formulas. While it is unfortunately
the case that most differential equations do not have solutions which can be
given by formulas, there are enough important classes of equations where
such solutions do exist to make them worth studying. When such solutions
can be found, we have a very powerful tool for examining the behavior of the
phenomenon being modelled.

To see what this means, let’s look first at equations in algebra. Consider Equations have
solutionsthe equation x2 = x + 6. As it stands, this is neither true nor false. We

make it true or false, though, when we substitute a particular number for x.
For example, x = 3 makes the equation true, because 32 = 3 + 6. On the
other hand, x = 1 makes the equation false, because 12 6= 1+6. Any number
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that makes an equation true is called a solution to that equation. In fact,
x2 = x + 6 has exactly two solutions: x = 3 and x = −2.

We can view differential equations the same way. Consider, for example,
the differential equation

dy

dt
=

1

2y
.

Because it involves the expression dy/dt, we understand that y is a function
of t. As it stands, the differential equation is neither true nor false. We make
it true or false, though, when we substitute a particular function for y. For
example, y =

√
t = t1/2 makes the differential equation true. To see this,

first look at the left-hand side of the equation:

Substitute y =
√

t
into the differential
equation

dy

dt
= 1

2
t−1/2 =

1

2
√

t
.

Now look at the right-hand side:

1

2y
=

1

2
√

t
.

The two sides of the equation are equal, so the substitution y =
√

t makes
the equation true.

The function y = t2, however, makes the differential equation false. The
left-hand side is

dy

dt
= 2t,

but the right-hand side is
1

2y
=

1

2t2
.

Since 2t and 1/2t2 are different functions, the two sides are unequal and the
equation is therefore false.

We say that y =
√

t is a solution to this differential equation. TheA solution makes
the equation true function y = t2 is not a solution. To decide whether a particular function is

a solution when the function is given by a formula, notice that we need to
be able to differentiate the formula.

If we view differential equations simply as instructions for carrying out Euler’s method, we need
only the microscope equation ∆y ≈ y′ · ∆t in order to find functions. However, if we want to
find functions that are solutions to differential equations from our new point of view, we first
need to introduce the idea of the derivative and the rules for differentiating functions.
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Just as an algebraic equation can have more than one solution, so can a
differential equation. In fact, we can show that y =

√
t + C is a solution to

the differential equation
dy

dt
=

1

2y
,

for any value of the constant C. To evaluate the left-hand side dy/dt, we
need the chain rule (chapter 3.6). Let’s write

y =
√

u where u = t + C.

Then the left-hand side is the function

dy

dt
=

dy

du
· du

dt
=

1

2
√

u
· 1 =

1

2
√

t + C
.

Since the right-hand side of the differential equation is

1

2y
=

1

2
√

t + C
,

the two sides are equal—no matter what value C happens to have. This A differential equation
can have infinitely

many solutions
proves that every function of the form y =

√
t + C is a solution to the

differential equation. Since there are infinitely many values that C can take,
the differential equation has infinitely many different solutions!

If a differential equation arises in modelling a physical or biological pro-
cess, the variables involved must also satisfy an initial condition. Suppose
we add an initial condition to our differential equation:

dy

dt
=

1

2y
and y(0) = 5.

Does this problem have a solution—that is, can we find a function y(t) that is
a solution to the differential equation and also satisfies the condition y(0) =
5?

Notice y =
√

t is not a solution to this new problem. Although it satisfies
the differential equation, it fails to satisfy the initial condition:

y(0) =
√

0 = 0 6= 5.

Perhaps one of the other solutions to the differential equation will work.
When we evaluate the solution y =

√
t + C at t = 0 we get

y(0) =
√

0 + C =
√

C.
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We want this to equal 5, and it will if C = 25. Thus, y =
√

t + 25 isAn initial value
problem has
only one solution

a solution to the initial value problem. Furthermore, the only value of C
which will make y(0) = 5 is C = 25, so the initial value problem has only
one solution of the form

√
t + C. Here is the graph of this solution:

-

6

t

y

−25

r
5

y =
√

t + 25

As always, you can use Euler’s method to find the function determined by
an initial value problem, and you can graph that function using the program
SIRPLOT, for example. How will that graph compare with this one? In the
exercises you can explore this question.

Checking solutions versus finding solutions. Notice that we have only
checked whether a given function solves an initial value problem; we have not
constructed a formula to solve the problem. By this point you are probably
wondering where the given solutions came from.

It is helpful to continue exploring the parallels with solutions of algebraic
equations. In the case of the equation x2 = x + 6, there are, of course,
methods to find solutions. One possibility is to rewrite x2 = x + 6 in the
form x2 − x − 6 = 0. By factoring x2 − x − 6 as

x2 − x − 6 = (x − 3)(x + 2)

we can see that either x − 3 = 0 (so x = 3), or x + 2 = 0 (so x = −2).
Another method is to use the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

for the roots of the quadratic function ax2+bx+c. In our case, the quadratic
formula yields

x =
−(−1) ±

√

1 − 4 · 1 · (−6)

2 · 1 =
1 ±

√

1 + 24

2
=

1 ± 5

2
,

so again we find that x must be either 3 or −2.
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Thus we have at least two different methods for finding solutions to this There are special
methods to solve

particular equations,
but other methods

work generally

particular equation. The methods we use to solve an algebraic equation
depend very much on the equation we face. For example, there is no way
to find a solution to sin x = 2x by factoring, or by using a “magic formula”
like the quadratic formula. Nevertheless, there are methods that do work.
In chapters 1 and 2 we dealt with similar problems by using a computer
graphing utility that could zoom in on the point of intersection of two graphs.
In chapter 6 we will introduce another tool, the Newton–Raphson method,
for finding roots. These are both powerful methods, because they will work
with nearly all algebraic equations. It is important to recognize that these
numerical methods really do solve the problem, even though they do not give
solutions in closed form the way the quadratic formula does.

The situation is entirely analogous in dealing with differential equations.
The methods we use to solve a differential equation depend on the equation
we face. A course in differential equations provides methods for finding for-
mulas that solve many different kinds of differential equations. The methods
are like the quadratic formula in algebra, though—they give a complete solu-
tion, but they work only with differential equations that have a very specific
form. This course will not attempt to survey the methods that find such for-
mulas, although in the next sections we will see effective methods for dealing
with some special subcases.

It is important to realize, though, that Euler’s method is always there
if we can’t think of anything cleverer, and it really does provide solutions.
In fact, most initial value problems have one, and only one, solution, and Most initial value

problem have one,
and only one, solution.

Euler’s method
will find it.

Euler’s method can be used to determine this unique solution. If we can also
find a formula for the solution, then it must be the same solution as that
produced by Euler’s method. In more advanced courses you will see a proof
that this is true in general, provided some mild conditions are satisfied. To
emphasize the importance of this idea, we give it a name:

Existence and Uniqueness Principle

Under most conditions, an initial value problem
has one and only one solution.

The existence and uniqueness principle is one of the most important mathe-
matical results in the theory of differential equations.

We will continue to rely primarily on Euler’s method, which generates
solutions for nearly all differential equations.
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However, there are clear benefits to having a formula for the solution
to a differential equation, allowing us to investigate questions that we can’t
answer very well if we only have solutions given by Euler’s method. In this
section, we will look at some of those benefits.

World Population Growth

Two models

In the exercises in the last section, we looked at two different models that seek
to describe how the world population will grow. One model assumed constant
per capita growth—rate of change proportional to population size. The other
assumed “supergrowth”—rate of change proportional to a higher power of
the population size. Let’s write P for the population size in the constant per
capita growth model and Q for the population size in the supergrowth model.
In both cases, the population is expressed in billions of persons and time is
measured in years, with t = 0 in 1990. In this notation, the two models are

Models for world
population growth

constant per capita:
dP

dt
= .02 P P (0) = 5;

supergrowth:
dQ

dt
= .015 Q1.2 Q(0) = 5.

By using Euler’s method, we discover that the two models predict fairly
similar results over sixty years, although the supergrowth model lives up
to its name by predicting larger populations than the constant per capita
growth model as time passes:

t P Q

− 10
0

10
50

4.09
5.00
6.11

13.59

4.08
5.00
6.18

15.94

These estimates are accurate to one decimal place, and that level of accuracy
was obtained with the step size ∆t = .1.

However, the predictions made by the models differ widely over longer
time spans. If we use Euler’s method to estimate the populations after 240
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years, we get

∆t P (240) Q(240)

.1

.01

.001

6.046 × 102

6.073 × 102

6.075 × 102

1.979 × 1010

2.573 × 1011

3.825 × 1011

As the step size decreases from 0.1 to 0.01 to 0.001, the estimates of the
constant per capita growth model P (240) behave as we have come to expect:
already three digits have stabilized. But in the estimates of the supergrowth
model, not even one digit of Q(240) has stabilized.

In this section we will see that there are actually formulas for the func-
tions P (t) and Q(t). These formulas will illuminate the reason behind the
differences in speed of stabilization in the estimates.

A formula for the supergrowth model

Without asking how the following formula might have been derived, let’s
check that it is indeed a solution to the supergrowth initial value problem.

Q(t) =

(

1
5
√

5
− .003 t

)−5

First of all, the formula satisfies the initial condition Q(0) = 5: Checking the
initial condition

Q(0) =

(

1
5
√

5

)−5

= (
5
√

5)5 = 5.

To check that it also satisfies the differential equation, we must evaluate Checking the
differential equationthe two sides of the differential equation

dQ

dt
= .015 Q1.2.

Let’s begin by evaluating the left-hand side. To differentiate Q(t), we will Left-hand side

write Q as a chain of functions:

Q = u−5 where u =
1
5
√

5
− .003 t.
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Since Q = u−5, dQ/du = (−5)u−6. Also, since u is just a linear function of t
in which the multiplier is −.003, we have du/dt = −.003. Consequently,

dQ

dt
=

dQ

du
· du

dt
= (−5) u−6 · (−.003)

= .015 u−6

Ordinarily, we would “finish the job” by substituting for u its formula in
terms of t. However, in this case it is clearer to just leave the left-hand side
in this form.

To evaluate the right-hand side of the differential equation (which is theRight-hand side

expression .015 Q1.2), we would expect to substitute for Q its formula in terms
of t. But since in evaluating the left-hand side, we expressed things in terms
of u, let’s do the same thing here. Since Q = u−5,

Q1.2 = Q6/5 = (u−5)6/5 = u−5·6/5 = u−6.

Therefore, the right-hand side is equal to .015 u−6. But so is the left-hand
side, so Q(t) is indeed a solution to the differential equation

dQ

dt
= .015 Q1.2.

Notice two things about this result. First, when we work with formulas we have greater need for
algebra to manipulate them. For example, we needed one of the laws of exponents, (ab)c = abc,
to evaluate the right-hand side. Second, we found it simpler to express Q in terms of the
intermediate variable u, instead of the original input variable t. In another computation, it might
be preferable to replace u by its formula in terms of t. You need to choose your algebraic strategy
to fit the circumstances.

Behavior of the supergrowth solution

It was convenient to use a negative exponent in the formula for Q(t) when
we wanted to differentiate Q. However, to understand what the formula tells
us about supergrowth, it will be more useful to write Q as

Q(t) =

(

1

1/ 5
√

5 − .003 t

)5

.
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This way makes it clear that Q is a fraction, and we can see its denominator.
In particular, this fraction is not defined when the denominator is zero—that
is, when

1
5
√

5
− .003 t = 0, or t =

1/ 5
√

5

.003
= 241.6 . . . years after 1990.

Consider what happens, though, as t approaches this special value 241.6. . . .
The denominator isn’t yet zero, but it is approaching zero, so the fraction Q Q “blows up” as

t → 241.6 . . .is becoming infinite. This means that the supergrowth model predicts the
world population will become infinite in about 240 years!

Let’s see what the predicted population size is when t = 240 (which is
the year 2230 a.d.), shortly before Q becomes infinite. We have

Q(240) =

(

1
5
√

5
− (.003)(240)

)−5

≈ 4.0088 × 1011.

Remember that Q expresses the population in billions of people, so the su-
pergrowth model predicts about 4 × 1020 people (i.e. 400 quintillion!) in
the year 2230. Refer back to our estimates of Q(240) using Euler’s method
(page 207). Although not even one digit of the estimates had stabilized, at
least the final one (with a step size of .001) had reached the right power
of ten. In fact, estimates made with still smaller step sizes do eventually
approach the value given by the formula for Q:

step size Q(240)

.1 0.1979 × 1011

.01 2.5727 × 1011

.001 2.8249 × 1011

.0001 3.9999 × 1011

.00001 4.0069 × 1011

Let’s look at the relationship between the Euler approximations of Q and
the formula for Q graphically. Here are graphs produced by a modification
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of the program SEQUENCE.

Q(t)

120 180 24060

10

.5 10

0

11

11

∆   = 2         ∆   = 1t        and     t

∆   = .1t

The range of values of Q for 0 ≤ t ≤ 240 is so immense that these graphs
are useless. In a case like this, it is helpful to rescale the vertical axis so
that the space between one power of 10 and the next is the same. In other
words, instead of seeing 1, 2, 3, . . . , we see 101, 102, 103, . . . . This is
called a logarithmic scale. Here’s what happens to the graphs if we put a
logarithmic scale on the vertical axis:

t

Q(t)

120 180 2406010 -1

10 1

10 3

10 5

10 7

10 9

10 11

∆   = 2t
∆   = 1t

∆   = .1t

Euler approximations and the formula for Q

The second graph makes it clearer that the Euler approximations do indeed
approach the graph of the function given by our formula, but they approach
more and more slowly, the closer t approaches 241.6. . . .
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Graphs are made with logarithmic scales particularly when the numbers being plotted cover a
wide range of values. When just one axis is logarithmic, the result is called a semi-log plot; when
both axes are logarithmic, the result is called a log–log plot.

Since Q(t) becomes infinite when t = 241.6 . . . , we must conclude that
the solution to the original initial value problem is meaningful only for t < The initial value

problem has a solution
only for t < 241.6 . . .

241.6 . . . . Of course, the formula for Q works quite well when t > 241.6 . . .
. It just has no meaning as the size of a population. For instance, when
t = 260 we get

Q(260) =

(

1
5
√

5
− (.003)(260)

)−5

≈ (−.05522)−5 ≈ −1.948 × 106.

In other words, the function determined by the initial value problem is defined
only on intervals around t = 0 that do not contain t = 241.6 . . . .

The formula for Q′(t) is informative too:

Q′(t) = .015

(

1

1/ 5
√

5 − .003t

)6

Since Q′ has the same denominator as Q, it becomes infinite the same way Q′ blows up as
t → 241.6 . . .Q does: Q′(t) → ∞ as t → 241.6 . . . . Because Euler’s method uses the

microscope equation ∆Q ≈ Q′ · ∆t to predict the next value of Q, we can
now understand why the estimates of Q(240) were so slow to stabilize: as
Q′ → ∞, ∆Q → ∞, too.

A formula for constant per capita growth

The constant per capita growth model for the world population that we are
considering is

dP

dt
= .02 P P (0) = 5.

This differential equation has a very simple form; if P (t) is a solution, then
the derivative of P is just a multiple of P . We have already seen in chapter 3
that exponential functions behave this way (exercises 5–7 in section 3). For
example, if P (t) = 2t, then

dP

dt
= .69 · 2t = .69 P.

Of course, the multiplier that appears here is .69, not .02, so P (t) = 2t is not
a solution to our problem.
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However, the multiplier that appears when we differentiate an exponentialExponential functions
satisfy dy/dt = ky function changes when we change the base. That is, if P (t) = bt, then

P ′(t) = kb · bt, where kb depends on b. Here is a sample of values of kb for
different bases b:

b kb

.5
2
3

10

− .693147 . . .
.693147 . . .

1.098612 . . .
2.302585 . . .

Notice that kb gets larger as b does. Since .02 lies between −.693147 and
+.693147, the table suggests that the value of b we want lies somewhere
between .5 and 2.

We can say even more about the multiplier. Since P ′(t) = kb · P (t) and
P (t) = bt, we find

P ′(0) = kb · P (0) = kb · b0 = kb · 1 = kb.

In other words, kb is the slope of the graph of P (t) = bt at the origin.

Thus, we will be able to solve the differential equation dP/dt = .02 P if
we can find an exponential function P (t) = bt whose graph has slope .02 atThe correct

exponential function
has slope .02
at the origin

the origin. This is a problem that we can solve with a computer microscope.
Pick a value of b and graph bt. Zoom in on the graph at the origin and
measure the slope. If the slope is more than .02, choose a smaller value for b;
if the slope is less than .02, choose a larger value for b. Repeat this process,
narrowing down the possibilities for b until the slope is as close to .02 as you
wish. Eventually, we get

P (t) = (1.0202)t.

You should check that P ′(0) = .02000 . . . ; see the exercises.
Thus P (t) = (1.0202)t solves the differential equation P ′ = .02 P . How-

ever, it does not satisfy the initial condition, because

P (0) = (1.0202)0 = 1 6= 5.

This is easy to fix; P (t) = 5 · (1.0202)t satisfies both conditions. More
generally, P (t) = C (1.0202)t satisfies the initial condition P (0) = C as well
as the differential equation P ′(t) = .02 P (t). To check the initial condition,
we compute

P (0) = C (1.0202)0 = C · 1 = C.
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The differential equation is also satisfied:

P ′(t) = (C (1.0202)t)′ = C · ((1.0202)t)′ = C · (.02 (1.0202)t) = .02 P (t).

So we have verified that the solution to our problem is

The formula for PP (t) = 5 (1.0202)t.

Because exponential functions are involved, constant per capita growth
is commonly called exponential growth. In the figure below we compare
exponential growth P (t) to “supergrowth” Q(t). The two graphs agree quite
well when t < 50. Notice that population is plotted on a logarithmic scale
(a semi–log plot). This makes the graph of P a straight line!

t

Q(t)

P(t)

120 180 2406010 -1

10 1

10 3

10 5

10 7

10 9

10 11

The graphs of P (t) and Q(t)

Differential Equations Involving Parameters

The S-I-R model contained two parameters—the transmission and recovery How do parameters
affect solutions?coefficients a and b. When we used Euler’s method to analyze S, I, and R,

we were working numerically. To do the computations, we had to give the
parameters definite numerical values. That made it more difficult to deal
with our questions about the effects of changing the parameters. As a result,
we took other approaches to explore those questions. For example, we used
algebra to see that there was a threshold for the spread of the disease: if
there were fewer than b/a people in the susceptible population, the infection
would fade away.
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This is the situation generally. Euler’s method can be used to produce
solutions to a very broad range of initial value problems. However, if the
model includes parameters, then we usually want to know how the solutions
are affected when the parameters change. Euler’s method is a rather clumsy
tool for investigating this question. Other methods—ones that don’t require
the values of the parameters to be fixed—work better. One possibility is to
start with a formula.

The supergrowth problem illustrates both how questions about parame-Supergrowth
parameters ters can arise and how useful a formula for the solution can be to answer the

questions. One of the most striking features of the supergrowth model is that
it predicts the population becomes infinite in 241.6. . . years. That prediction
was based on an initial population of 5 billion and a growth constant of .015.
Suppose those values turn out to be incorrect, and we need to start with
different values. Will that change the prediction? If so, how?

We should treat the initial population and the growth constant as parameters—
that is, as quantities that can vary, although they will have fixed values in
any specific situation that we consider. Suppose we let A denote the size of
the initial population, and k the growth constant. If we incorporate these
parameters into the supergrowth model, the initial value problem takes this
form:

dQ

dt
= k Q1.2 Q(0) = A

Here is the formula for a function that solves this problem:

The supergrowth
solution with
parameters

Q(t) =

(

1
5
√

A
− .2kt

)−5

Notice that, when A = 5 and k = .015, this formula reduces to the one we
considered earlier.

Let’s check that the formula does indeed solve the initial value problem.Checking the formula

First, the initial condition:

Q(0) =

(

1
5
√

A
− .2k · 0

)−5

=

(

1
5
√

A

)−5

= (
5
√

A)5 = A.

Next, the differential equation. To differentiate Q(t) we introduce the chain

Q = u−5 where u =
1

5
√

A
− .2kt.
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We see that dQ/du = −5 u−6. Since u is a linear function of t in which the
multiplier is −.2k, we also have du/dt = −.2k. Thus, by the chain rule,

dQ

dt
=

dQ

du
· du

dt
= −5 u−6 · (−.2k) = k u−6.

That is the left-hand side of the differential equation. To evaluate the right-
hand side, we use the fact that Q = u−5. Thus

k Q1.2 = k Q6/5 = k(u−5)6/5 = k u−5·6/5 = k u−6.

Since both sides equal k u−6, they equal each other, proving that Q(t) is a
solution to the differential equation.

Next, we ask when the population becomes infinite. Exactly as before,
this will happen when the denominator of the formula for Q(t) becomes zero:

The time to infinity1
5
√

A
− .2 kt = 0, or t =

1

.2 k 5
√

A
.

Here, in fact, is a formula that tells us how each of the parameters A and k
affects the time it takes for the population to become infinite.

Let’s use τ (the Greek letter “tau”) to denote the “time to infinity.” For
example, if we double the initial population, so A = 10 billion people, while
keeping the original growth constant k = .015, then the time to infinity is

τ =
1

.003 × 5
√

10
≈ 210.3 years.

By contrast, if we double the growth rate, to k = .030, while keeping the
original A = 5, then the time to infinity is only

τ =
1

.006 × 5
√

5
≈ 120.8 years

Conclusion: doubling the growth rate has a much greater impact than dou-
bling the initial population.

For any specific growth rate and initial population, we can always cal- Uncertainty in
the size of τculate the time to infinity. But we can actually do more; the formula for τ

allows us to do an error analysis along the patterns described in chapter 3,
section 4. For example, suppose we are uncertain of our value of the growth
rate k; there may be an error of size ∆k. How uncertain does that make us
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about the calculated value of τ? Likewise, if the current world population A
is known only with an error of ∆A, how uncertain does that make τ? Also,
how are the relative errors related? Let’s do this analysis, assuming that
k = .015 and A = 5.

Our tool is the error propagation equation—which is the microscope equa-How an error in k
propagates tion. If we deal with k first, then

∆τ ≈ ∂τ

∂k
· ∆k.

We have used partial derivatives because τ is a function of two variables, A
as well as k. If we write

τ =
1

.2 5
√

A
k−1,

then the differentiation rules yield

∂τ

∂k
= −1 · 1

.2 5
√

A
k−2 =

−1

.2 5
√

5
× (.015)−2 ≈ −16106.

Thus ∆τ ≈ −16106 · ∆k. For example, if the uncertainty in the value of
k = .015 is ∆k = ±.001, then the uncertainty in τ is about ∓16 years.

To determine how an error in A propagates to τ , we first writeHow an error in A
propagates

τ =
1

.2 k
A−1/5.

Then
∂τ

∂A
= −1

5
· 1

.2 k
A−6/5 =

−1

5 × .2 × .015
× 5−6/5 ≈ −9.7.

The error propagation equation is thus ∆τ ≈ −9.7 · ∆A. If the uncertainty
in the world population is about 100 million persons, so ∆A = ±.1, then the
uncertainty in τ is less than 1 year.

To complete the analysis, let’s compare relative errors. This involves aRelative errors

lot of algebra. To see how an error in k propagates, we have

∆τ ≈ − ∆k

.2 k2 5
√

A
and τ =

1

.2 k 5
√

A
.

We can therefore compute that a given relative error in k propagates as

∆τ

τ
≈ − ∆k

.2 k2 5
√

A
· .2 k 5

√
A

1
= −∆k

k
.
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Thus, a 1% error in k leads to a 1% error in τ , although the sign is reversed.
To analyze how a given relative error in A propagates, we start with

∆τ ≈ −1

5
· ∆A

.2 kA6/5
.

Then
∆τ

τ
≈ −1

5
· ∆A

.2 kA6/5
· .2 k 5

√
A

1
= −1

5
· ∆A

A
.

This says that it takes a 5% error in A to produce a 1% error in τ . Conse- How sensitive τ is to
errors in k and Aquently, the time to infinity τ is 5 times more sensitive to errors in k than

to errors in A.

The exercises in this section will give you an opportunity to check that
a particular formula is a solution to an initial value problem that arises in a
variety of contexts. Later in this chapter, we will make a modest beginning on
the much harder task of finding solutions given by formulas for special initial
value problems. There are more sophisticated methods for finding formulas, Special methods give

formulas; general
methods are numerical

when the formulas exist, and they provide powerful tools for some important
problems, especially in physics. However, most initial value problems we
encounter cannot be solved by formulas. This is particularly true when two
or more variables are needed to describe the process being modelled. The
tool of widest applicability is Euler’s method. This isn’t so different from
the situation in algebra, where exact solutions given by formulas (e.g. the
quadratic formula) are also relatively rare, and numerical methods play an
important role. (Chapter 5.5, presents the Newton–Raphson method for
solving algebraic equations by successive approximation.) In most cases that
will interest us, there are simply no formulas to be found—the limitation lies
in the mathematics, not the mathematicians.

Exercises

In exercises 1–4, verify that the given formula is a solution to the initial value
problem.

1. Powers of y.

a) y′ = y2, y(0) = 5: y(t) = 1/(1
5
− t)

b) y′ = y3, y(0) = 5: y(t) = 1/
√

1
25

− 2t



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

218 CHAPTER 4. DIFFERENTIAL EQUATIONS

c) y′ = y4, y(0) = 5: y(t) = 1/ 3

√

1
125

− 3t

d) Write a general formula for the solution of the initial value problem y′ =
yn, y(0) = 5, for any integer n > 1.

e) Write a general formula for the solution of the initial value problem y′ =
yn, y(0) = C, for any integer n > 1 and any constant C ≥ 0.

2. Powers of t.

a) y′ = t2, y(0) = 5: y(t) = 1
3
t3 + 5

b) y′ = t3, y(0) = 5: y(t) = 1
4
t4 + 5

c) y′ = t4, y(0) = 5: y(t) = 1
5
t5 + 5

d) Write a general formula for the solution of the initial value problem y′ =
tn, y(0) = 5 for any integer n > 1.

e) Write a general formula for the solution of the initial value problem y′ =
tn, y(0) = C for any integer n > 1 and any constant C.

3. Sines and cosines.

a) x′ = −y, y′ = x, x(0) = 1, y(0) = 0: x(t) = cos t, y(t) = sin t

b) x′ = −y, y′ = x, x(0) = 0, y(0) = 1: x(t) = cos(t + π/2), y(t) =
sin(t + π/2)

4. Exponential functions.

a) y′ = 2.3 y, y(0) = 5: y(t) = 5 · 10t

b) y′ = 2.3 y, y(0) = C: y(t) = C · 10t

c) y′ = −2.3 y, y(0) = 5: y(t) = 5 · 10−t

d) y′ = 4.6 ty, y(0) = 5: y(t) = 5 · 10t2

5. Initial Conditions.

a) Choose C so that y(t) =
√

t + C is a solution to the initial value problem

y′ =
1

2y
y(3) = 17.

b) Choose C so that y(t) = −1/(t + C) is a solution to the initial value
problem

y′ = y2 y(0) = −5.

c) Choose C so that y(t) = −1/(t + C) is a solution to the initial value
problem

y′ = y2 y(2) = 3.
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World population growth with parameters

6. a) Using a graphing utility or a calculator, show that the derivative of
P (t) = (1.0202)t at the origin is approximately .02: P ′(0) ≈ .02. Since quick
convergence is desirable, use

∆P

∆t
=

P (0 + h) − P (0 − h)

2h
=

(1.0202)h − (1.02020)−h

2h

b) By using more decimal places to get higher precision, show that P (t) =
(1.0202013)t satisfies P ′(0) = .02 even more exactly.

7. a) Show that the function y = 2t/.69 satisfies the differential equation
dy/dt = y. Use the chain rule: y = 2u, u = t/.69. (Recall that k2 = .69 . . . .)

b) Show that the function y = 2kt/.69 satisfies the differential equation
dy/dt = k y.

c) Show that the function P (t) = A · 2kt/.69 is a solution to the initial value
problem

dP

dt
= k P P (0) = A.

Note that this describes a population that grows at the constant per capita
rate k from an initial size of A.

8. a) Show that the function y = 10t/2.3 satisfies the differential equation
dy/dt = y. Use the chain rule: y = 10u, u = t/2.3. (Recall that k10 =
2.3 . . . .)

b) Show that the function y = 10kt/2.3 satisfies the differential equation
dy/dt = k y.

c) Show that the function P (t) = A · 10kt/2.3 is a solution to the initial value
problem

dP

dt
= k P P (0) = A.

This formula provides an alternative way to describe a population that grows
at the constant per capita rate k from an initial size of A.

9. a) The formula P (t) = 5 · 2k t/.69 describes how an initial population of
5 billion will grow at a constant per capita rate of k persons per year per
person. Use this formula to determine how many years t it will take for the
population to double, to 10 billion persons.
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b) Suppose the initial population is A billion, instead of 5 billion. What is
the doubling time then?

c) Suppose the initial population is 5 billion, and the per capita growth
rate is .02, but that value is certain only with an error of ∆k. How much
uncertainty is there in the doubling time that you found in part (a)?

Newton’s law of cooling

There are formulas that describe how a body cools, or heats up, to match
the temperature of its surroundings. See the exercises on Newton’s law of
cooling in section 1. Consider first the model

dT

dt
= −.1(T − 20) T (0) = 90,

introduced on page 197 to describe how a cup of coffee cools.

10. Show that the function y = 2−.1 t/.69 is a solution to the differential
equation dy/dt = −.1 y. (Use the chain rule: y = 2u, u = −.1 t/.69.)

11. a) Show that the function

T = 70 · 2−.1 t/.69 + 20

is a solution to the initial value problem dT/dt = −.1(T − 20), T (0) = 90.
This is the temperature T of a cup of coffee, initially at 90◦C, after t minutes
have passed in a room whose temperature is 20◦C.

b) Use the formula in part (a) to find the temperature of the coffee after 20
minutes. Compare this result with the value you found in exercise 12 (b),
page 198.

c) Use the formula in part (a) to determine how many minutes it takes for
the coffee to cool to 30◦C. In doing the calculations you will find it helpful
to know that 1/7 = 2−2.8. Compare this result with the value you found in
exercise 11 (c), page 198.

12. a) A cold drink is initially at Q = 36◦F when the air temperature is
90◦F. If the temperature changes according to the differential equation

dQ

dt
= −.2(Q − 90)◦F per minute,
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show that the function Q(t) = 90 − 54 · 2−.2 t/.69 describes the temperature
after t minutes.

b) Use the formula to find the temperature of the drink after 5 minutes
and after 10 minutes. Compare your results with the values you found in
exercise 12, page 198.

13. Find a formula for a function that solves the initial value problem

dQ

dt
= −k(Q − A) Q(0) = B.

A leaking tank

The rate at which water leaks from a small hole at the bottom of a tank
is proportional to the square root of the height of the water surface above
the bottom of the tank. Consider a cylindrical tank that is 10 feet tall and
stands on one of its circular ends, which is 3 feet in diameter. Suppose the
tank is currently half full, and is leaking at a rate of 2 cubic feet per hour.

14. a) Let V (t) be the volume of water in the tank t hours from now.
Explain why the leakage rate can be written as the differential equation

V ′(t) = −k
√

V (t),

for some positive constant k. (The issue to deal with is this: why is it
permissible to use the square root of the volume here, when the rate is known
to depend on the square root of the height?)

b) Determine the value of k. [Answer: k ≈ .3364; you need to explain why

this is the value.]

15. a) How much water leaks out of the tank in 12 hours; in 24 hours? Use
Euler’s method, and compute successive approximations until your results
stabilize.

b) How many hours does it take for the tank to empty?

16. a) Use the differentiation rules to show that any function of the form

V (t) =







k2

4
(C − t)2 if 0 ≤ t ≤ C

0 if C < t
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satisfies the differential equation.

b) For the situation we are considering, what is the value of C? According
to this solution, how long does it take for the tank to empty? Compare this
result with your answer using Euler’s method.

c) Sketch the graph of V (t) for 0 ≤ t ≤ 2C, taking particular care to display
the value V (0) in terms of k and C.

Motion

Newton created the calculus to study the motion of the planets. He said
that all motion obeys certain basic laws. One law says that the velocity of
an object changes only if a force acts on the body. Furthermore, the rate

at which the velocity changes is proportional to the force. By knowing the
forces that act on a body we can construct—and then solve—a differential
equation for the velocity.

Falling bodies—with gravity. A body falling through the air starts up
slowly but picks up speed as it falls. Its velocity is thus changing, so there
must be a force acting. We call the force that pulls objects to the earth
gravity. At the surface of the earth, the rate of change of velocity caused
by gravity is essentially the same for all objects.

Suppose an object is x meters above the surface of the earth after t
seconds have passed. Then, by definition, its velocity is

v =
dx

dt
meters/second.

According to Newton’s laws of motion, the force of gravity causes the velocity
to change, and we can write

dv

dt
= −g.

Here g is a constant whose numerical value is about 9.8 meters/second per
second. Since x and v are positive when measured upwards, but gravity
acts downwards, a minus sign is needed in the equation for dv/dt. (The
derivative of velocity is commonly called acceleration, and g is called the
acceleration due to gravity.)

17. Verify that v(t) = −g t + v0 is a solution to the differential equation
dv/dt = −g with initial velocity v0.
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18. Since dx/dt = v, and since v(t) = −g t + v0, the position x of the body
satisfies the differential equation

dx

dt
= −g t + v0 meters/second.

Find a formula for x(t) that solves this differential equation. This function
describes how a body moves under the force of gravity.

19. Suppose the initial position of the body is x0, so that the position x is
a solution to the initial value problem

dx

dt
= −g t + v0 x(0) = x0 meters.

Find a formula for x(t).

20. a) Suppose a body is held motionless 200 meters above the ground, and
then released. What values do x0 and v0 have? What is the formula for the
motion of this body as it falls to the ground?

b) How far has the body fallen in 1 second? In 2 seconds?

c) How long does it take for the body to reach the ground?

Falling bodies—with gravity and air resistance. As a body falls, air
pushes against it. Air resistance is thus another force acting on a falling body.
Since air resistance is slight when an object moves slowly but increases as
the object speeds up, the simplest model we can make is that the force of
air resistance is proportional to the velocity: force = −bv (reality turns out
to be somewhat more complicated than this). The multiplier b is positive,
and the minus sign tells us that the direction of the force is always opposite
the velocity. The forces of gravity and air resistance combine to change the
velocity:

dv

dt
= −g − b v meters/second per second.

21. Show that

v(t) =
g

b

(

2−b t/.69 − 1
)

meters/second

is a solution to this differential equation that also satisfies the initial condition
v(0) = 0 meters/second.
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22. a) Show that the position x(t) of a body that falls against air resistance
from an initial height of x0 meters is given by the formula

x(t) = x0 −
g

b
t − g

b2

(

2−b t/.69 − 1
)

meters.

b) Suppose the coefficient of air resistance is b = .2 per second. If a body
is held motionless 200 meters above the ground, and then released, how far
will it fall in 1 second? In 2 seconds? Compare these values with those you
obtained assuming there was no air resistance.

c) How long does it take for the body to reach the ground? (Use a computer
graphing package to get this answer.) Compare this value with the one you
obtained assuming these was no air resistance. How much does air resistance
add to the time?

23. a) According to the equation dv/dt = −g − b v, there is a velocity vT

at which the force of air resistance exactly balances the force of gravity, and
the velocity doesn’t change. What is vT , expressed as a function of g and
b. Note: vT is called the terminal velocity of the body. Once the body
reaches its terminal velocity, it continues to fall at that velocity.

b) What is the terminal velocity of the body in the previous exercise?

The oscillating spring. Springs can smooth out life’s little irregularities (as
in the suspension of a car) or amplify and measure them (as
in earthquake detection devices). Suppose a
spring that hangs from a hook has a weight at its
end. Let the weight come to rest. Then, when
the weight moves, let x denote the position of the
weight above the rest position. (If x is negative,
this means the weight is below the rest position.)
If you pull down on the weight, the spring pulls
it back up. If you push up on the weight, the
spring (and gravity) push it back down. This
push is the spring force.

m x

cm

0 rest
position




The simplest assumption is that the spring force is proportional to the
amount x that the spring has been stretched: force = −c2x. The constant
c2 is customarily written as a square to emphasize that it is positive. The
minus sign tells us the force pushes down if x > 0 (so the weight is above the
rest position), but it pushes up if x < 0.
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If v = dx/dt is the velocity of the weight, then Newton’s law of motion
says

dv

dt
= −c2x.

Suppose we move the weight to the point x = a on the scale, hold it mo-
tionless momentarily, and then release it at time t = 0. This determines the
initial value problem

x′ = v x(0) = a
v′ = −c2x v(0) = 0.

24. a) Show that

x(t) = a cos(ct) v(t) = −ac sin(ct)

is a solution to the initial value problem.

b) What range of values does x take on; that is, how far does the weight
move from its rest position?

25. a) Use a graphing utility to compare the graphs of y = cos(x), y =
cos(2x), y = cos(3x), and y = cos(.5x). Based on your observations, explain
how the value of c affects the nature of the motion x(t) = a cos(ct) for a fixed
value of a.

b) How long does it take the weight to complete one cycle (from x = a back
to x = a) when c = 1? The motion of the weight is said to be periodic, and
the time it takes to complete one cycle is called its period.

c) What is the period of the motion when c = 2? When c = 3? Does the
period depend on the initial position a?

d) Write a formula that expresses the period of the motion in terms of the
parameters a and c.

26. a) The parameter c depends on two things: the mass m of the weight,
and the stiffness k of the spring:

c =

√

k

m
.

Write a formula that expresses the period of the motion of the weight in
terms of m and k.
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b) Suppose you double the weight on the spring. Does that increase or
decrease the period of the motion? Does your answer agree with your intu-
itions?

c) Suppose you put the first weight on a second spring that is twice as stiff
as the first (i.e., double the value of k). Does that increase or decrease the
period of the motion? Does your answer agree with your intuitions?

d) When you calculate the period of the motion using your formula form
part (a), suppose you know the actual value of the mass only to within 5%.
How accurately do you know the period—as a percentage of the calculated
value?

4.3 The Exponential Function

The Equation y′ = ky

As we have seen, initial value problems define functions—as their solutions.
They therefore provide us with a vast, if somewhat bewildering, array of
new functions. Fortunately, a few differential equations—in fact, the very
simplest—arise over and over again in an astonishing variety of contexts.
The functions they define are among the most important in mathematics.

One of the simplest differential equations is dy/dt = ky, where k is aA simple and
natural model of
growth and decay

constant. It is also one of the most useful. We used it in chapter 1 to
model the populations of Poland and Afghanistan, as well as bacterial growth
and radioactive decay. In this chapter, it was our initial model of a rabbit
population and one of our models of the world population. Later, we will
use it to describe how money accrues interest in a bank and how radiation
penetrates solid objects.

In this section we will look at the solutions to differential equations of this
form from two different vantage points. On the one hand, we already have
named functions which solve such equations—the exponential functions. On
the other hand, the fact that Euler’s method produces the same functions
will allow us to prove properties of such functions and to compute their values
effectively.

In chapter 3 we established that the solutions to dy/dt = ky are exponen-Exponential
solutions—with
different bases . . .

tial functions. Specifically, for each base b, the exponential function y = bt

was a solution to dy/dt = kb · bt = kb · y, where kb was the slope of the graph
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of y = bt at the origin. In this approach, if the constant k changes, we must
change the base b so that kb = k.

Exercise 7 in the previous section (page 219) opened up a new possibility: . . . and a
fixed basefor the fixed base 2, the function

y = 2kt/.6931...

was a solution to the differential equation dy/dt = kt, no matter what value
k took. There was nothing special about the base 2, of course. In the next
exercise, we saw that the functions

y = 10kt/2.3025...

would serve equally well as solutions.
In fact, we can show that, for any base b, the functions

y = bkt/kb

are also solutions to dy/dt = ky. Construct the chain

y = bu where u = kt/kb.

Then dy/du = kb · bu = kb · y, while du/dt = k/kb. Thus, by the chain rule
we have

dy

dt
=

dy

du
· du

dt
= kb y · k

kb

= ky.

If we express solutions to dy/dt = ky by exponential functions with a Advantages of a
fixed basefixed base, it is easy to alter the solution if the growth constant k changes.

We just change the value of k in the exponent of bkt/kb . Let’s see how this
works when b = 2 and b = 10:

differential solution solution
equation base 2 base 10

dy

dt
= .16 y 2.231 t 10.069 t

dy

dt
= .18 y 2.260 t 10.078 t

Notice that the growth constant k gets “swallowed up” in the exponent of
the solution when k has a specific numerical value. The number that appears
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in the exponent is k divided by k2 = .6931 . . . (when the base is 2) and by
k10 = 2.3025 . . . (when the base is 10).

The most vivid solution to dy/dt = ky would use the base b for which
kb = 1 exactly. There is such a base, and it is always denoted e. (We willThe base e

determine the value of e in a moment.) Since ke = 1, k would stand out in
the exponent:

differential solution
equation base e

dy

dt
= .16 y e.16 t

dy

dt
= .18 y e.18 t

The simplicity and clarity of this expression have led to the universal adop-
tion of the base e for describing exponential growth and decay—that is, for
describing solutions to dy/dt = ky.

The use of the symbol e to denote the base dates back to a paper that Euler wrote at age
21, entitled Meditatio in experimenta explosione tormentorum nuper instituta (Meditation upon
recent experiments on the firing of cannons), where the symbol e was used sixteen times. It
is now in universal use. The number e is, like π, one of the most important and ubiquitous in
mathematics.

By design, y = et is a solution to the differential equation dy/dt = y. In
particular, the slope of the graph of y = et at the origin is exactly 1. As we
have just seen, the function y = ekt is a solution to the differential equations
dy/dt = ky whose growth constant is k. Finally:

The general initial
value problem for
exponential functions

y = C · ekt is the solution to the initial value problem

dy

dt
= ky y(0) = C.

We can check this quickly. The initial condition is satisfied because e0 = 1,
so y(0) = C · ek·0 = C · 1 = C. The differential equation is satisfied because

(

C · ekt
)′

= C ·
(

ekt
)′

= C · k ekt = k y.

We used the differentiation rule for a constant multiple of a function, and we
used the fact that the derivative of ekt was already established to be k ekt.
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The Number e

The number e is determined by the property that ke = 1. Since this number Finding e with a
computer microscopeis the slope of the graph of y = et at the origin, one way to find e is with

a computer microscope. Pick an approximation E for e and graph y = f t.
Zoom in the graph at the origin, and measure the slope. If the slope is more
than 1, choose a smaller approximation; if the slope is less than 1, choose a
larger value. Repeat this process, narrowing down the value of e until you
know its value to as many decimal places as you wish.

We already know E = 2 is too small, because the slope of y = 2t at the Under successive
magnifications:
e = 2.71828 . . .

origin is .69. Likewise, E = 3 is too large, because the slope of y = 3t at the
origin is 1.09. Thus 2 < e < 3, and is closer to 3 than to 2. At the next
stage we learn that 2.7 is too small (slope = .9933) but 2.8 is too large (slope
= 1.0296). Thus, at least we know e = 2.7 . . . . Several stages later we would
learn e = 2.71828 . . . .

While the method just described for finding the value of e works, it is
somewhat ponderous. We can take a very different approach to finding the Finding e by

Euler’s methodnumerical value of e by using the fact that e is defined by an initial value
problem. Here is the idea: e is the value of the function et when t = 1, and
y(t) = et is the solution to the initial value problem

y′ = y y(0) = 1.

We can then find e = y(1) in the usual way by solving this initial value prob-
lem using Euler’s method. Due to some convenient algebraic simplifications,
this approach yields powerful insights about the nature of e.

Suppose we take n steps to go from t = 0 to t = 1. Then the step size is
∆t = 1/n. The following table shows the calculations:

Finding y(1) by Euler’s method when y′ = y and y(0) = 1

t y y′ = y ∆y = y′ · ∆t

0 1 1 1 · 1/n
1/n 1 + 1/n 1 + 1/n (1 + 1/n) · 1/n
2/n (1 + 1/n)2 (1 + 1/n)2 (1 + 1/n)2 · 1/n
3/n (1 + 1/n)3 (1 + 1/n)3 (1 + 1/n)3 · 1/n
...

...
...

...
n/n (1 + 1/n)n
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The entries in the y column need to be explained. The first two should be
clear: y(0) is the initial value 1, and y(1/n) = y(0) + ∆y = 1 + 1/n. To get
from any entry to the next we must do the following:

new y = current y + ∆y

= current y + y′ · ∆t

= current y + current y · ∆t

= current y · (1 + ∆t)

= current y · (1 + 1/n)

The new y is the current y multiplied by (1 + 1/n). Since the second y is
itself (1 + 1/n), the third will be (1 + 1/n)2, the fourth will be (1 + 1/n)3,
and so on.

Euler’s method with n steps therefore gives us the following estimate for
e = y(1) = y(n/n):

e ≈ (1 + 1/n)n

We can calculate these numbers on a computer. In the following table we
give values of (1 + 1/n)n for increasing values of n. By the time n = 240

(about 1012), eleven digits of e have stabilized.

n (1 + 1/n)n

20

24

28

212

216

220

224

228

232

236

240

2.0
2.638
2.712 992
2.717 950 081
2.718 261 089 905
2.718 280 532 282
2.718 281 747 448
2.718 281 823 396
2.718 281 828 142
2.718 281 828 439
2.718 281 828 458

The true value of e is the limit of these approximations as we take nExpressing e as a limit

arbitrarily large:

e = lim
n→∞

(1 + 1/n)n = 2.71828182845904 . . .
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We can generalize the preceding to get an expression for eT for any value
of T . In exactly the same way as we did above, divide the interval from 0 to T
into n pieces, each of width ∆t = T/n. Starting from t = 0 and y(0) = 1 and
applying Euler’s method, we find, using the same algebraic simplifications,
that after n steps the value for t will be T and y will be (1 + T/n)n. Since
these approximations approach the true value of the function as n → ∞, we
have that

eT = lim
n→∞

(1 + T/n)n for any value of T .

Differential Equations Define Functions

There is an important point underlying the operations we just performed hav-
ing to do with the question of computability. While it may be appalling to
think about doing it by hand, there is nothing conceptually difficult about
evaluating an expression like (1 + 1/1000)1000—all we need are ordinary ad- Euler’s method uses

only arithmeticdition, division, and multiplication. In fact, for any differential equation,
Euler’s method generates a solution using only ordinary arithmetic.

By contrast, think for a moment about the earlier method for evaluating
e by evaluating expressions like (2.718.0001 − 2.718−.0001)/.0002 and seeing
whether we get a value bigger than or less than 1. While a calculator or a
computer will readily give us a value, how does it “know” what 2.718.0001

is? The fact is, it doesn’t have a built-in exponentiator which lets it know
immediately what the value of this expression is any more than we do. A
computer—like humans—can essentially only add, subtract, and multiply.
Any other operation has to be reduced to these operations somehow. Thus
when we use a computer to evaluate something like 2.718.0001, we actual
trigger a fairly elaborate program having little directly to do with raising
numbers to powers which produces an approximation to the desired number.
It turns out that if you use the xy key on your calculator to evaluate 25 it
doesn’t come up with the answer by multiplying 2 by itself 5 times, but uses
this more complicated program.

There is often a large gap between naming and defining a function, and
being able to compute values for it to four or five decimals. Think about Defining a function is

not the same as being
able to evaluate it

the trigonometric functions for a moment. You have probably seen several
definitions of the cosine function by now—as the ratio of the adjacent side
over the hypotenuse of a right triangle, or as the x-coordinate of a point
moving around a circle of radius 1. Yet neither of these definitions would
help you calculate cos(2) to five decimals. It turns out that most methods
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for evaluating functions are based on the way the derivatives of the functions
behave. While we will have much more to say about this in chapter 10,
Euler’s method is a good first example of this.

Returning to exponents, think what would be involved in evaluating 2
√

3

using the pre-calculus concept of exponents. We might first get a series of
rational approximations to

√
3 = 1.73205081 . . .: 17/10 = 1.7, 173/100 =

1.73, 433/250 = 1.732, and so on. We would then calculate

217/10 = (
10
√

2)17

2173/100 = (
100
√

2)173

2433/250 = (
250
√

2)433

...

Even evaluating the first of these approximations would involve finding the
10th root of 2 and raising it to the 17th power, which would not be easy. We
would continue with these approximations until the desired number of digits
remained fixed.

By contrast, evaluating e
√

3 by Euler’s method is very straightforward.
As we saw above, it reduces to evaluating (1 + 1.73205 . . . /n)n for increas-
ing values of n until the desired number of digits remains fixed. Moreover,
this same process works just as well for any kind of exponent—positive or
negative, rational or irrational.

In fact, all the properties of the exponential function follow from the fact
that it is the solution to its initial value problem, so we could have made
this the definition in the first place. This would have given us the benefit of
coherence (not having to distinguish among different kinds of exponents) and
direct computability. It would also directly reflect the primary reason the
exponential function is important, namely that its rate of change is propor-
tional to its value. Since the process of deducing the properties of a function
from its defining equation will be important later on, and since it is a good
exercise in some of the theoretical ideas we’ve been developing, let’s see how
this works.

We will assume nothing about the function y = et. Instead, we be-Defining exp(t)

gin simply with the observation that each initial value problem defines a
function—its solution. Therefore, the specific problem

y′ = y y(0) = 1
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defines a function; we call it y = exp(t). At the outset, all we know about
the function exp(t) is that

exp′(t) = exp(t) exp(0) = 1.

As before, we can use Euler’s method to evaluate exp(1), which we will call
e. From these facts alone we want to deduce that exp(t) = et for all values
of t. We will actually show this only for all rational values of t, since there is,
as we’ve seen, a bit of hand-waving about what it means to raise a number
to an irrational power. The following theorem is the key to establishing this
result.

Theorem 1. For any real numbers r and s,

exp(r + s) = exp(r) · exp(s).

We will prove this result shortly, but let’s see what we can deduce from
it. First off, note that

exp(2) = exp(1 + 1) = exp(1) · exp(1) = (exp(1))2 = e2.

Notice that we invoked Theorem 1 to equate exp(1 + 1) with exp(1) · exp(1).
In a similar way,

exp(3) = exp(2 + 1) = exp(2) · exp(1) = (exp(1))2 · exp(1) = (exp(1))3 = e3.

Repeating this argument for any positive integer m, we get
Corollary 1. For any positive integer m,

exp(m) = (exp(1))m = em.

We can also express exp(t) in terms of e when t is a negative integer. We Negative integers

begin with another consequence of Theorem 1:

1 = exp(0) = exp(−1 + 1) = exp(−1) · exp(1).

This says e = exp(1) is the reciprocal of exp(−1):

exp(−1) = (exp(1))−1 = e−1.

Since −2 = −1− 1, −3 = −2− 1, and so forth, we can eventually show that
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Corollary 2. For any negative integer −m,

exp(−m) = exp(−1 − 1 − . . . − 1) = (exp(−1))m = (exp(1))−m = e−m.

We can even do the same thing with fractions. Here’s how to deal withRational numbers

exp(1/3), for example:

exp(1) = exp
(

1
3

+ 1
3

+ 1
3

)

= exp(1/3) · exp(1/3) · exp(1/3)

= (exp(1/3))3 ,

so exp(1/3) is the cube root of exp(1):

exp(1/3) = (exp(1))1/3 = e1/3.

A similar argument will show that

Corollary 3. For any positive integer n, exp(1/n) = e1/n.

Finally, we can deal with any rational number m/n:

exp(m/n) = (exp(1/n))m =
(

e1/n
)m

= em/n.

This leads to

Theorem 2. For any rational number r, exp(r) = (exp(1))r = er.

In other words, Theorem 1 implies that the function exp(t) is the same
function as the exponential function et—at least when t is a rational number
m/n, as claimed. We could now prove that exp(t) = et when t is an irrational
number, which would require being clearer about what it means to raise a
number to an irrational power than most high school texts are.

We adopt a more attractive option. Since exp(t) and et agree at rational
values of t, and since exp(t) is well-defined for all values of t—including
irrational numbers—we define et for irrational values of t by setting it equal
to exp(t).

Proof of Theorem 1

The proof uses the Existence and Uniqueness Principle for differential equa-
tions we articulated earlier: if two functions satisfy the same differentialThe proof of

Theorem 1 equation and satisfy the same initial conditions then they have to be the
same function.
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Theorem 1 involves two fixed real numbers, r and s. We fix one of them,
say r, to define two new functions of t:

P (t) = exp(r + t) Q(t) = exp(r) · exp(t).

We shall show that both of these functions are solutions to the same initial
value problem:

dy

dt
= y y(0) = exp(r).

(Remember, exp(r) is a constant, because r is fixed.)
If we show this, it will then follow that P (t) and Q(t) must be the same

function. Since

P (0) = exp(r + 0) = exp(r)

Q(0) = exp(r) · exp(0) = exp(r) · 1 = exp(r),

P (t) and Q(t) both satisfy the initial condition y(0) = exp(r). Next we show
that they both satisfy the differential equation y′ = y:

Q′(t) = (exp(r) · exp(t))′ = exp(r) · (exp(t))′ = exp(r) · exp(t) = Q(t),

so Q(t) is a solution. To differentiate P (t) we construct a chain:

P = exp(u) where u = r + t.

Then dP/du = exp(u) and du/dt = 1, so

P ′(t) =
dP

du
· du

dt
= exp(u) · 1 = P (t) · 1 = P (t),

so P (t) is also a solution. Therefore P (t) and Q(t) must be the same function.
It follows then that P (t) = Q(t) for all values of t, in particular for t = s.
But this means that

exp(r + s) = P (s) = Q(s) = exp(r) · exp(s),

which is exactly the statement of Theorem 1, and so completes the proof.

Now that we have established exp(x) = ex, we shall call exp(x) the expo-

nential function and we shall use the forms ex and exp(x) interchangeably.
The following theorem summarizes several more properties of the exponential
function.
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Theorem 3. For any real numbers r and s,

exp(s) > 0

exp(−s) =
1

exp(s)

exp(r − s) =
exp(r)

exp(s)

exp(rs) = (exp(r))s = (exp(s))r .

To make the statements in this theorem seem more natural, you should stop
and translate them from exp(x) to ex. Proofs will be covered in the exercises.

Exponential Growth

The function exp(x) = ex, like polynomials and the sine and cosine functions,
is defined for all real numbers. Nevertheless, it behaves in a way that is quite
different from any of those functions.

One difference occurs when x is large, either positive or negative. The sine
function and the cosine function stay bounded between +1 and −1 over their
entire domain. By contrast, every polynomial “blows up” as x → ±∞. In
this regard, the exponential function is a hybrid. As x → −∞, exp(x) → 0.
As x → +∞, however, exp(x) → +∞.

Let’s look more closely at what happens to power functions xn and theHow fast do xn and ex

become infinite? exponential function ex as x → ∞. Both kinds of functions “blow up”
but they do so at quite different rates, as we shall see. Before we compare
power and exponential functions directly, let’s compare one power of x with
another—say x2 with x5. As x → ∞, both x2 and x5 get very large. However,
x2 is only a small fraction of the size of x5, and that fraction gets smaller,
the larger x is. The following table demonstrates this. Even though x2 grows
enormous, we interpret the fact that x2/x5 → 0 to mean that x2 grows more

slowly than x5.

x x2 x5 x2/x5

10 102 105 10−3

100 104 1010 10−6

1000 106 1015 10−9

↓ ↓ ↓ ↓
∞ ∞ ∞ 0
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It should be clear to you that we can compare any two powers of x this xp grows more slowly
than xq if p < qway. We will find that xp grows more slowly than xq if, and only if, p < q.

To prove this, we must see what happens to the ratio xp/xq, as x → +∞.
We can write xp/xq = 1/xq−p, and the exponent q − p that appears here is
positive, because q > p. Consequently, as x → ∞, xq−p → ∞ as well, and
therefore 1/xq−p → 0. This completes the proof.

How does ex compare to xp? To make it tough on ex, let’s compare it to
x50. We know already that x50 grows faster than any lower power of x. The
table below compares x50 to ex. However, the numbers involved are so large
that the table shows only their order of magnitude—that is, the number of
digits they contain. At the start, x50 is much larger than ex. However, by
the time x = 500, the ratio x50/ex is so small its first 82 decimal places are
zero!

x x50 ex x50/ex

100
200
300
400
500

∼ 10100

10115

10123

10130

10134

∼ 1043

1086

10130

10173

10217

∼ 1056

1028

10−7

10−44

10−83

↓ ↓ ↓ ↓
∞ ∞ ∞ 0

So x50 grows more slowly than ex, and so does any lower power of x. ex grows more rapidly
than any power of xPerhaps a higher power of x would do better. It does, but ultimately the

ratio xp/ex → 0, no matter how large the power p is. We don’t yet have all
the tools needed to prove this, but we will after we introduce the logarithm
function in the next section.

The speed of exponential growth has had an impact in computer science.
In many cases, the number of operations needed to calculate a particular
quantity is a power of the number of digits of precision required in the answer.
Sometimes, though, the number of operations is an exponential function of
the number of digits. When that happens, the number of operations can
quickly exceed the capacity of the computer. In this way, some problems
that can be solved by an algorithm that is straightforward in theoretical
terms are intractable in practical terms.
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Exercises

The exponential functions bt

1. Use a graphing utility or a calculator to approximate the slopes of the
following functions at the origin and show:

a) If f(t) = (2.71)t, then f ′(0) < 1.

b) If g(t) = (2.72)t, then g′(0) > 1.

c) Use parts (a) and (b) to explain why 2.71 < e < 2.72.

2. a) In the same way find the value of the parameter kb for the bases b =
.5, .75, and .9 accurate to 3 decimal places.

b) What is the shape of the graph of y = bt when 0 < b < 1? What does
that imply about the sign of kb for 0 < b < 1? Explain your reasoning.

Differentiating exponential functions

3. Differentiate the following functions.

a) 7e3x

b) Cekx, where C and k are constants.

c) 1.5et

d) 1.5e2t

e) 2e3x − 3e2x

f) ecos t

4. Find partial derivatives of the following functions.

a) exy

b) 3x2e2y

c) eu sin v

d) eu sin(v)
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Powers of e

5. Simplify the following and rewrite as powers of e. For each, explain your
work, citing any theorems you use.

a) exp(2x + 3)

b) (exp(x))2

c) exp(17x)/ exp(5x)

6. Use the second property in Theorem 3 to explain why

lim
t→−∞

exp(t) = 0.

7. This purpose of this exercise is to prove the fourth property listed in
Theorem 3: exp(rs) = (exp(s))r, for all real numbers r and s. The idea
of the proof is the same as for Theorem 1: show that two different-looking
functions solve the same initial value problem, thus demonstrating that the
functions must be the same. The initial value problem is

y′ = ry y(0) = 1.

a) Show that P (t) = exp(rt) solves the initial value problem. (You need to
use the chain rule.)

b) Show that Q(t) = (exp(t))r solves the initial value problem. (Here use
the chain Q = ur, where u = exp(t). There is a bit of algebra involved.)

c) From parts (a) and (b), and the fact that an initial value problem has a
unique solution, it follows that P (t) = Q(t), for every t. Explain how this
establishes the result.

Solving y′ = ky using et

8. Poland and Afghanistan. Refer to problem 25 in chapter 1.2.

a) Write out the initial value problems that summarize the information
about the populations P and A given in parts (a) and (b) of problem 21.

b) Write formulas for the solutions P and A of these initial value problems.

c) Use your formulas in part (b) (and a calculator) to find the population
of each country in the year 2005. What were the populations in 1965?
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9. Bacterial growth. Refer to problem 26 in chapter 1.2.

a) Assuming that we begin with the colony of bacteria weighing 32 grams,
write out the initial value problem that summarizes the information about
the weight P of the colony.

b) Write a formula for the solution P of this initial value problem.

c) How much does the colony weigh after 30 minutes? after 2 hours?

10. Radioactivity. Refer to problem 27 in chapter 1.2.

a) Assuming that when we begin the sample of radium weighs 1 gram, write
out the initial value problem that summarizes the information about the
weight R of the sample.

b) How much did the sample weigh 20 years ago? How much will it weigh
200 years hence?

11. Intensity of radiation. As gamma rays travel through an object,
their intensity I decreases with the distance x that they have travelled. This
is called absorption. The absorption rate dI/dx is proportional to the
intensity. For some materials the multiplier in this proportion is large; they
are used as radiation shields.

a) Write down a differential equation which models the intensity of gamma
rays I(x) as a function of distance x.

b) Some materials, such as lead, are better shields than others, such as air.
How would this difference be expressed in your differential equation?

c) Assume the unshielded intensity of the gamma rays is I0. Write a formula
for the intensity I in terms of the distance x and verify that it gives a solution
of the initial value problem.

12. In this problem you will find a solution for the initial value problem
y′ = ky and y(t0) = C. (Notice that this isn’t the original initial value
problem, because t0 was 0 originally.)

a) Explain why you may assume y = Aekt for some constant A.

b) Find A in terms of k, C and t0.

Solving other differential equations

13. a) Newton’s law of cooling. Verify that

Q(t) = 70e−.1 t + 20
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is a solution to the initial value problem Q′(t) = −.1(Q − 20), Q(0) = 90.
What is the relationship between this formula and the one found in problem
11 in section 2?

b) Verify that

Q(t) = (Q0 − A)e−kt + A

is a solution to the the initial value problem Q′(t) = −k(Q − A), Q(0) = B.
What is the relationship between this formula and the one found in prob-
lem 13 in section 2?

14. In An Essay on the Principle of Population, written in 1798, the British
economist Thomas Robert Malthus (1766–1834) argued that food supplies
grow at a constant rate, while human populations naturally grow at a con-
stant per capita rate. He therefore predicted that human populations would
inevitably run out of food (unless population growth was suppressed by un-
natural means).

a) Write differential equations for the size P of a human population and the
size F of the food supply that reflect Malthus’ assumptions about growth
rates.

b) Keep track of the population in millions, and measure the food supply
in millions of units, where one unit of food feeds one person for one year.
Malthus’ data suggested to him that the food supply in Great Britain was
growing at about .28 million units per year and the per capita growth rate
of the population was 2.8% per year. Let t = 0 be the year 1798, when
Malthus estimated the population of the British Isles was P = 7 million
people. He assumed his countrymen were on average adequately nourished,
so he estimated that the food supply was F = 7 million units of food. Using
these values, write formulas for the solutions P = P (t) and F = F (t) of the
differential equations in (a).

c) Use the formulas in (b) to calculate the amount of food and the population
at 25 year intervals for 100 years. Use these values to help you sketch graphs
of P = P (t) and F = F (t) on the same axes.

d) The per capita food supply in any year equals the ratio F (t)/P (t). What
happens to this ratio as t grows larger and larger? (Use your graphs in (c)
to assist your explanation.) Do your results support Malthus’s prediction?
Explain.
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15. a) Falling bodies. Using the base e instead of the base 2, modify the
solution v(t) to the initial value problem

dv

dt
= −g − bv v(0) = 0

that appears in exercise 21 on page 223. Show that the modified expression
is still a solution.

b) If an object that falls against air resistance is x(t) meters above the
ground after t seconds, and it started x0 meters above the ground, then it is
the solution of the initial value problem

dx

dt
= v(t) x(0) = x0,

where v(t) is the velocity function from the previous exercise. Find a formula
for x(t) using the exponential function with base e. (Compare this formula
with the one in exercise 22 (a), page 224.)

c) Suppose the coefficient of air resistance is .2 per second. If a body is held
motionless 200 meters above the ground, and then released, how far will it
fall in 1 second? In 2 seconds? Use your formula from part (b). Compare
these values with those you obtained in exercise 22 (b), page 224.

Interest rates

Bank advertisements sometimes look like this:

Civic Bank and Trust

• Annual rate of interest 6%.

• Compounded monthly.

• Effective rate of interest 6.17%.

The first item seems very straightforward. The bank pays 6% interest per
year. Thus if you deposit $100.00 for one year then at the end of the year
you would expect to have $106.00. Mathematically this is the simplest way
to compute interest; each year add 6% to the account. The biggest problem
with this is that people often make deposits for odd fractions of a year, so
if interest were paid only once each year then a depositor who withdrew her
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money after 11 months would receive no interest. To avoid this problem
banks usually compute and pay interest more frequently. The Civic Bank
and Trust advertises interest compounded monthly. This means that the
bank computes interest each month and credits it (that is, adds it) to the
account.

Month Start Interest End
1 $100.0000 .5000 $100.5000
2 $100.5000 .5025 $101.0025
3 $101.0025 .5050 $101.5075
4 $101.5075 .5075 $102.0151
5 $102.0151 .5101 $102.5251
6 $102.5251 .5126 $103.0378
7 $103.0378 .5152 $103.5529
8 $103.5529 .5178 $104.0707
9 $104.0707 .5204 $104.5911

10 $104.5911 .5230 $105.1140
11 $105.1140 .5256 $105.6396
12 $105.6396 .5282 $106.1678

Since this particular account pays interest at the rate of 6% per year and
there are 12 months in a year the interest rate is 6%/12 = 0.5% per month.
The following table shows the interest computations for one year for a bank
account earning 6% annual interest compounded monthly.

Notice that at the end of the year the account contains $106.17. It has ef-
fectively earned 6.17% interest. This is the meaning of the advertised effective

rate of interest. The reason that the effective rate of interest is higher than
the original rate of interest is that the interest earned each month itself earns
interest in each succeeding month. (We first encountered this phenomenon
when we were trying to follow the values of S, I, and R into the future.) The
difference between the original rate of interest and the effective rate can be
very significant. Banks routinely advertise the effective rate to attract de-
positors. Of course, banks do the same computations for loans. They rarely
advertise the effective rate of interest for loans because customers might be
repelled by the true cost of borrowing.

The effective rate of interest can be computed much more quickly than
we did in the previous table. Let R denote the annual interest rate as a
decimal. For example, if the interest rate is 6% then R = 0.06. If interest is
compounded n times per year then each time it is compounded the interest
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rate is R/n. Thus each time you compound the interest you compute

V +

(

R

n

)

V =

(

1 +
R

n

)

V

where V is the value of the current deposit. This computation is done n
times during the course of a year. So, if the original deposit has value V ,
after one year it will be worth

(

1 +
R

n

)n

V.

For our example above this works out to

(

1 +
0.06

12

)12

V = 1.061678 V

and the effective interest rate is 6.1678%.
Many banks now compound interest daily. Some even compound interest

continuously. The value of a deposit in an account with interest compounded
continuously at the rate of 6% per year, for example, grows according to the
differential equation

V ′ = 0.06V.

16. Many credit cards charge interest at an annual rate of 18%. If this rate
were compounded monthly what would the effective annual rate be?

17. In fact many credit cards compound interest daily. What is the effective
rate of interest for 18% interest compounded daily? Assume that there are
365 days in a year.

18. The assumption that a year has 365 days is, in fact, not made by banks.
They figure every one of the 12 months has 30 days, so their year is 360 days
long. This practice stem from the time when interest computations were
done by hand or by tables, so simplicity won out over precision. Therefore
when banks compute interest they find the daily rate of interest by dividing
the annual rate of interest by 360. For example, if the annual rate of interest
is 18% then the daily rate of interest is 0.05%. Find the effective rate of
interest for 18% compounded 360 times per year.
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19. In fact, once they’ve obtained the daily rate as 1/360-th of the annual
rate, banks then compute the interest every day of the year. They compound
the interest 365 times. Find the effective rate of interest if the annual rate
of interest is 18% and the computations are done by banks. First, compute
the daily rate by dividing the annual rate by 360 and then compute interest
using this daily rate 365 times.

20. Consider the following advertisement.

Civic Bank and Trust

• Annual rate of interest 6%.

• Compounded daily.

• Effective rate of interest 6.2716%.

Find the effective rate of interest for an annual rate of 6% compounded daily
in the straightforward way—using 1/365-th of the annual rate 365 times.
Then do the computations the way they are done in a bank. Compare your
two answers.

21. There are two advertisements in the newspaper for savings accounts
in two different banks. The first offers 6% interest compounded quarterly
(that is, four times per year). The second offers 5.5% interest compounded
continuously. Which account is better? Explain.

4.4 The Logarithm Function

Suppose a population is growing at the net rate of 3 births per thousand
persons per year. If there are 100,000 persons now, how many will there be
37 years from now? How long will it take the population to double?

Translating into mathematics, we want to find the function P (t) that
solves the initial value problem

P ′(t) = .003P (t) and P (0) = 100000.

Using the results of section 3 we know that the solution is the exponential
function

P (t) = 100000 e.003 t.
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The size of the population 37 years from now will therefore be

P (37) = 100000 e.111

= 100000 × 1.117395

≈ 111740 people

To find out how long it will take the population to double, we want to findThe doubling time
of a population a value for t so that P (t) = 200000. In other words, we need to solve for t in

the equation

100000 e.003 t = 200000.

Dividing both sides by 100,000, we have

e.003 t = 2.

We can’t proceed because one side is expressed in exponential form while
the other isn’t. One remedy is to express 2 in exponential form. In fact,
2 = e.693147, as you should verify with a calculator. Then

e.003 t = 2 = e.693147 implies .003 t = .693147,

so t = .693147/.003 = 231.049. Thus it will take about 231 years for the
population to double.

To determine the doubling time of the population we had to know the
number b for which

exp(b) = eb = 2.

This is an aspect of a very general question: given a positive number a, findSolving an
exponential equation a number b for which

eb = a.

A glance at the graph of the exponential function below shows that, by
working backwards from any point a > 0 on the vertical axis, we can indeed
find a unique point b on the horizontal axis which gives us exp(b) = a.
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x

y

a

b

y = ex

−3 −2 −1 1 2 3
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This process of obtaining the number b that satisfies exp(b) = a for any
given positive number a is a clear and unambiguous rule. Thus, it defines a The natural logarithm

functionfunction. This function is called the natural logarithm, and it is denoted
ln(a), or sometimes log(a). That is,

ln(a) = log(a) = {the number b for which exp(b) = a} .

In other words, the two statements

ln(a) = b and exp(b) = a

express exactly the same relation between the quantities a and b.
The question that led to the introduction of the logarithm function was:

what number gives the exponent to which e must be raised in order to produce
the value 2? This number is ln(2), and we verified that ln(2) = .693147.
Quite generally we can say that the number ln(x) gives the exponent to
which e must be raised in order to produce the value x:

eln(x) = x.

If we set y = ln(x), then x = ey and we can restate the last equation as a
pair of companion equations:

eln(x) = x and ln(ey) = y.

The first equations says the exponential function “undoes” the effect of the The logarithm and
exponential functions

are inverses
logarithm function and the second one says the logarithm function “undoes”

the effect of the exponential function. For this reason the exponential and
logarithm functions are said to be inverses of each other.
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Many of the other pairs of functions—sine and arscsine, squareroot and
squaring—that share a key on a calculator have this property. There are even
functions (at least one can be found on any calculator) that are their own
inverses—apply such a function to any number, then apply this same function
to the result, and you’re back at the original number. What functions do
this? We will say more about inverse functions later in this section.

Properties of the Logarithm Function

The inverse relationship allows us to translate each of the properties of the
exponential function into a corresponding statement about the logarithm
function. We list the major pairs of properties below.

exponential version logarithmic version

e0 = 1 ln(1) = 0

ea + b = ea · eb ln(m · n) = ln(m) + ln(n)

ea − b = ea/eb ln(m/n) = ln(m) − ln(n)
(ea)s = eas ln(ms) = s · ln(m)
range of ex is all positive reals domain of ln(x) is all positive reals
domain of ex is all real numbers range of ln(x) is all real numbers
ex → 0 as x → −∞ ln(x) → −∞ as x → 0
ex grows faster ln(x) goes to infinity slower

than xn, any n > 0 than x1/n, any n > 0

For each pair, we can use the exponential property and the inverse relation-
ship between exp and ln to establish the logarithmic property. As an example,
we will establish the second property. You should be able to demonstrate
the others.

Proof of the second property. Remember that to show ln(a) = b, we need to
show eb = a. In our case a and b are more complicated. We have

a = m · n, b = ln(m) + ln(n);

thus we need to show
eln(m) + ln(n) = m · n .

But, by the exponential version of property 2,

eln(m) + ln(n) = eln(m) · eln(n) = m · n,

and our proof is complete.
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The Derivative of the Logarithm Function

Since the natural logarithm is a function in its own right, it is reasonable to
ask: what is the derivative of this function? Since the derivative describes The graph of ln

the slope of the graph, let us begin by examining the graph of ln. Can we
take advantage of the relationship between ln and exp—a function whose
graph we know well—as we do this? Indeed we can, by making the following
observations.

• We know the point (a, b) is on the graph of y = ln(x) if and only if
b = ln(a).

• We know b = ln(a) says the same thing as a = eb.

• Finally, we know a = eb is true if and only if the point (b, a) is on the
graph of y = ex.

Putting our observations together, we have

(a, b) is on the graph of y = ln(x)

if and only if

(b, a) is on the graph of y = ex.

The picture below demonstrates that the point (a, b) and the point (b, a) are Reflection across
the 45◦ linereflections of each other about the 45◦ line. (Remember that points on the

45◦ line have the same x and y coordinates.) This is because these two points
are the endpoints of the diagonal of a square whose other diagonal is the line
y = x.

x

y

a b

a

b

(a, a) (b, a)

(b, b)
(a, b)
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Since we have just seen that every point (a, b) on the graph of y = ln(x)
corresponds to a point (b, a) on the graph of y = ex, we see that the graphs

of y = ln(x) and y = ex are the reflections of each other about the line y = x.

y

x

y = ex

y = lnx

Finally, since the two graphs are reflections of one another, a microscopicMicroscopic views at
mirror image points view of ln(x) at any point (b, a) will be the mirror image of the microscopic

view of of ex at the point (a, b). Any change in the y-value on one of these
lines will correspond to an equal change in the x-value in its mirror image,
and vice versa. The figure below shows what microscopic views of a pair
of corresponding points look like, showing how a vertical change in one line
equals the horizontal change in the other, and conversely.

y

x

b

a

a b

(b, a)

(a, b)

y = ex

y = ln x

∆y
∆x

∆y

∆x



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

4.4. THE LOGARITHM FUNCTION 251

It follows that the slopes of the two lines must be reciprocals of each other. The slopes
are reciprocalsThis says that the rate of change of ln(x) at x = b is just the reciprocal of

the rate of change of ex at x = a, where a = ln(b). But the rate of change
of ex at x = ln(b) is just eln(b) = b. Therefore the rate of change of ln(x) at
x = b is the reciprocal of this value, namely 1/b. We have thus proved the
following result:

Theorem 1. (ln(x))′ = 1/x.

Note that one interpretation of this theorem is that the function ln(x) is
the solution to a certain initial value problem, namely

dy

dx
=

1

x
y(1) = 0.

As was the case with the exponential function, we can now apply Euler’s
method to this differential equation as an effective way to compute values of
ln(x). Applications of this idea can be found in the exercises.

Exponential Growth

The logarithm gives us a useful tool for comparing the growth rates of ex- Comparing rates
of growthponential and power functions. In the last section we claimed that ex grows

faster than any power xp of x, as x → +∞. We interpreted that to mean

lim
x→+∞

xp

ex
= 0,

for any number p. Using the natural logarithm, we can now show why it is
true.

To analyze the quotient Q = xp/ex, we first replace it by its logarithm

ln Q = ln (xp/ex) = ln (xp) − ln (ex) = p lnx − x.

Several properties of the logarithm function were invoked here to reduce ln Q
to p lnx− x. By another property of the logarithm function, if we can show
ln Q → −∞ we will have established our original claim that Q → 0.

Let y = lnQ = p lnx − x. We know y is increasing when dy/dx > 0 and
decreasing where dy/dx < 0. Using the rules of differentiation, we find

dy

dx
=

p

x
− 1.
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The expression p/x−1 is positive when x is less than p and negative when xy = lnQ decreases
when x > p . . . is greater than p. For x near p, the graph of y must therefore look like this:

-

6

x

y

p

Since dy/dx remains negative as x gets large, y will continue to decrease.
This does not, in itself, imply that y → −∞, however. It’s conceivable that. . . but y may still

“level off” y might “level off” even as it continues to decrease—as it does in the next
graph.

-

6

x

y

p

However, we can show that y does not “level off” in this way; it continues
to plunge down to −∞. We start by assuming that x has already become
larger than 2p: x > 2p. Then 1/x < 1/2p (the bigger number has the smaller
reciprocal), and thus p/x < p/2p = 1/2. Thus, when x > 2p,

dy

dx
=

p

x
− 1 <

1

2
− 1 = − 1

2
.

In other words, the slope of the graph of y is more negative than −1/2. They lies below a line that
slopes down to −∞ graph of y must therefore lie below the straight line with slope −1/2 that we

see below:

-

6

x

y

p 2p

This guarantees that y = lnQ → −∞ as x → ∞. Hence Q → 0, and since
Q = xp/ex, we have shown that ex grows faster than any power of x.
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The Exponential Functions bx

We have come to adopt the exponential function exp(x) = ex as the natural
one for calculus, and especially for dealing with differential equations of the One exponential

function is enoughform dy/dx = ky. Initially, though, all exponential functions bx were on
an equal footing. With the natural logarithm function, however, a single

exponential function will meet our needs. Let’s see why.
If b is any positive real number, then b = eln b. Consequently,

bx =
(

eln b
)x

= eln b · x.

In other words, bx = ecx, where c = ln b. Thus, every exponential function bx = eln b·x

can be expressed in terms of exp in a simple way. This is, in fact, the way
computers evaluate exponents, since the computer can raise any number to
any power so long as it has a way to evaluate the functions ln and exp. For
instance, when you ask a computer or calculator to evaluate 2^5 (2 to the 5th How to calculate 25

power in most computer languages), it will first calculate ln 2, then multiply
this number by 5, then apply exp to the result. That is, it evaluates 25 by
thinking e5 ln 2! While this may seem a roundabout way to come up with
32, its virtue is that the computer needs only one algorithm to calculate any
base to any power, without having to consider different cases.

This expression gives us a new way to find the derivative of bx. We already
know that

(ecx)′ = c · ecx,

for any constant c. This follows from the chain rule. When c = ln b, we get

(bx)′ = (eln(b) · x)′ = ln(b) · eln(b) · x = ln(b) · bx.

Thus, y = bx is a solution to the differential equation

dy

dx
= ln(b) · y.

In chapter 3, we wrote this differential equation as

dy

dx
= kb · y.

We see now that kb = ln(b). kb = ln(b)

We can use the connection between kb and the natural logarithm, and
between the natural logarithm and the exponential function, to gain new



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

254 CHAPTER 4. DIFFERENTIAL EQUATIONS

insights. For example, on page 212 we argued that there must be a value of
b for which kb = .02. This simply means

ln b = .02 or b = e.02.

In other words, we now have an explicit formula that tells us the value of b
for which kb = .02:

b = e.02 = 1.02020134 . . . .

Inverse Functions

Most of what we have said about the exponential and logarithm functions
carries over directly to any pair of inverse functions. We begin by saying
precisely what it means for two functions f and g to be inverses of each
other.

Definition. Two functions f and g are inverses if

f(g(a)) = a

and g(f(b)) = b

for every a in the domain of g and every b in the domain of f .

Observe that if f and g are inverses of each other, then each one “undoes”
the effect of the other by sending any value back to the number it came from
via the other function. One implication of this is that neither function can
have two different input values going to the same output value. For instance,
suppose b1 and b2 get sent to the same value by f : f(b1) = f(b2). Applying
g to both sides of this equation we would get b1 = g(f(b1)) = g(f(b2)) = b2,
so b1 and b2 were actually the same number. This is an important enough
property that there is a name for it:

Definition. We say that a function f is one-to-one, usually written as 1–1,
if it is true that whenever x1 6= x2 then it is also the case that f(x1) 6= f(x2).
Equivalently, f is 1–1 if whenever f(x1) = f(x2), then it must be true that
x1 = x2.

We have thus seen that only functions which are one-to-one can have inverses.
This means that to establish inverses for some functions, we will need to
restrict their domains to regions where they are one-to-one. Let’s re-examine
the examples we mentioned earlier to see how they fit this definition.
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Example 1. Suppose f(x) = exp(x) and g(x) = ln(x). Then the equations

f(g(a)) = exp(ln(a)) = eln(a) = a for a > 0

and g(f(b)) = ln(exp(b)) = ln(eb) = b

hold for all real numbers b and for all positive real numbers a. The domain
of the exponential function is all real numbers and the domain of the natural
logarithm function is all positive real numbers.

Example 2. Suppose f(x) = x2 and g(x) =
√

x. The squaring function x2 is invertible
on x ≥ 0is not invertible on its natural domain because it is not one-to-one. Since a

number and its negative have the same square, we wouldn’t know which one
to send the square back to when we took the square root. We can’t avoid
the problem by saying that g(4) = ±2, since a function has to have only
one output for each input. The squaring function is invertible, though, if we
restrict it to non-negative real numbers. Then

f(g(a)) = (
√

a)2 = a (for a ≥ 0)

and g(f(b)) =
√

b2 = b (for b ≥ 0).

The domain of the square root function is all b ≥ 0.
Note that we could have restricted the domain of f in another way to

make it one-to-one by considering only non-positive real numbers. Now g is
no longer the inverse of this restricted f . For instance, g(f(−3)) = g(9) =
3 6= −3. What would the inverse of f be in this case?

Example 3. Suppose f(x) = sin(x) and g(x) = arcsin(x). Since f is not sin x is invertible
on −π/2 ≤ x ≤ π/2one-to-one on its natural domain, we again need to restrict it in order for

it to have an inverse. By convention, the domain of sin(x) is taken to be
−π/2 ≤ x ≤ π/2.

f(g(a)) = sin(arcsin(a)) = a (for − 1 ≤ a ≤ 1) and

g(f(b)) = arcsin(sin(b)) = b (for − π/2 ≤ b ≤ π/2).

Each pair of inverse functions share corresponding properties, just as the
logarithm and exponential functions do—the particular properties depending
on the particular functions. But two they all share are

• The range of f is the domain of g.

• The domain of f is the range of g.

The exercises check this for examples 2 and 3.
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Finally, the graphs—and therefore the derivatives—of a function and of its
inverse are mirror images, exactly like those of the exponential and logarithm
functions. We begin with the same list of observations.

• We know the point (a, b) is on the graph of y = g(x) if and only if
b = g(a).

• We know b = g(a) says the same thing as a = f(b).

• Finally, we know a = f(b) is true if and only if the point (b, a) is on
the graph of y = f(x).

As before, putting our observations together, we have

(a, b) is on the graph of y = g(x)
if and only if

(b, a) is on the graph of y = f(x).

Exactly as before, we have that the point (a, b) and the point (b, a) are
reflections of each other about the line y = x. Since we have just seen thatThe graphs of inverse

functions are mirror
images . . .

every point (a, b) on the graph of y = g(x) corresponds to a point (b, a) on
the graph of y = f(x), we again see that the graphs of y = g(x) and y = f(x)
are the reflections of each other about the line y = x.

Finally, since the two graphs are reflections of one another, the local linear
approximation of g(x) at any point (a, b) will be the mirror image of the local
linear approximation of f(x) at the point (b, a). Any change in the y-value
on one of these local lines will correspond to an equal change in the x-value
in its mirror image, and vice versa. Just as before, it follows that the slopes
of the two lines must be reciprocals of each other. This says that the rate
of change of g(x) at x = b is the reciprocal of the rate of change of f(x) at
x = a, where a = g(b). But the rate of change of f(x) at x = g(b) is just. . . and their derivatives

are reciprocals f ′(g(b)). Therefore the rate of change of g(x) at x = b is the reciprocal of
this value, namely 1/f ′(g(b)). We have thus proved the following result:

Theorem 2. If the functions f and g are inverses, then g is locally linear at

(b, a) if and only if f is locally linear at (a, b). When local linearity holds,

g′(b) =
1

f ′(a)
.



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

4.4. THE LOGARITHM FUNCTION 257

Exercises

1. Determine the numerical value of each of the following.

a) ln(2e) b) ln(e3) c) e−1 d) ln(
√

e)

e) eln 2 f) e3 ln 2 g) (eln 2)3 h) e2 ln 3

i) ln 10 j) ln 103 k) eln 10 l) eln 1000

m) ln(1/e) n) ln(1/2) o) e− ln 2 p) e−3 ln 2

2. a) In the text we noted that the function ln x is the solution to the
initial-value problem

dy

dx
=

1

x
y(1) = 0,

so that we can use Euler’s method to compute values for ln x. Use this
method to evaluate ln 2 to 3 decimal places. What value of ∆x gives the
desired accuracy?

b) If you now wanted to calculate ln 6 to 3 decimals, can you think of a better
way to do it than simply starting at x = 1 and running Euler’s method out
to x = 6? Remember the basic properties of logarithms, and figure out a
way to use the results of part (a).

c) Suppose you had figured out that ln 2 = 0.693147 . . . . How would you
use Euler’s method to calculate ln 1300 quickly? You might find the fact that
210 = 1024 helpful.

3. The rate of growth of the population of a particular country is propor-
tional to the population. The last two censuses determined that the popu-
lation in 1980 was 40,000,000, and in 1985 it was 45,000,000. What will the
population be in 1995?

4. Find the derivatives of the following functions.

a) ln(3x)

b) 17 ln(x)

c) ln(ew)

d) ln(2t)

e) π ln(3e4s)

5. Suppose a bacterial population grows so that its mass is

P (t) = 200e.12t grams

after t hours. Its initial mass is P (0) = 200 grams. When will its mass
double, to 400 grams? How much longer will it take to double again, to 800
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grams? After the population reaches 800 grams, how long will it take for yet
another doubling to happen? What is the doubling time of this population?

6. Suppose a beam of X-rays whose intensity is A rads (the “rad” is a unit
of radiation) falls perpendicularly on a heavy concrete wall. After the rays
have penetrated s feet of the wall, the radiation intensity has fallen to

R(s) = Ae−.35s rads.

What is the radiation intensity 3 inches inside the wall; 18 inches? (Your
answers will be expressed in terms of A.) How far into the wall must the
rays travel before their intensity is cut in half, to A/2? How much further
before the intensity is A/4?

7. Virtually all living things take up carbon as they grow. This carbon
comes in two principal forms: normal, stable carbon—C12—and radioactive
carbon—C14. C14 decays into C12 at a rate proportional to the amount
of C14 remaining. While the organism is alive, this lost C14 is continually
replenished. After the organism dies, though, the C14 is no longer replaced,
so the percentage of C14 decreases exponentially over time. It is found that
after 5730 years, half the original C14 remains. If an archaeologist finds a
bone with only 20% of the original C14 present, how old is it?

8. The human population of the world appears to be growing exponentially.
If there were 2.5 billion people in 1960, and 3.5 billion in 1980, how many
will there be in 2010?

9. If bacteria increase at a rate proportional to the current number, how
long will it take 1000 bacteria to increase to 10,000 if it takes them 17 minutes
to increase to 2000?

10. Suppose sugar in water dissolves at a rate proportional to the amount
left undissolved. If 40 lb. of sugar reduces to 12 lb. in 4 hours, how long will
you have to wait until 99% of the sugar is dissolved?

11. Atmospheric pressure is a function of altitude. Assume that at any
given altitude the rate of change of pressure with altitude is proportional to
the pressure there. If the barometer reads 30 psi (pounds per square inch)
at sea level and 24 psi at 6000 feet above sea level, how high are you when
the barometer reads 20 psi?
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12. a) An important concept in many economic analyses is the idea of
present value. It is used to compare the values of different possible pay-
ments made at different times. As a simple example, suppose you had a
small wood lot and had the choice of selling the timber on it now for $5,000
or waiting 10 years for the trees to get larger, at which point you estimate
the timber could be sold for $8,000. To compare these two options, you
need to convert the prospect of $8,000 ten years from now into an equivalent
amount of money now—its present value. This is the amount of money you
would need to invest now to have $8,000 in 10 years. Suppose you thought
you could invest money at an annual interest rate of 4% compounded con-
tinuously. If you invested $5,000 now at this rate, then in 10 years you
would have 5000 e.4 = $7, 459.12. That is, $5,000 now is worth $7,459.12 in
10 years—both amounts have the same present value. Clearly $8,000 in 10
years must have a slightly greater present value under the assumption of a
4% annual interest rate. What is it?

b) On the other hand, if you can get a higher interest rate than 4%, the
present value of the $8,000 will be much less. What is the present value of a
payment of $8,000 ten years from now if the annual interest rate is 8%?

c) At what interest rate do $5,000 now and $8,000 in ten years have the
same present value?

13. Use properties of exp to prove the following properties of the logarithm.
(Remember that ln a = b means a = exp b.)

a) ln(1) = 0.

b) ln(m/n) = ln(m) − ln(n).

c) ln(mn) = n ln(m).

14. a) Use a graphing program to find a good numerical approximation to
(ln x)′ at x = 2. Make a short table, for decreasing interval sizes ∆x, of the
quantity ∆(ln x)/∆x.

b) Use a graphing program to find a good numerical approximation to (ex)′

at x = ln(2) = 0.6931 . . .. Make a short table for decreasing interval sizes
∆x, of the quantity ∆(ex)/∆x.

c) What is the relationship between the values you got in parts (a) and (b)?

15. Find a solution (using lnx) to the differential equation

f ′(x) = 3/x satisfying f(1) = 2.
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16. a) Find a formula using the natural logarithm function giving the so-
lution of y′ = a/x with y(1) = b.

b) Solve P ′ = 2/t with P (1) = 5.

17. Find the domain and range of each of the following pairs of inverse
functions.

a) f(x) = x2 (restricted to x ≥ 0) and g(x) =
√

x.

b) f(x) = sin(x) (restricted to −π/2 ≤ x ≤ π/2) and g(x) = arcsin(x).

18. Show that f(x) = 1/x equals its own inverse. What are the domain
and range of f?

19. Let n be a positive integer. and let f(x) = xn. What is an inverse of
f? How do we need to restrict the domain of f for it to have an inverse?
Caution: the answer depends on n.

20. a) What is the inverse g of the function f(x) = 1 − 3x?

b) Do f and g satisfy Theorem 2?

21. What is an inverse of f(x) = x2 − 4?

22. Use the relationship between the derivatives of a function and its inverse
to find the indicated derivatives.

a) g′(100) for g(x) =
√

x.

b) g′(
√

2/2) for g(x) = arcsin(x).

c) g′(1/2) for g(x) = 1/x.

23. a) Use Theorem 2 and the fact that (x2)′ = 2x to derive the formula
for the derivative of

√
x.

b) Use Theorem 2 and the fact that (xn)′ = nxn−1 to derive the formula for
the derivative of n

√
x

24. Compare the rates of growth of ex and bx for both e < b and 1 < b < e.
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4.5 The Equation y′ = f(t)

Most differential equations we have encountered express the rate of growth of
a quantity in terms of the quantity itself. The simplest models for biological
growth had this form: y′ = ky and y′ = kyp. Even when several variables
were present—as in the S-I-R model and the predator-prey models—it was
most natural to express the rates at which those variables change in terms of
the variables themselves. Even the motion of a spring (pages 224–226) was
described that way: the rate of change of position equalled the velocity, and
the rate of change of velocity was proportional to the position.

Sometimes, though, a differential equation will express the rate of change The motion of
a falling body . . .of a variable directly in terms of the input variable. For example, on page 222

we saw that the velocity dx/dt of a body falling under the sole influence of
gravity is a linear function of the time:

dx

dt
= −gt + v0.

Here x is the height of the body above the ground, g is the acceleration due
to gravity, and v0 is the velocity at time t = 0. This equation has the general
form

dx

dt
= f(t),

where f(t) is a given function of t. We will now consider special methods
that can be used to study differential equations of this special form.

Antiderivatives

To solve the equation of motion of a body falling under gravity, we must find . . . and its solution

a function x(t) whose derivative is given as

x′ = −gt + v0.

We can call upon our knowledge of the rules of differentiation to find x.
Consider −gt first. What function has −gt as its derivative? We can start −gt is the derivative

of −gt2/2with t2, whose derivative is 2t. Since we want the derivative to turn out to
be −gt, we can reason this way:

−gt = −g

2
· 2t = −g

2
× the derivative of t2.
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This leads us to identify −gt2/2 as a function whose derivative is −gt. Check
for yourself that this is correct by differentiating −gt2/2.

Now consider v0, the other part of dx/dt. What function has the constant
v0 as its derivative? A derivative is a rate of growth, and we know thatv0 is the derivative

of v0t and of v0t + b the linear functions are precisely the ones that have constant growth rates.
Furthermore, the rate is the multiplier for a linear function, so we conclude
that any linear function of the form v0t + b has derivative v0.

If we put the two pieces together, we find that

x(t) = −g

2
t2 + v0t + b

is a solution to the differential equation, for any value of b. (Recall from sec-
tion 2 that a differential equation can have many solutions.) We constructed
this formula for x(t) by “undoing” the process of differentiation, a processThe antiderivative

of a function sometimes called antidifferentiation. The function produced is called an
antiderivative. Thus:

−g

2
t2 + v0t + b is an antiderivative of − gt + v0

because − gt + v0 is the derivative of − g

2
t2 + v0t + b.

Note that a function has only one derivative, but it has many antiderivatives.All the functions
F (x) + C are
antiderivatives of F ′(x)

If F (t) is an antiderivative of f(t), then so is F (t) + C, where C is any
constant.

The list of functions and their derivatives that we compiled in chapter 3
(see page 148) can be “turned around” to become a list of functions and
their antiderivatives. Note that the antiderivative column should really be
labelled “an antiderivative” since we could add a constant to any of the listed
functions and still have an antiderivative for the function in the first column.

function antiderivative

0 c

xp 1
p+1

xp+1 (if p 6= −1)

x−1 ln x

sin x − cos x

cos x sin x

exp x = ex exp x = ex

bx 1
ln b

bx

Notice the formula for the antiderivative of xp requires p + 1 6= 0, that is,Every power of x has
an antiderivative p 6= −1. This leaves out x−1. However, the antiderivative of x−1 is ln x, so

no power of x is excluded from the table.
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We also had differentiation rules that told us how to deal with different
combinations of functions. Each of these rules has an analogue in antidiffer-
entiation. The simplest combinations are a sum and a constant multiple.

function antiderivative

f(x) F (x)

g(x) G(x)

c · f(x) c · F (x)

f(x) + g(x) F (x) + G(x)

We defer a discussion of the analogue of the chain rule to chapter 11.
With just these rules we can find the antiderivative of any polynomial,

for instance. (Recall that a polynomial is a sum of constant multiples of
powers of the input variable.) Here is a collection of sample antiderivatives
that illustrate the various rules. To emphasize the fact that antiderivatives
are determined only up to an additive constant, various constants have been
tacked on—any other constant would work just as well. You should compare
this table with the one on page 150.

function antiderivative

5x4 − 2x3 x5 − 1
2
x4 + 17

5x4 − 2x3 + 17x x5 − 1
2
x4 + 17

2
x2 − 243.77

6 · 10z + 17/z7 6 · 10z/ ln 10 − 17/6z6 + .002

3 sin t − 2t3 −3 cos t − 1
2
t4 + 5 ln 7

π cos x + π2 π sin x + π2x − 12e7.21

Euler’s Method Revisited

If we know the formula for an antiderivative of f(t), then we can write down
a solution to the differential equation dy/dt = f(t). For example, the general
solution to

dy

dt
= 12t2 + sin t

is y = 4t3 − cos t + C. In such a case we have a shortcut to solving the
differential equation without needing to use Euler’s method. Often, though,
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there is no formula for an antiderivative of f(t)—even when f(t) itself has
a simple formula. There is no formula for the antiderivative of cos(t2), or
sin t/t, or

√
1 + t3, for instance. In other cases, f(t) may not even be given

by a formula. It may be a data function, given as a graph made by a pen
tracing on a moving sheet of graph paper.

Whether we can find a formula for an antiderivative of f(t) or not, we
can still solve the differential equation dy/dt = f(t) by Euler’s method. It
turns out that Euler’s method takes on a relatively simple form in such cases.
Let’s investigate this in the following context.

Let V be the volume of water in a reservoir serving a small town, measuredThe volume
of a reservoir
varies over time

in millions of gallons. Then V is a function of the time t, measured in days.
Rainfall adds water to the reservoir, while evaporation and consumption
by the townspeople take it away. Let f be the net rate at which water
is flowing into the reservoir, in millions of gallons per day. Sometimes f
will be positive—when rainfall exceeds evaporation and consumption—and
sometimes f will be negative. The net inflow rate varies from day to day;
that is, f is a function of time: f = f(t). Our model of the reservoir is the
differential equation

dV

dt
= f(t) millions of gallons per day.

Suppose f(t) is measured every two days, and those measurements areThe net inflow rate

recorded in the following table.

time t rate f(t)
(days) (106 × gals. per day)

0
2
4
6
8

10
12

.34

.11
−.07
−.23
−.14

.03

.08

Note that in this table we are able to write down the rate for all values of
t immediately, without having to calculate the intermediate values of the
dependent variable V . This is in marked contrast with most of the examples
we’ve looked at in this course where we had to know the values of all the
variables for any time t before we could calculate the new rate value at that
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time. It is this simplification that gives differential equations of the form
y′ = f(t) their special structure.

If we assume the value of f(t) remains constant for the two days after
each measurement is made, we can approximate the total change in V over
these 14 days. The following table does this; it tells us how much V changes
over each two-day period, and also the total accumulated change in V by the The accumulated

change in Vend that period. Since ∆t = 2 days, we calculate ∆V by

∆V = V ′ · ∆t = f(t) · ∆t = 2 · f(t).

starting current accumulated ending
t ∆V ∆V t

0
2
4
6
8

10
12

.68

.22
−.14
−.46
−.28

.06

.16

.68

.90

.76

.30

.02

.08

.24

2
4
6
8

10
12
14

At the end of the 14 days, V has accumulated a total change of .24 million
gallons. Notice this does not depend on the initial size of V . If V had been
92.64 million gallons at the start, it would be 92.64 + .24 = 92.88 million
gallons at the end. If it had been only 2 million gallons at the start, it would
be 2 + .24 = 2.24 million gallons at the end. Other models do not behave
this way: in two weeks, a rabbit population of 900 will change much more
than a population of 90. The total change in V is independent of V because
the rate at which V changes is independent of V .

We can therefore use Euler’s method to solve any differential equation Calculating just
the accumulated

change in y
of the form dy/dt = f(t) independently of an initial value for y. We just
calculate the total accumulated change in y, and add that total to any given
initial y. Here is how it works when the initial value of t is a, and the time
step is ∆t.

starting current accumulated ending
t ∆y ∆y t

a
a + ∆t
a + 2∆t
a + 3∆t

...

a + (n − 1)∆t

f(a) · ∆t
f(a + ∆t) · ∆t
f(a + 2∆t) · ∆t
f(a + 3∆t) · ∆t

...

f(a + (n − 1)∆t) · ∆t

previously
accumulated

∆y

+
current

∆y

a + ∆t
a + 2∆t
a + 3∆t
a + 4∆t

...

a + n ∆t
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The third column is too small to hold the values of “accumulated ∆y.”The accumulated
change in y Instead, it contains the instructions for obtaining those values. It says: to

get the current value of “accumulated ∆y,” add the “current ∆y” to the
previous value of “accumulated ∆y.”

Let’s use Euler’s method to find the accumulated ∆y when t = 4, given
that

dy

dt
= cos(t2)

and t is initially 0. If we use 8 steps, then ∆t = .5 and we obtain the
following:

starting current accumulated ending
t ∆y ∆y t

0
.5

1.0
1.5
2.0
2.5
3.0
3.5

.5000

.4845

.2702
−.3141
−.3268

.4997
−.4556

.4752

.5000

.9845
1.2546
.9405
.6137

1.1134
.6579

1.1330

.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

The following program generated the last three columns of this table.

Program: TABLE

DEF fnf (t) = COS(t ^ 2)

tinitial = 0

tfinal = 4

numberofsteps = 2 ^ 3

deltat = (tfinal - tinitial) / numberofsteps

t = tinitial

accumulation = 0

FOR k = 1 TO numberofsteps

deltay = fnf(t) * deltat

accumulation = accumulation + deltay

t = t + deltat

PRINT deltay, accumulation, t

NEXT k
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TABLE is a modification of the program SIRVALUE (page 65). To emphasize
the fact that it is the accumulated change that matters rather than the
actual value of y, we have modified the program accordingly. Note that
accumulation always starts at 0, no matter what the initial value of y is.
The first line of the program takes advantage of a capacity most programming
languages have to define functions which can then be referred to elsewhere
in the program.

As usual, to find the exact value of the accumulated ∆y, it is necessary
to recalculate, using more steps and smaller step sizes ∆t. If we use TABLE
to do this, we find

number accumulated
of steps ∆y

23 1.13304
26 .65639
29 .60212
212 .59542
215 .59458
218 .59448

Thus we can say that if dy/dt = cos(t2), then y increases by .594. . . when t
increases from 0 to 4.

In the same way we changed SIRVALUE to produce the program SIR-
PLOT (page 69), we can change the program TABLE into one that will plot

the values of y. In the following program all those changes are made, and
one more besides: we have increased the number of steps to 400 to get a
closer approximation to the true values of y. The output of PLOT is shown
immediately below.

1

1 2 3 4

ac
cu

m
ul

at
ed

   
∆y

t

The accumulated ∆y when dy/dt = cos(t2)
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Program: PLOT

Set up GRAPHICS

DEF fnf (t) = COS(t ^ 2)

tinitial = 0

tfinal = 4

numberofsteps = 400

deltat = (tfinal - tinitial) / numberofsteps

t = tinitial

accumulation = 0

FOR k = 1 TO numberofsteps

deltay = fnf(t) * deltat

Plot the line from (t, accumulation)
to (t + deltat, accumulation + deltay)

accumulation = accumulation + deltay

t = t + deltat

NEXT k

Let’s compare our reservoir model with population growth. The rate
at which a population grows depends, in an obvious way, on the size of the
population. By contrast, the rate at which the reservoir fills does not depend
on how much water there is in the reservoir. It depends on factors outside theExogenous and

endogenous factors reservoir: rainfall and consumption. These factors are said to be exogenous

(from the Greek exo-, “outside” and -gen, “produced,” or “born”). The
opposite is called an endogenous factor (from the Greek endo-, “within”).
Evaporation is an endogenous factor for the reservoir model; population size
is certainly an endogenous factor for a population model.

Precisely because exogenous factors are “outside the system,” we need
to be given the information on how they vary over time. In the reservoir
model, this information appears in the function f(t) that describes the rate
at which V changes. In general, if y depends on exogenous factors that vary
over time, we can expect the differential equation for y to involve a function
of time:

dy

dt
= f(t)

Thus, we can view this section as dealing with models that involve exogenous
factors.
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The differential equation of motion for a falling body, dx/dt = −gt + v0, indicates that gravity
is an exogenous factor. In Greek and medieval European science, the reason an object fell to the
ground was assumed to lie within the object itself—it was the object’s “heaviness.” By making
the cause of motion exogenous, rather than endogenous, Galileo and Newton started a scientific
revolution.

Exercises

1. Find a formula y = F (t) for a solution to the differential equation
dy/dt = f(t) when f(t) is

a) 5t − 3

b) t6 − 8t5 + 22π3

c) 5et − 3 sin t

d) 12
√

t

e) 2t + 7/t9

f) 5e4t − 1/t

2. Find G(5) if y = G(x) is the solution to the initial value problem

dy

dx
=

1

x2
y(2) = 3.

3. Find F (2) if y = F (x) is the solution to the initial value problem

dy

dx
=

1

x
y(1) = 5.

4. Find H(3) if y = H(x) is the solution to the initial value problem

dy

dx
= x3 − 7x2 + 19 y(−1) = 5.

5. Find L(−2) if y = L(x) is the solution to the initial value problem

dy

dx
= e3x y(1) = 6.

6. a) Sketch the graph of the solution to the initial value problem

dy

dx
= sin x y(0) = 1
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over the interval 0 ≤ x ≤ 4π.

b) By finding a suitable antiderivative, evaluate y(2).

7. a) Sketch the graph of the solution to the initial value problem

dy

dx
= sin(x2) y(0) = 0

over the interval 0 ≤ x ≤ 5. (This one can’t be done by finding a formula
for the antiderivative.)

b) What is the slope of the solution graph at x = 0? Does your graph show
this?

c) How many peaks (local maxima) does the solution have on the interval
0 ≤ x ≤ 5?

d) What is the maximum value that the solution achieves on the interval
0 ≤ x ≤ 5? For which value of x does this happen?

e) What is y(6)?

8. a) What is the accumulated change in y if dy/dt = 3t2−2t and t increases
from 0 to 1? What if t increases from 1 to 2? What if t increases from 0 to
2?

b) Sketch the graph of the accumulated change in y as a function of t. Let
0 ≤ t ≤ 2.

9. a) Here’s another problem for which there is no formula for an antideriva-
tive. Sketch the graph of the solution to the initial value problem

dy

dx
=

sin x

x
y(0) = 0

on the interval 0 ≤ x ≤ 40. [Note: sin x/x is not defined when x = 0, so take
the initial value of x to be .00001. That is, use y(.00001) = 0.]

b) How many peaks (local maxima) does the solution have on the interval
0 ≤ x ≤ 40?

c) What is the maximum value of the solution on the interval 0 ≤ x ≤ 40?
For which x is this maximum achieved?



DVI file created at 14:20,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

4.6. CHAPTER SUMMARY 271

4.6 Chapter Summary

The Main Ideas

• A system of differential equations expresses the derivatives of a set
of functions in terms of those functions and the input variable.

• An initial value problem is a system of differential equations to-
gether with values of the functions for some specified value of the input
variable.

• Many processes in the physical, biological, and social sciences are mod-

elled as initial value problems.

• A solution to a system of differential equations is a set of func-
tions which make the equations true when they and their derivatives
are substituted into the equations.

• A solution to an initial value problem is a set of functions that
solve the differential equations and satisfy the initial conditions. Typ-
ically, a solution is unique.

• Euler’s method provides a recipe to find the solution to an initial
value problem.

• In special circumstances it is possible to find formulas for the solution
to a system of differential equations. If the differential equations involve
parameters, the solutions will, too.

• Systems of differential equations define functions as their solutions.
Among the most important are the exponential and logarithm func-

tions.

• The natural logarithm function is the inverse of the exponential func-
tion.

• The graphs and the derivatives of a function and its inverse are
connected geometrically to each other by reflection.

• Exponential functions bx grow to infinity faster than any power of x.

• The solution to dy/dx = f(x) is an antiderivative of f—that is, a
function whose derivative is f .
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Expectations

• You should be able to use computer programs to produce tables and
graphs of solutions to initial value problems.

• You should be able to check whether a system of differential equations
reflects the hypotheses being made in constructing a model of a process.

• You should be able to verify whether a set of functions given by formulas
is a solution to a system of differential equations.

• You should be familiar with the basic properties of the exponential and
logarithm functions.

• You should be able to express solutions to initial value problems involv-
ing exponential growth or decay in terms of the exponential function.

• You should be able to solve dy/dx = f(x) by antidifferentiation when
f(x) is a basic function or a simple combination of them.

• You should be able to analyze and graph the inverse of a given function.


