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Chapter 3

The Derivative

In developing the S-I-R model in chapter 1 we took the idea of the rate of
change of a population as intuitively clear. The rate at which one quantity
changes with respect to another is a central concept of calculus and leads to a
broad range of insights. The chief purpose of this chapter is to develop a fuller
understanding—both analytic and geometric—of the connection between a
function and its rate of change. To do this we will introduce the concept of
the derivative of a function.

3.1 Rates of Change

The Changing Time of Sunrise

The sun rises at different times, depending on the date and location. At 40◦ The time of sunrise
is a functionN latitude (New York, Beijing, and Madrid are about at this latitude) in the

year 1990, for instance, the sun rose at

7:16 on January 23,
5:58 on March 24,
4:52 on July 25.

Clearly the time of sunrise is a function of the date. If we represent the time
of sunrise by T (in hours and minutes) and the date by d (the day of the
year), we can express this functional relation in the form T = T (d). For
example, from the table above we find T (23) = 7:16. It is not obvious from
the table, but it is also true that the the rate at which the time of sunrise
is changing is different at different times of the year—T ′ varies as d varies.
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We can see how the rate varies by looking at some further data for sunrise
at the same latitude, taken from The Nautical Almanac for the Year 1990 :

date time date time date time

January 20
23
26

7:18
7:16
7:14

March 21
24
27

6:02
5:58
5:53

July 22
25
28

4:49
4:52
4:54

Let’s use this table to estimate the rate at which the time of sunrise is
changing on January 23. We’ll use the times three days earlier and threeCalculate the rate

using earlier and
later dates

days later, and compare them. On January 26 the sun rose 4 minutes earlier
than on January 20. This is a change of −4 minutes in 6 days, so the rate of
change is

−4
minutes

6 days
≈ −.67 minutes per day.

We say this is the rate at which sunrise is changing on January 23, and we
write

T ′(23) ≈ −.67
minutes

day
.

The rate is negative because the time of sunrise is decreasing—the sun is
rising earlier each day.

Similarly, we find that around March 24 the time of sunrise is changing
approximately −9/6 = −1.5 minutes per day, and around July 25 the rate
is 5/6 ≈ +.8 minutes per day. The last value is positive, since the time of
sunrise is increasing—the sun is rising later each day in July. Since March
24 is the 83rd day of the year and July 25 is the 206th, using our notation
for rate of change we can write

T ′(83) ≈ −1.5
minutes

day
; T ′(206) ≈ .8

minutes

day
.

Notice that, in each case, we have calculated the rate on a given day by using times shortly

before and shortly after that day. We will continue this pattern wherever possible. In particular,
you should follow it when you do the exercises about a falling object, at the end of the section.

Once we have the rates, we can estimate the time of sunrise for dates not
given in the table. For instance, January 28 is five days after January 23, so
the total change in the time of sunrise from January 23 to January 28 should
be approximately

∆T ≈ −.67
minutes

day
× 5 days = −3.35 minutes.
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In whole numbers, then, the sun rose 3 minutes earlier on January 28 than
on January 23. Since sunrise was at 7:16 on the 23rd, it was at 7:13 on the
28th.

By letting the change in the number of days be negative, we can use this
same reasoning to tell us the time of sunrise on days shortly before the given
dates. For example, March 18 is −6 days away from March 24, so the change
in the time of sunrise should be

∆T ≈ −1.5
minutes

day
×−6 days = +9 minutes.

Therefore, we can estimate that sunrise occurred at 5:58 + 0:09 = 6:07 on
March 18.

Changing Rates

Suppose instead of using the tabulated values for March we tried to use our
January data to predict the time of sunrise in March. Now March 24 is
60 days after January 23, so the change in the time of sunrise should be
approximately

∆T ≈ −.67
minutes

day
× 60 days = −40.2 minutes,

and we would conclude that sunrise on March 24 should be at about 7:16
− 0:40 = 6:37, which is more than half an hour later than the actual time!
This is a problem we met often in estimating future values in the S-I-R
model. implicitly assume that the time of sunrise changes at the fixed rate Predictions over

long time spans
are less reliable

of −.67 minutes per day over the entire 60-day time-span. But this turns out
not to be true: the rate actually varies, and the variation is too great for us
to get a useful estimate. Only with a much smaller time-span does the rate
not vary too much.

Here is the same lesson in another context. Suppose you are travelling in
a car along a busy road at rush hour and notice that you are going 50 miles
per hour. You would be fairly confident that in the next 30 seconds (1/120
of an hour) you will travel about

∆ position ≈ 50
miles

hour
× 1

120
hour =

5

12
mile = 2200 feet.

The actual value ought to be within 50 feet of this, making the estimate
accurate to within about 2% or 3%. On the other hand, if you wanted to
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estimate how far you would go in the next 30 minutes, your speed would
probably fluctuate too much for the calculation

∆ position ≈ 50
miles

hour
× 1

2
hours = 25 miles

to have the same level of reliability.

Other Rates, Other Units

In the S-I-R model the rates we analyzed were population growth rates.
They told us how the three populations changed over time, in units of persons
per day. If we were studying the growth of a colony of mold, measuring its
size by its weight (in grams), we could describe its population growth rate
in units of grams per hour. In discussing the motion of an automobile, the
rate we consider is the velocity (in miles per hour), which tells us how the
distance from some starting point changes over time. We also pay attention
to the rate at which velocity changes over time. This is called acceleration,
and can be measured in miles per hour per hour.

While many rates do involve changes with respect to time, other rates
do not. Two examples are the survival rate for a disease (survivors per
thousand infected persons) and the dose rate for a medicine (milligrams per
pound of body weight). Other common rates are the annual birth rate andExamples of rates

the annual death rate, which might have values like 19.3 live births per 1,000
population and 12.4 deaths per 1,000 population. Any quantity expressed
as a percentage, such as an interest rate or an unemployment rate, is a
rate of a similar sort. An unemployment rate of 5%, for instance, means
5 unemployed workers per 100 workers. There are many other examples of
rates in the economic world that make use of a variety of units—exchange
rates (e.g., francs per dollar), marginal return (e.g., dollars of profit per dollar
of change in price).

Sometimes we even want to know the rate of change of one rate with
respect to another rate. For example, automobile fuel economy (in miles perThe rate of change

of a rate gallon—the first rate) changes with speed (in miles per hour—the second
rate), and we can measure the rate of change of fuel economy with speed.
Take a car that goes 22 miles per gallon of fuel at 50 miles per hour, but only
19 miles per gallon at 60 miles per hour. Then its fuel economy is changing
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approximately at the rate

∆ fuel economy

∆ speed
=

19 − 22 miles per gallon

60 − 50 miles per hour

= −.3 miles per gallon per mile per hour.

Exercises

A falling object. These questions deal with an object that is held motion-
less 10,000 feet above the surface of the ocean and then dropped. Start a
clock ticking the moment it is dropped, and let D be the number of feet it
has fallen after the clock has run t seconds. The following table shows some
of the values of t and D.

time distance
(seconds) (feet)

0
1
2
3
4
5
6
7

0.00
15.07
56.90

121.03
203.76
302.00
413.16
535.10

1. What units do you use to measure velocity—that is, the rate of change
of distance with respect to time—in this problem?

2. a) Make a careful graph that shows these eight data points. Put time

on the horizontal axis. Label the axes and indicate the units you are using
on each.

b) The slope of any line drawn on this time–distance graph has the units of
a velocity. Explain why.

3. Make three estimates of the velocity of the falling object at the 2 second
mark using the distances fallen between these times:

i) from 1 second to 2 seconds;
ii) from 2 seconds to 3 seconds;
iii) from 1 second to 3 seconds.
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4. a) Each of the estimates in the previous question corresponds to the
slope of a particular line you can draw in your graph. Draw those lines and
label each with the corresponding velocity.

b) Which of the three estimates in the previous question do you think is
best? Explain your choice.

5. Using your best method, estimate the velocity of the falling object after
4 seconds have passed.

6. Is the object speeding up or slowing down as it falls? How can you tell?

7. Approximate the velocity of the falling object after 7 seconds have passed.
Use your answer to estimate the number of feet the object has fallen after
8 seconds have passed. Do you think your estimate is too high or too low?
Why?

8. For those of you attending a school at which you pay tuition, find out
what the tuition has been for each of the last four years at your school.

a) At what rate has the tuition changed in each of the last three years?
What are the units? In which year was the rate the greatest?

b) A more informative rate is often the inflation rate which doesn’t look at
the dollar change per year, but at the percentage change per year—the dollar
change in tuition in a year’s time expressed as a percentage of the tuition at
the beginning of the year. What is the tuition inflation rate at your school
for each of the last three years? How do these rates compare with the rates
you found in part (a)?

c) If you were interested in seeing how the inflation rate was changing over
time, you would be looking at the rate of change of the inflation rate. What
would the units of this rate be? What is the rate of change of the inflation
rate at your school for the last two years?

d) Using all this information, what would be your estimate for next year’s
tuition?

9. Your library should have several reference books giving annual statistics
of various sorts. A good one is the Statistical Yearbook put out by the United
Nations with detailed data from all over the world on manufacturing, trans-
portation, energy, agriculture, tourism, and culture. Another is Historical

Statistics of the United States, Colonial Times–1970. Select an interesting
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quantity and compare its growth rate at different times or for different coun-
tries. Calculate this growth rate over a stretch of four or five years and report
whether there are any apparent patterns. Calculate the rate of change of this
growth rate and interpret its values.

10. Oceanographers are very interested in the temperature profile of the
part of the ocean they are studying. That is, how does the temperature T
(in degrees Celsius) vary with the depth d (measured in meters). A typical
temperature profile might look something like the following:

temperature

de
pt

h

4° 8° 12° 16° 20°

250

500

750

1000

1250

1500

1750

2000

(Note that since water is densest at 4◦ C, water at that temperature settles
to the bottom.)

a) What are the units for the rate of change of temperature with depth?

b) In this graph will the rate be positive or negative? Justify your answer.

c) At what rate is the temperature changing at a depth of 0 meters? 500
meters? 1000 meters?

d) Sketch a possible temperature profile for this location if the surface is
iced over.

e) This graph is not oriented the way our graphs have been up til now. Why
do you suppose oceanographers (and geologists and atmospheric scientists)
often draw graphs with axes positioned like this?
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3.2 Microscopes and Local Linearity

The Graph of Data

Jan Mar May July Sept Nov
4:00

5:00

6:00

7:00

8:00This section is about seeing
rates geometrically. We
know from chapter 1 that
we can visualize the rate of
change of a linear function
as the slope of its graph.
Can we say the same thing
about the sunrise function?
The graph of this function
appears at the right; it plots
the time of sunrise (over the

course of a year at 40◦ N latitude), as a function of the date. The graph
is curved, so the sunrise function is not linear. There is no immediately
obvious connection between rate and slope. In fact, it isn’t even clear what
we might mean by the slope of this graph! We can make it clear by using a
microscope.

Imagine we have a microscope that allows us to “zoom in” on the graphZoom in on the graph
with a microscope near each of the the three dates we considered in section 1. If we put each

magnified image in a window, then we get the following:

Jan Mar May July Sept Nov
4:00

5:00

6:00

7:00

8:00
c

b

a
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Notice how different the graph looks under the microscope. First of all, it
now shows up clearly as a collection of separate points—one for each day
of the year. Second, the points in a particular window lie on a line that The graph looks

straight under a
microscope

is essentially straight. The straight lines in the three windows have very
different slopes, but that is only to be expected.

What is the connection between these slopes and the rates of change we
calculated in the last section? To decide, we should calculate the slope in
each window. This involves choosing a pair of points (d1, T1) and (d2, T2) on
the graph and calculating the ratio

∆T

∆d
=

T2 − T1

d2 − d1

.

In window a we’ll take the two points that lie three days on either side of
the central date, January 23. These points have coordinates (20, 7:18) and
(26, 7:14) (table, page 102). The slope is thus

∆T

∆d
=

7:14 − 7:18

26 − 20
=

−4 minutes

6 days
= −.67

minutes

day
.

If we use the same approach in the other two windows we find that the line
in window b has slope −1.5 min/day, while the line in window c has slope Slope and

rate calculations
are the same

+.8 min/day. These are exactly the same calculations we did in section 1
to determine the rate of change of the time of sunrise around January 23,
March 24, and July 25, and they produce the same values we obtained there:

T ′(23) ≈ −.67
min

day
, T ′(83) ≈ −1.5

min

day
, T ′(206) ≈ .8

min

day
.

This is a crucial observation which we use repeatedly in other contexts; let’s
pause and state it in general terms:

The rate of change of a function at a point is equal to
the slope of its graph at that point, if the graph
looks straight when we view it under a microscope.

The Graph of a Formula

Rates and slopes are really the same thing—that’s what we learn by using a
microscope to view the graph of the sunrise function. But the sunrise graph
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consists of a finite number of disconnected points—a very common situation
when we deal with data. In such cases it doesn’t make sense to magnify the
graph too much. For instance, we would get no useful information from a
window that was narrower than the space between the data points. There isHigh-power

magnification is
possible with a formula

no such limitation if we use a microscope to look at the graph of a function
given by a formula, though. We can zoom in as close as we wish and still see
a continuous curve or line. By using a high-power microscope, we can learn
even more about rates and slopes.

Consider this rather complicated-looking function:

f(x) =
2 + x3 cos x + 1.5x

2 + x2
.

Let’s find f ′(27), the rate of change of f when x = 27. We need to zoom in
on the graph of f at the point (27, f(27)) = (27, 69.859043). We do this in
stages, producing a succession of windows that run clockwise from the upper
left. Notice how the graph gets straighter with each magnification.

x

y

−20 −10 10 20 30

−40

−20

20

40

60

80

100

26 27 28

68

70

72

74

76

26.8 26.9 27 27.1 27.2

69.6

69.8

70

70.2

70.4

26.98 26.99 27 27.01 27.02

69.84

69.86

69.88

69.9

26.998 26.999 27 27.001 27.002

69.856

69.857

69.858

69.859

69.86

69.861

69.862

69.863

26.9998 26.9999 27 27.0001 27.0002

69.8588

69.8589

69.859

69.8591

69.8592

69.8593

69.8594

69.8595
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We will need a way to describe the part of the graph that we see in a window.
Let’s call it the field of view. The field of view of each window is only one- The field of view

of a windowtenth as wide as the previous one, and the field of view of the last window is
only one-millionth of the first! The last window shows what we would see if
we looked at the original graph with a million-power microscope.

The microscope used to study functions is real, but it is different from the one a biologist uses to
study micro-organisms. Our microscope is a computer graphing program that can “zoom in” on
any point on a graph. The computer screen is the window you look through, and you determine
the field of view when you set the size of the interval over which the graph is plotted.

Here is our point of departure: the rate f ′(27) is the slope of the graph of

f(x) at x = 27 when we magnify the graph enough to make it look straight.
But how much is enough? Which window should we use? The following
table gives the slope ∆y/∆x of the line that appears in each of the last
four windows in the sequence. For ∆x we take the difference between the
x-coordinates of the points at the ends of the line, and for ∆y we take the
difference between the y-coordinates. In particular, the width of the field of
view in each case is ∆x.

∆x ∆y ∆y/∆x

.04

.004

.0004

.00004

−1.081 508 24× 10−2

−1.089 338 27× 10−3

−1.089 416 49× 10−4

−1.089 417 28× 10−5

−.270 377 066
−.272 334 556
−.272 354 131
−.272 354 327

As you can see, it does matter how much we magnify. The slopes ∆y/∆x
in the table are not quite the same, so we don’t yet have a definite value
for f ′(27). The table gives us an idea how we can get a definite value,
though. Notice that the slopes get more and more alike, the more we magnify.
In fact, under successive magnifications the first five digits of ∆y/∆x have
stabilized. We saw in chapter 2 how to think about a sequence of numbers
whose digits stabilize one by one. We should treat the values of ∆y/∆x as
successive approximations to the slope of the graph. The exact value of The slope is a limit

the slope is then the limit of these approximations as the width of the field
of view shrinks to zero:

f ′(27) = the slope of the graph = lim
∆x→0

∆y

∆x
.
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In the limit process we take ∆x → 0 because ∆x is the width of the field of
view. Since five digits of ∆y/∆x have stabilized, we can write

f ′(27) = −.27235 . . . .

To find f ′(x) at some other point x, proceed the same way. Magnify the
graph at that point repeatedly, until the value of the slope stabilizes. The
method is very powerful. In the exercises you will have an opportunity to
use it with other functions.

By using a microscope of arbitrarily high power, we have obtained further
insights about rates and slopes. In fact, with these insights we can now state
definitively what we mean by the slope of a curved graph and the rate of
change of a function.

Definition. The slope of a graph at a point is the limit of the
slopes seen in a microscope at that point, as the field of view
shrinks to zero.

Definition. The rate of change of a function at a point is the
slope of its graph at that point. Thus the rate of change is also
a limit.

To calculate the value of the slope of the graph of f(x) when x = a, we
have to carry out a limit process. We can break down the process into these
four steps:

1. Magnify the graph at the point (a, f(a)) until it appears straight.

2. Calculate the slope of the magnified segment.

3. Repeat steps 1 and 2 with successively higher magnifications.

4. Take the limit of the succession of slopes produced in step 3.

Local Linearity

The crucial property of a microscope is that it allows us to look at a graphA microscope gives
a local view locally, that is, in a small neighborhood of a particular point. The two

functions we have been studying in this section have curved graphs—like
most functions. But locally, their graphs are straight—or nearly so. This is
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a remarkable property, and we give it a name. We say these functions are
locally linear. In other words, a locally linear function looks like a linear
function, locally.

The graph of a linear function has a definite slope at every point, and
so does a locally linear function. For a linear function, the slope is easy
to calculate, and it has the same value at every point. For a locally linear
function, the slope is harder to calculate; it involves a limit process. The
slope also varies from point to point.

How common is local linearity? All the standard functions you already All the standard
functions are

locally linear at
almost all points

deal with are locally linear almost everywhere. To see why we use the quali-
fying phrase “almost everywhere,” look at what happens when we view the
graph of y = f(x) = x2/3 with a microscope. At any point other than the
origin, the graph is locally linear. For instance, if we view this graph over the
interval from 0 to 2 and then zoom in on the point (1, 1) by two successive
powers of 10, here’s what we see:

(1, 1)

(0, 0)

(2, 1.58740)

10x

(1, 1)

(.9, .932170)

(1.1, 1.06560)

10x

(1, 1)

(.99, .993322)

(1.01, 1.00666)

As the field of view shrinks, the graph looks more and more like a straight
line. Using the highest magnification given, we estimate the slope of the
graph—and hence the rate of change of the function—to be

f ′(1) ≈ ∆y

∆x
=

1.006656 − .993322

1.01 − .99
=

.013334

.02
= .6667.

Similarly, if we zoom in on the point (.001, .01) we get:

(-.2333, .379) (.2333, .379)

(.001, .01)

(-.00738, .0379) (.00738, .0379)

(.001, .01)

(.00072, .00803)

(.00128, .01179)

(.001, .01)
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In the last window the graph looks like a line of slope

f ′(.001) ≈ .0118 − .0082

.00128181 − .00074254
=

.0036

.00053937
= 6.674.

At the origin, though, something quite different happens:

(-.465, .6) (.465, .6)

(0, 0)

(-.0147, .06) (.0147, .06)

(0, 0)

(-.00046, .006) (.00046, .006)

(0, 0)

The graph simply looks more and more sharply pointed the closer we zoom
in to the origin—it never looks like a straight line. However, the origin turns
out to be the only point where the graph does not eventually look like a
straight line.

In spite of these examples, it is important to realize that local linearity is a
very special property. There are some functions that fail to be locally linear
anywhere! Such functions are called fractals. No matter how much youFractals are locally

non-linear objects magnify the graph of a fractal at any point, it continues to look non-linear—
bent and “pointy” in various ways. In recent years fractals have been used in
problems where the more common (locally linear) functions are inadequate.
For instance, they describe irregular shapes like coastlines and clouds, and
they model the way molecules are knocked about in a fluid (this is called
Brownian motion). However, calculus does not deal with such functions. On
the contrary:

Calculus studies functions that are
locally linear almost everywhere.
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Exercises

Using a microscope

1. Use a computer microscope to do the following. (A suggestion: first look
at each graph over a fairly large interval.)

a) With a window of size ∆x = .002, estimate the rate f ′(1) where f(x) =
x4 − 8x.

b) With a window of size ∆x = .0002, estimate the rate g′(0) where g(x) =
10x.

c) With a window of size ∆t = .05, estimate the slope of the graph of
y = t + 2−t at t = 7.

d) With a window of size ∆z = .0004, estimate the slope of the graph of
w = sin z at z = 0.

2. Use a computer microscope to determine the following values, correct
to one decimal place. Obtain estimates using a sequence of windows, and
shrink the field of view until the first two decimal places stabilize. Show all

the estimates you constructed in each sequence.

a) f ′(1) where f(x) = x4 − 8x.

b) h′(0) where h(s) = 3s.

c) The slope of the graph of w = sin z at z = π/4.

d) The slope of the graph of y = t + 2−t at t = 7.

e) The slope of the graph of y = x2/3 at x = −5.

3. For each of the following functions, magnify its graph at the indicated
point until the graph appears straight. Determine the equation of that
straight line. Then verify that your equation is correct by plotting it as
a second function in the same window you are viewing the given function.
(The two graphs should “share phosphor”!)

a) f(x) = sin x at x = 0;

b) ϕ(t) = t + 2−t at t = 7;

c) H(x) = x2/3 at x = −5.

4. Consider the function that we investigated in the text:

f(x) =
2 + x3 cos x + 1.5x

2 + x2
.



DVI file created at 11:46,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

116 CHAPTER 3. THE DERIVATIVE

a) Determine f(0).

b) Make a sketch of the graph of f on the interval −1 ≤ x ≤ 1. Use the
same scale on the horizontal and vertical axes so your graph shows slopes
accurately.

c) Sketch what happens when you magnify the previous graph so the field
of view is only −.001 ≤ x ≤ .001.

d) Estimate the slope of the line you drew in the part (c).

e) Estimate f ′(0). How many decimal places of accuracy does your estimate
have?

f) What is the equation of the line in part (c)?

5. A function that occurs in several different contexts in physical problems
is

g(x) =
sin x

x
.

Use a graphing program to answer the following questions.

a) Estimate the rate of change of g at the following points to two decimal
place accuracy:

g′(1), g′(2.79), g′(π), g′(3.1).

b) Find three values of x where g′(x) = 0.

c) In the interval from 0 to 2π, where is g decreasing the most rapidly? At
what rate is it decreasing there?

d) Find a value of x for which g′(x) = – 0.25.

e) Although g(0) is not defined, the function g(x) seems to behave nicely in
a neighborhood of 0. What seems to be true about g(x) and g′(x) when x is
near 0?

f) According to your graphs, what value does g(x) approach as x → 0?
What value does g′(x) approach as x → 0?

Rates from graphs; graphs from rates

6. a) Sketch the graph of a function f that has f(1) = 1 and f ′(1) = 2.

b) Sketch the graph of a function f that has f(1) = 1, f ′(1) = 2, and
f(1.1) = −5.
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7. A and B start off at the same time, run to a point 50 feet away, and
return, all in 10 seconds. A graph of distance from the starting point as a
function of time for each runner appears below. It tells where each runner is
during this time interval.

a) Who is in the lead during the race?

b) At what time(s) is A farthest ahead of B? At what time(s) is B farthest
ahead of A?

c) Estimate how fast A and B are going after one second.

d) Estimate the velocities of A and B during each of the ten seconds. Be
sure to assign negative velocities to times when the distance to the starting
point is shrinking. Use these estimates to sketch graphs of the velocities of
A and B versus time. (Although the velocity of B changes rapidly around
t = 5, assume that the graph of B’s distance is locally linear at t = 5.)

e) Use your graphs in (d) to answer the following questions. When is A
going faster than B? When is B going faster than A? Around what time is
A running at −5 feet/second (i.e., running 5 feet/second toward the starting
point)?
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8. For each of the following functions draw a graph that reflects the given
information. Restate the given information in the language and notation of
rate of change, paying particular attention to the units in which any rate of
change is expressed.

a) A woman’s height h (in inches) depends on her age t (in years). Babies
grow very rapidly for the first two years, then more slowly until the adolescent
growth spurt; much later, many women actually become shorter because of
loss of cartilage and bone mass in the spinal column.
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b) The number R of rabbits in a meadow varies with time t (in years). In
the early years food is abundant and the rabbit population grows rapidly.
However, as the population of rabbits approaches the “carrying capacity” of
the meadow environment, the growth rate slows, and the population never
exceeds the carrying capacity. Each year, during the harsh conditions of
winter, the population dies back slightly, although it never gets quite as low
as its value the previous year.

c) In a fixed population of couples who use a contraceptive, the average
number N of children per couple depends on the effectiveness E (in percent)
of the contraceptive. If the couples are using a contraceptive of low effec-
tiveness, a small increase in effectiveness has a small effect on the value of
N . As we look at contraceptives of greater and greater effectiveness, small
additional increases in effectiveness have larger and larger effects on N .

9. If we graph the distance travelled by a parachutist in freefall as a function
of the length of time spent falling, we would get a picture something like the
following:
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a) Use this graph to make estimates of the parachutist’s velocity at the end
of each second.

b) Describe what happens to the velocity as time passes.

c) How far do you think the parachutist would have fallen by the end of 15
seconds?

10. True or false. If you think a statement is true, give your reason; if
you think a statement is false, give a counterexample—i.e., an example that
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shows why it must be false.

a) If g′(t) is positive for all t, we can conclude that g(214) is positive.

b) If g′(t) is positive for all t, we can conclude that g(214) > g(17).

c) Bill and Samantha are driving separate cars in the same direction along
the same road. At the start Samantha is 1 mile in front of Bill. If their
speeds are the same at every moment thereafter, at the end of 20 minutes
Samantha will be 1 mile in front of Bill.

d) Bill and Samantha are driving separate cars in the same direction along
the same road. They start from the same point at 10 am and arrive at the
same destination at 2 pm the same afternoon. At some time during the four
hours their speeds must have been exactly the same.

When local linearity fails

11. The absolute value function f(x) = |x| is not locally linear at x = 0.
Explore this fact by zooming in on the graph at (0, 0). Describe what you
see in successively smaller windows. Is there any change?

12. Find three points where the function f(x) = | cos x| fails to be locally
linear. Sketch the graph of f to demonstrate what is happening.

13. Zoom in on the graph of y = x4/5 at (0, 0). In order to get an accurate
picture, be sure that you use the same scales on the horizontal and vertical
axes. Sketch what you see happening in successive windows. Is the function
x4/5 locally linear at x = 0?

14. Is the function x4/5 locally linear at x = 1? Explain your answer.

15. This question concerns the function K(x) = x10/9.

a) Sketch the graph of K on the interval −1 ≤ x ≤ 1. Compare K to the
absolute value function |x|. Are they similar or dissimilar? In what ways?
Would you say K is locally linear at the origin, or not?

b) Magnify the graph of K at the origin repeatedly, until the field of view
is no bigger than ∆x ≤ 10−10. As you magnify, be sure the scales on the
horizontal and vertical axes remain the same, so you get a true picture of the
slopes. Sketch what you see in the final window.

c) After using the microscope do you change your opinion about the local
linearity of K at the origin? Explain your response.
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3.3 The Derivative

Definition

One of our main goals in this chapter is to make precise the notion of the
rate of change of a function. In fact, we have already done that in the last
section. We defined the rate of change of a function at a point to be the
slope of its graph at that point; we defined the slope, in turn, by a four-step
limit process. Thus, the precise definition of a rate of change involves a limit,
and it involves geometric visualization—we think of a rate as a slope. We
introduce a new word—derivative—to embrace both of these concepts as we
now understand them.

Definition. The derivative of the function f(x) at x = a is its
rate of change at x = a, which is the same as the slope of its
graph at (a, f(a)). The derivative of f at a is denoted f ′(a).

Later in this section we will extend our interpretation of the derivative
to include the idea of a multiplier, as well as a rate and a slope. Besides
providing us with a single word to describe rates, slopes, and multipliers,
the term “derivative” also reminds us that the quantity f ′(a) is derived from
information about the function f in a particular way. It is worth repeating
here the four steps by which we derive f ′(a):

1. Magnify the graph at the point (a, f(a)) until it appears straight.

2. Calculate the slope of the magnified segment.

3. Repeat steps 1 and 2 with successively higher magnifications.

4. Take the limit of the succession of slopes produced in step 3.

We can express this limit in analytic form in the following way:

f ′(a) = lim
∆x→0

∆y

∆x
= lim

h→0

f(a + h) − f(a − h)

2h
.

The difference quotient

∆y

∆x
=

f(a + h) − f(a − h)

2h

is the usual way we estimate the slope of the magnified graph of f at the
point (a, f(a)). As the following figure shows, the calculation involves two
points equally spaced on either side of (a, f(a)).
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Estimating the value of the derivative f ′(a)

Choosing points in a window. To estimate the
slope in the window above, we chose two particular
points, (a−h, f(a−h)) and (a+h, f(a+h)). However,
any two points in the window would give us a valid
estimate. Our choice depends on the situation. For
example, if we are working with formulas, we want
simple expressions. In that case we would probably
replace (a − h, f(a − h)) by (a, f(a)). We do that in
the window on the left. The resulting slope is
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∆y = f(a + h) − f(a)

∆y

∆x
=

f(a + h) − f(a)

h
.

While the limiting value of ∆y/∆x doesn’t depend on the choices you make,
the estimates you produce with a fixed ∆x can be closer to or farther from
the true value. The exercises will explore this.

Data versus formulas. The derivative is a limit. To find that limit we
have to be able to zoom in arbitrarily close, to make ∆x arbitrarily small.
For functions given by data, that is usually impossible; we can’t use any ∆x
smaller than the spacing between the data points. Thus, a data function of A data function might

not have a derivativethis sort does not have a derivative, strictly speaking. However, by zooming
in as much as the data allow, we get the most precise description possible
for the rate of change of the function. In these circumstances it makes a
difference which points we choose in a window to calculate ∆y/∆x. In the
exercises you will have a chance to see how the precision of your estimate
depends on which points you choose to calculate the slope.
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For a function given by a formula, it is possible to find the value of the
derivative exactly. In fact, the derivative of a function given by a formula is
itself given by a formula. Later in this chapter we will describe some generalThere are rules for

finding derivatives rules which will allow us to produce the formula for the derivative without
going through the successive approximation process each time. In chapter 5
we will discuss these rules more fully.

Practical considerations. The derivative is a limit, and there are always
practical considerations to raise when we discuss limits. As we saw in chapter
2, we cannot expect to construct the entire decimal expansion of a limit. In
most cases all we can get are a specified number of digits. For example, in
section 2 we found that

if f(x) =
2 + x3 cos x + 1.5x

2 + x2
, then f ′(27) = −.27235 . . . .

The same digits without the “. . . ” give us approximations. Thus we
can write f ′(27) ≈ −.27235; we also have f ′(27) ≈ −.2723 and f ′(27) ≈
−.272. Which approximation is the right one to use depends on the context.
For example, if f appears in a problem in which all the other quantities are
known only to one or two decimal places, we probably don’t need a very
precise value for f ′(27). In that case we don’t have to carry the sequence
of slopes ∆y/∆x very far. For instance, if we want to know f ′(27) to three
decimal places, and so justify writing f ′(27) ≈ −.272, we only need to con-
tinue the zooming process until the slopes ∆y/∆x all have values that begin
−.2723 . . . . By the table on page 111, ∆x = .0004 is sufficient.

Language and Notation

• If f has a derivative at a, we also say f is differentiable at a. If f is
differentiable at every point a in its domain, we say f is differentiable.
• Do locally linear and differentiable mean the same thing? The awkward
case is a function whose graph is vertical at a point (for example, y = 3

√
x

at the origin). On the one hand, it makes sense to say that the function
is locally linear at such a point, because the graph looks straight under a
microscope. On the other hand, the derivative itself is undefined, because
the line is vertical. So the function is locally linear, but not differentiable, at
that point.

There is another way to view the matter. We can say, instead, that a
vertical line does have a slope, and its value is infinity (∞). From this point
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of view, if the graph of f is vertical at x = a, then f ′(a) = ∞. In other
words, f does have a derivative at x = a; its value just happens to be ∞.

Which view is “right”? Neither; we can choose either. Our choice is a
matter of convention. (In some countries cars travel on the left; in others, Convention: if the

graph of f is vertical
at a, write f ′(a) = ∞

on the right. That’s a convention, too.) However, we will follow the second
alternative. One advantage is that we will be able to use the derivative to
indicate where the graph of a function is vertical. Another is that locally

linear and differentiable then mean exactly the same thing.
• Suppose y = f(x) and the quantities x and y appear in a context in which
they have units. Then the derivative of f ′(x) also has units, because it is the
rate of change of y with respect to x. The units for the derivative must be

units for f ′ =
units for output y

units for input x
.

We have already seen several examples—persons per day, miles per hour,
milligrams per pound, dollars of profit per dollar change in price—and we
will see many more.
• There are several notations for the derivative. You should be aware of them
because they are all in common use and because they reflect different ways
of viewing the derivative. We have been writing the derivative of y = f(x)
as f ′(x). Leibniz wrote it as dy/dx. This notation has several advantages. Leibniz’s notation

It resembles the quotient ∆y/∆x that we use to approximate the derivative.
Also, because dy/dx looks like a rate, it helps remind us that a derivative is
a rate. Later on, when we consider the chain rule to find derivatives, you’ll
see that it can be stated very vividly using Leibniz’s notation.

The German philosopher Gottfried Wilhelm Leibniz (1646-1716) developed calculus about the
same time Newton did. While Newton dealt with derivatives in more or less the way we do,
Leibniz introduced a related idea which he called a differential—‘infinitesimally small’ numbers
which he would write as dx and dy.

The other notation still encountered is due to Newton. It occurs primarily Newton’s notation

in physics and is used to denote rates with respect to time. If a quantity y
is changing over time, then the Newton notation expresses the derivative of
y as ẏ (that’s the variable y with a dot over it).



DVI file created at 11:46,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

124 CHAPTER 3. THE DERIVATIVE

The Microscope Equation

A Context: Driving Time

If you make a 400 mile trip at an average speed of 50 miles per hour, then
the trip takes 8 hours. Suppose you increase the average speed by 2 miles
per hour. How much time does that cut off the trip?

One way to approach this question is to start with the basic formula

speed × time = distance.

The distance is known to be 400 miles, and we really want to understandTravel time
depends on speed how time T depends on speed s. We get T as a function of s by rewriting

the last equation:

T hours =
400 miles

s miles per hour
.

To answer the question, just set s = 52 miles per hour in this equation.
Then T = 7.6923 hours, or about 7 hours, 42 minutes. Thus, compared to
the original 8 hours, the higher speed cuts 18 minutes off your driving time.

What happens to the driving time if you increase your speed by 4 miles
per hour, or 5, instead of 2? What happens if you go slower, say 2 or 3 miles
per hour slower? We could make a fresh start with each of these questions
and answer them, one by one, the same way we did the first. But taking the
questions one at a time misses the point. What we really want to know is
the general pattern:

If I’m travelling at 50 miles per hour, how much does any
How does travel time
respond to
changes in speed? given increase in speed decrease my travel time?

We already know how T and s are related: T = 400/s hours. This
question, however, is about the connection between a change in speed of

∆s = s − 50 miles per hour

and a change in arrival time of

∆T = T − 8 hours.

To answer it we should change our point of view slightly. It is not the relation
between s and T , but between ∆s and ∆T , that we want to understand.
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Since we are considering speeds s that are only slightly above or below
50 miles per hour, ∆s will be small. Consequently, the arrival time T will be
only slightly different from 8 hours, so ∆T will also be small. Thus we want
to study small changes in the function T = 400/s near (s, T ) = (50, 8). The
natural tool to use is a microscope.

47 50 53 mph
s
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hrs

T

hhhhhhhhhhhhhhhhhhhhh

t
∆s

∆T

How travel time changes with speed around 50 miles per hour

In the microscope window above we see the graph of T = 400/s, magnified
at the point (s, T ) = (50, 8). The field of view was chosen so that s can take
values about 6 mph above or below 50 mph. The graph looks straight, and The slope of the graph

in the microscope
window

its slope is T ′(50). In the exercises you are asked to determine the value of
T ′(50); you should find T ′(50) ≈ −.16. (Later on, when we have rules for
finding the derivative of a formula, you will see that T ′(50) = −.16 exactly.)
Since the quotient ∆T/∆s is also an estimate for the slope of the line in the
window, we can write

∆T

∆s
≈ −.16 hours per mile per hour.

If we multiply both sides of this approximate equation by ∆s miles per hours,
we get

∆T ≈ −.16 ∆s hours.

This equation answers our question about the general pattern relating How travel time
changes with speedchanges in travel time to changes in speed. It says that the changes are

proportional. For every mile per hour increase in speed, travel time decreases
by about .16 hours, or about 91

2
minutes. Thus, if the speed is 1 mph over
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50 mph, travel time is cut by about 91
2

minutes. If we double the increase in
speed, that doubles the savings in time: if the speed is 2 mph over 50 mph,
travel time is cut by about 19 minutes. Compare this with a value of about
18 minutes that we got with the exact equation T = 400/s.

Notice that we are using ∆s and ∆T in a slightly more restricted way∆s and ∆T now have
a special meaning than we have previously. Up to now, ∆s measured the horizontal distance

between any two points on a graph. Now, however, ∆s just measures the
horizontal distance from the fixed point (s, T ) = (50, 8) (marked with a large
dot) that sits at the center of the window. Likewise, ∆T just measures the
vertical distance from this point. The central point therefore plays the role
of an origin, and ∆s and ∆T are the coordinates of a point measured from
that origin. To underscore the fact that ∆s and ∆T are really coordinates,
we have added a ∆s-axis and a ∆T -axis in the window below. Notice that
these coordinate axes have their own labels and scales.

Every point in the window can therefore be described in two different∆s and ∆T are
coordinates in the
window

coordinate systems. The two different sets of coordinates of the point labelled
P , for instance, are (s, T ) = (53, 7.52) and (∆s, ∆T ) = (3,−.48). The first
pair says “When your speed is 53 mph, the trip will take 7.52 hrs.” The
second pair says “When you increase your speed by 3 mph, you will decrease
travel time by .48 hrs.” Each statement can be translated into the other, but
each statement has its own point of reference.

47 50 53 mph
s

6

8

10

hrs

T

hhhhhhhhhhhhhhhhhhhhh

t

r

P

-

6

−3

3 ∆s

−2

2

∆T

The microscope equation: ∆T ≈ −.16 ∆s hours

We call ∆T ≈ −.16 ∆s the microscope equation because it tells us how
the microscope coordinates ∆s and ∆T are related.
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In fact, we now have two different ways to describe how travel time is
related to speed. They can be compared in the following table.

global local

coordinates: s, T ∆s, ∆T

equation: T = 400/s ∆T ≈ −.16 ∆s

properties:
exact

non-linear
approximate

linear

We say the microscope equation is local because it is intended to deal only Global vs. local
descriptionswith speeds near 50 miles per hour. There is a different microscope equation

for speeds near 40 miles per hour, for instance. By contrast, the original
equation is global, because it works for all speeds. While the global equation
is exact it is also non-linear; this can make it more difficult to compute. The
microscope equation is approximate but linear; it is easy to compute. It is
also easy to put into words:

At 50 miles per hour, the travel time of a 400 mile journey
decreases 91

2
minutes for each mile per hour increase in speed.

The connection between the global equation and the microscope equation is
shown in the following illustration.
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Local Linearity and Multipliers

The reasoning that led us to a microscope equation for travel time can be
applied to any locally linear function. If y = f(x) is locally linear, then at
x = a we can write

The microscope equation: ∆y ≈ f ′(a) · ∆x

We know an equation of the form ∆y = m · ∆x tells us that y is a linear
function of x, in which m plays the role of slope, rate, and multiplier. The
microscope equation therefore tells us that y is a linear function of x
when x is near a—at least approximately. In this almost-linear relation,
the derivative f ′(a) plays the role of slope, rate, and multiplier.

The microscope equation is just the idea of local linearity expressed an-The microscope
equation is the analytic
form of local linearity

alytically rather than geometrically—that is, by a formula rather than by a
picture. Here is a chart that shows how the two descriptions of local linearity
fit together.

y = f(x) is locally linear at x = a:

geometrically analytically

When magnified at (a, f(a)), When x is near a,

the graph of f is almost straight, y is almost a linear function of x,

and the slope of the line is f ′(a). and the multiplier is f ′(a).
microscope window

-

6
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∆y ≈ f ′(a) · ∆x

microscope equation

Of course, the graph in a microscope window is not quite straight. The
analytic counterpart of this statement is that the microscope equation is not
quite exact—the two sides of the equation are only approximately equal.
We write “≈” instead of “=”. However, we can make the graph look even
straighter by increasing the magnification—or, what is the same thing, by
decreasing the field of view. Analytically, this increases the exactness of the
microscope equation. Like a laboratory microscope, our microscope is most
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accurate at the center of the field of view, with increasing aberration toward
the periphery!

In the microscope equation ∆y ≈ f ′(a) · ∆x, the derivative is the
multiplier that tells how y responds to changes in x. In particular,
a small increase in x produces a change in y that depends on the sign and
magnitude of f ′(a) in the following way:

• f ′(a) is large and positive ⇒ large increase in y,

• f ′(a) is small and positive ⇒ small increase in y,

• f ′(a) is large and negative ⇒ large decrease in y,

• f ′(a) is small and negative ⇒ small decrease in y.

x

y

∆x

∆y

∆x

∆y

∆x

∆y

∆x

∆y

For example, suppose we are told the value of the derivative is 2. Then
any small change in x induces a change in y approximately twice as large. If,
instead, the derivative is −1/5, then a small change in x produces a change in
y only one fifth as large, and in the opposite direction. That is, if x increases,
then y decreases, and vice-versa.

The microscope equation should look familiar to you. It has been with us The microscope
equation is the recipe
for building solutions

to rate equations

from the beginning of the course. Our “recipe” ∆S = S ′ · ∆t for predicting
future values of S in the S-I-R model is just the microscope equation for the
function S(t). (Although we wrote it with an “=” instead of an “≈” in the
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first chapter, we noted that ∆S would provide us only an estimate for the
new value of S.) The success of Euler’s method in producing solutions to
rate equations depends fundamentally on the fact that the functions we are
trying to find are locally linear.

The derivative is one of the fundamental concepts of the calculus, and
one of its most important roles is in the microscope equation. Besides giving
us a tool for building solutions to rate equations, the microscope equation
helps us do estimation and error analysis, the subject of the next section.

We conclude with a summary that compares linear and locally linear
functions. Note there are two differences, but only two: 1) the equation for
local linearity is only an approximation; 2) it holds only locally—i.e., near a
given point.

If y = f(x) is linear, If y = f(x) is locally linear,
then ∆y = m · ∆x; then ∆y ≈ f ′(a) · ∆x;
the constant m is the derivative f ′(a) is

rate, slope, and multiplier rate, slope, and multiplier
for all x. for x near a.

Exercises

Computing Derivatives

1. Sketch graphs of the following functions and use these graphs to deter-
mine which function has a derivative that is always positive (except at x = 0,
where neither the function nor its derivative is defined).

y =
1

x
y =

−1

x
y =

1

x2
y =

−1

x2

What feature of the graph told you whether the derivative was positive?

2. For each of the functions f below, approximate its derivative at the given
value x = a in two different ways. First, use a computer microscope (i.e.,
a graphing program) to view the graph of f near x = a. Zoom in until the
graph looks straight and find its slope. Second, use a calculator to find the
value of the quotient

f(a + h) − f(a − h)

2h
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for h = .1, .01, .001, . . . , .000001. Based on these values of the quotients, give
your best estimate for f ′(a), and say how many decimal places of accuracy
it has.

a) f(x) = 1/x at x = 2.

b) f(x) = sin(7x) at x = 3.

c) f(x) = x3 at x = 200.

d) f(x) = 2x at x = 5.

3. In a later section we will establish that the derivative of f(x) = x3 at
x = 1 is exactly 3: f ′(1) = 3. This question concerns the freedom we have
to choose points in a window to estimate f ′(1) (see page 121). Its purpose is
to compare two quotients, to see which gets closer to the exact value of f ′(1)
for a fixed “field of view” ∆x. The two quotients are

Q1 =
∆y

∆x
=

f(a + h) − f(a − h)

2h
and Q2 =

∆y

∆x
=

f(a + h) − f(a)

h
.

In this problem a = 1.

a) Construct a table that shows the values of Q1 and Q2 for each h = 1/2k,
where k = 0, 1, 2, . . . , 8. If you wish, you can use this program to compute
the values:

a = 1

FOR k = 0 TO 8

h = 1 / 2 ^ k

q1 = ((a + h) ^ 3 - (a - h) ^ 3) / (2 * h)

q2 = ((a + h) ^ 3 - a ^ 3) / h

PRINT h, q1, q2

NEXT k

b) How many digits of Q1 stabilize in this table? How many digits of Q2?

c) Which is a better estimator—Q1 or Q2? To indicate how much better,
give the value of h for which the better estimator provides an estimate that
is as close as the best estimate provided by the poorer estimator.

4. Repeat all the steps of the last question for the function f(x) =
√

x at
x = 9. The exact value of f ′(9) is 1/6.

Comment: Note that, in section 1, we estimated the rate of change of the
sunrise function using an expression like Q1 rather than one like Q2. The
previous exercises should persuade you this was deliberate. We were trying
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to get the most representative estimates, given the fact that we could not
reduce the size of ∆x arbitrarily.

5. At this point you will find it convenient to write a more general derivative-
finding program. You can modify the program in problem 3. to do this by
having a DEF command at the beginning of the program to specify the func-
tion you are currently interested in. For instance, if you insert the command
DEF fnf (x) = x ^ 3 at the beginning of the program, how could you sim-
plify the lines specifying q1 and q2? If you then wanted to calculate the
derivative of another function at a different x-value, you would only need to
change the DEF specification and, depending on the point you were interested
in, the a = 1 line.

6. Use one of the methods of problem 2 to estimate the value of the deriva-
tive of each of the following functions at x = 0:

y = 2x, y = 3x, y = 10x, and y = (1/2)x.

These are called exponential functions, because the input variable x appears
in the exponent. How many decimal places accuracy do your approximations
to the derivatives have?

7. In this problem we look again at the exponential function f(x) = 2x from
the previous problem.

a) Use the rules for exponents to put the quotient

f(a + h) − f(a)

h

in the simplest form you can.

b) We know that

f ′(0) = lim
h→0

f(h) − f(0)

h
.

Use this fact, along with the algebraic result of part (a), to explain why
f ′(a) = f ′(0) · 2a.

8. Apply all the steps of the previous question to the exponential function
f(x) = bx with an arbitrary base b. Show that f ′(x) = f ′(0) · bx.
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9. a) For which values of x is the absolute value function y = |x| differen-
tiable?

b) At each point where y = |x| is differentiable, find the value of the deriva-
tive.

The microscope equation

10. Write the microscope equation for each of the following functions at the
indicated point. (To find the necessary derivative, consult problem 2.)

a) f(x) = 1/x at x = 2.

b) f(x) = sin(7x) at x = 3.

c) f(x) = x3 at x = 200.

d) f(x) = 2x at x = 5.

11. This question uses the microscope equation for f(x) = 1/x at x = 2
that you constructed in the previous question.

a) Draw the graph of what you would see in the microscope if the field of
view is .2 units wide.

b) If we take x = 2.05, what is ∆x in the microscope equation? What
estimate does the microscope equation give for ∆y? What estimate does the
microscope equation then give for f(2.05) = 1/2.05? Calculate the true value
of 1/2.05 and compare the two values; how far is the microscope estimate
from the true value?

c) What estimate does the microscope equation give for 1/2.02? How far is
this from the true value?

d) What estimate does the microscope equation give for 1/1.995? How far
is this from the true value?

12. This question concerns the travel time function T = 400/s hours, dis-
cussed in the text.

a) How many hours does a 400-mile trip take at an average speed of 40 miles
per hour?

b) Find the microscope equation for T when s = 40 miles per hour.

c) At what rate does the travel time decrease as speed increases around 40
mph—in hours per mile per hour?

d) According to the microscope equation, how much travel time is saved by
increasing the speed from 40 to 45 mph?
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e) According to the microscope equation based at 50 mph (as done in the
text), how much time is lost by decreasing the speed from 50 to 45 mph?

f) The last two parts both predict the travel time when the speed is 45 mph.
Do they give the same result?

13. a) Suppose y = f(x) is a function for which f(5) = 12 and f ′(5) = .4.
Write the microscope equation for f at x = 5.

b) Draw the graph of what you would see in the microscope. Do you need
a formula for f itself, in order to do this?

c) If x = 5.3, what is ∆x in the microscope equation? What estimate does
the microscope equation give for ∆y? What estimate does the microscope
equation then give for f(5.3)?

d) What estimates does the microscope equation give for the following:
f(5.23), f(4.9), f(4.82), f(9)? Do you consider these estimates to be equally
reliable?

14. a) Suppose z = g(t) is a function for which g(−4) = 7 and g′(−4) = 3.5.
Write the microscope equation for g at t = −4.

b) Draw the graph of what you see in the microscope.

c) Estimate g(−4.2) and g(−3.75).

d) For what value of t near −4 would you estimate that g(t) = 6? For what
value of t would you estimate g(t) = 8.5?

15. If f(a) = b, f ′(a) = −3 and if k is small, which of the following is the
best estimate for f(a + k)?

a + 3k, b + 3k, a + 3b, b − 3k, a − 3k, 3a − b, a2 − 3b, f ′(a + k)

16. If f is differentiable at a, which of the following, for small values of h,
are reasonable estimates of f ′(a)?

f(a + h) − f(a − h)

h

f(a + h) − f(a − h)

2h
f(a + h) − f(h)

h

f(a + 2h) − f(a − h)

3h

17. Suppose a person has travelled D feet in t seconds. Then D′(t) is the
person’s velocity at time t; D′(t) has units of feet per second.
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a) Suppose D(5) = 30 feet and D′(5) = 5 feet/second. Estimate the follow-
ing:

D(5.1) D(5.8) D(4.7)

b) If D(2.8) = 22 feet, while D(3.1) = 26 feet, what would you estimate
D′(3) to be?

18. Fill in the blanks.

a) If f(3) = 2 and f ′(3) = 4, a reasonable estimate of f(3.2) is .

b) If g(7) = 6 and g′(7) = .3, a reasonable estimate of g(6.6) is .

c) If h(1.6) = 1, h′(1.6) = −5, a reasonable estimate of h( ) is 0.

d) If F (2) = 0, F ′(2) = .4, a reasonable estimate of F ( ) is .15.

e) If G(0) = 2 and G′(0) = , a reasonable estimate of G(.4) is 1.6.

f) If H(3) = −3 and H ′(3) = , a reasonable estimate of H(2.9) is −1.

19. In manufacturing processes the profit is usually a function of the num-
ber of units being produced, among other things. Suppose we are studying
some small industrial company that produces n units in a week and makes a
corresponding weekly profit of P . Assume P = P (n).

a) If P (1000) = $500 and P ′(1000) = $2/unit, then

P (1002) ≈ P (995) ≈ P ( ) ≈ $512

b) If P (2000) = $3000 and P ′(2000) = −$5/unit, then

P (2010) ≈ P (1992) ≈ P ( ) ≈ $3100

c) If P (1234) = $625 and P (1238) = $634, then what is an estimate for
P ′(1236)?
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3.4 Estimation and Error Analysis

Making Estimates

The Expanding House

In the book The Secret House – 24 hours in the strange and unexpected world

in which we spend our nights and days (Simon and Schuster, 1986), David
Bodanis describes many remarkable events that occur at the microscopic level
in an ordinary house. At one point he explains how sunlight heats up the
structure, stretching it imperceptibly in every direction through the day until
it has become several cubic inches larger than it was the night before. Is itHow much does

a house expand
in the heat?

plausible that a house can become several cubic inches larger as it expands
in the heat of the day? In particular, how much longer, wider, and taller
would it have to become if it were to grow in volume by, let us say, 3 cubic
inches?

For simplicity, assume the house is a cube 200 inches on a side. (This is
about 17 feet, so the house is the size of a small, two-story cottage.) If s is
the length of a side of any cube, in inches, then its volume is

V = s3 cubic inches.

Our question is about how V changes with s when s is about 200 inches. In
particular, we want to know which ∆s would yield a ∆V of 3 cubic inches.
This is a natural question for the microscope equation

∆V ≈ V ′(200) · ∆s.

According to exercise 2c in the previous section, we can estimate the value
of V ′(200) to be about 120,000, and the appropriate units for V ′ are cubic
inches per inch. Thus

∆V ≈ 120000 ∆s

3 cubic inches ≈ 120000
cubic inches

inches
× ∆s inches,

so ∆s ≈ 3/120000 = .000025 inches—many times thinner than a human
hair!

This value is much too small. To get a more realistic value, let’s suppose
the house is made of wood and the temperature increases about 30◦F from
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night to day. Then measurements show that a 200-inch length of wood will
actually become about ∆s = .01 inches longer. Consequently the volume
will actually expand by about

∆V ≈ 120000
cubic inches

inches
× .01 inches = 1200 cubic inches.

This increase is 400 times as much as Bodanis claimed; it is about the size
of a small computer monitor. So even as he opens our eyes to the effects of
thermal expansion, Bodanis dramatically understates his point.

Estimates versus Exact Values

Don’t lose sight of the fact that the values we derived for the expanding
house are estimates. In some cases we can get the exact values. Why don’t
we, whenever we can?

For example, we can calculate exactly how much the volume increases
when we add ∆s = .01 inches to s = 200 inches. The increase is from
V = 2003 = 8,000,000 cubic inches to

V = (200.01)3 = 8001200.060001 cubic inches.

Thus, the exact value of ∆V is 1200.060001 cubic inches. The estimate is
off by only about .06 cubic inches. This isn’t very much, and it is even less
significant when you think of it as a percentage of the volume (namely 1200
cubic inches) being calculated. The percentage is

.06 cubic inches

1200 cubic inches
= .00005 = .005%.

That is, the difference is only 1/200 of 1% of the calculated volume.
To get the exact value we had to cube two numbers and take their differ-

ence. To get the estimate we only had to do a single multiplication. Estimates Exact values can be
harder to calculate

than estimates.
made with the microscope equation are always easy to calculate—they in-
volve only linear functions. Exact values are usually harder to calculate. As
you can see in the example, the extra effort may not gain us extra informa-
tion. That’s one reason why we don’t always calculate exact values when we
can.

Here’s another reason. Go back to the question: How large must ∆s be
if ∆V = 3 cubic inches? To get the exact answer, we must solve for ∆s in
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the equation

3 = ∆V = (200 + ∆s)3 − 2003

= 2003 + 3(200)2∆s + 3(200)(∆s)2 + (∆s)3 − 2003.

Simplifying, we get

3 = 120000 ∆s + 600(∆s)2 + (∆s)3.

This is a cubic equation for ∆s; it can be solved, but the steps are compli-
cated. Compare this with solving the microscope equation:

3 = 120000 ∆s.

Thus, another reason we don’t calculate exact values at every opportunity is
that the calculations can be daunting. The microscope estimates are always
straightforward.

Perhaps the most important reason, though, is the insight that calculating
V ′ gave us. Let’s translate into English what we have really been talking
about:

In dealing with a cube 200 inches on a side, any small change
(measured in inches) in the length of the sides produces a change
(measured in cubic inches) in the volume approximately 120,000
times as great.

This is, of course, simply another instance of the point we have made before,
that small changes in the input and the output are related in an (almost)
linear way, even when the underlying function is complex. Let’s continue
this useful perspective by looking at error analysis.

Propagation of Error

From Measurements to Calculations

We can view all the estimates we made for the expanding house from another
perspective—the lack of precision in measurement. To begin with, just think
of the house as a cubical box that measures 200 inches on a side. Then
the volume must be 8,000,000 cubic inches. But measurements are never
exact, and any uncertainty in measuring the length of the side will lead to an
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uncertainty in calculating the volume. Let’s say your measurement of length
is accurate to within .5 inch. In other words, you believe the true length lies
between 199.5 inches and 200.5 inches, but you are uncertain precisely where
it lies within that interval. How uncertain does that make your calculation
of the volume?

There is a direct approach to this question: we can simply say that the How uncertain is
the calculated value

of the volume?
volume must lie between 199.53 = 7,940,149.875 cubic inches and 200.53

= 8,060,150.125 cubic inches. In a sense, these values are almost too pre-
cise. They don’t reveal a general pattern. We would like to know how an
uncertainty—or error—in measuring the length of the side of a cube propa-
gates to an error in calculating its volume.

Let’s take another approach. If we measure s as 200 inches, and the true
value differs from this by ∆s inches, then ∆s is the error in measurement.
That produces an error ∆V in the calculated value of V . The microscope
equation for the expanding house (page 136) tells us how ∆V depends on
∆s when s = 200:

∆V ≈ 120000 ∆s.

Since we now interpret ∆s and ∆V as errors, the microscope equation be-
comes the error propagation equation:

error in V (cu. in.) ≈ 120000

(
cu. in.

inch

)

× error in s (inches).

Thus, for example, an error of 1/2 inch in measuring s propagates to an The microscope
equation describes how

errors propagate
error of about 60,000 cubic inches in calculating V . This is about 35 cubic
feet, the size of a large refrigerator! Putting it another way:

if s = 200 ± 0.5 inches, then V ≈ 8, 000, 000± 60, 000 cubic inches.

If we keep in mind the error propagation equation ∆V ≈ 120000 ∆s, we
can quickly answer other questions about measuring the same cube. For
instance, suppose we wanted to determine the volume of the cube to within
5,000 cubic inches. How accurately would we have to measure the side? Thus
we are given ∆V = 5000, and we conclude ∆s ≈ 5000/120000 ≈ .04 inches.
This is just a little more than 1/32 inch.

Relative Error

Suppose we have a second cube whose side is twice as large (s = 400 inches),
and once again we measure its length with an error of 1/2 inch. Then the
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error in the calculated value of the volume is

∆V ≈ V ′(400) · ∆s = 480000 × .5 = 240,000 cubic inches.

(In the exercises you will be asked to show V ′(400) = 480,000.) The error in
our calculation for the bigger cube is four times what it was for the smaller
cube, even though the length was measured to the same accuracy in both
cases! There is no mistake here. In fact, the volume of the second cube isBigger numbers

have bigger errors eight times the volume of the first, so the numbers we are dealing with in
the second case are roughly eight times as large. We should not be surprised
if the error is larger, too.

In general, we must expect that the size of an error will depend on the
size of the numbers we are working with. We expect big numbers to have big
errors and small numbers to have small errors. In a sense, though, an error
of 1 inch in a measurement of 50 inches is no worse than an error of 1/10-th
of an inch in a measurement of 5 inches: both errors are 1/50-th the size of
the quantity being measured.

A watchmaker who measures the tiny objects that go into a watch only as accurately as a
carpenter measures lumber would never make a watch that worked; likewise, a carpenter who
takes the pains to measure things as accurately as a watchmaker does would take forever to build
a house. The scale of allowable errors is dictated by the scale of the objects they work on.

The errors ∆x we have been considering are called absolute errors;
their values depend on the size of the quantities x we are working with. ToAbsolute and

relative error reduce the effect of differences due to the size of x, we can look instead at
the error as a fraction of the number being measured or calculated. This
fraction ∆x/x is called relative error. Consider two measurements: one is
50 inches with an error of ±1 inch; the other is 2 inches with an error of ±.1
inch. The absolute error in the second measurement is much smaller than in
the first, but the relative error is 21

2
times larger. (The first relative error

is .02 inch per inch, the second is .05 inch per inch.) To judge how good or
bad a measurement really is, we usually take the relative error instead of the
absolute error.

Let’s compare the propagation of relative and absolute errors. For ex-
ample, the absolute error in calculating the volume of a cube whose side
measures s is

∆V ≈ V ′(s) · ∆s.

The absolute errors are proportional, but the multiplier V ′(s) depends on
the size of s. (We saw above that the multiplier is 120,000 cubic inches per
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inch when s = 200 inches, but it grows to 480,000 cubic inches per inch when
s = 400 inches.)

In section 5, which deals with formulas for derivatives, we will see that
V ′(s) = 3 s2. If we substitute 3s2 for V ′(s) in the propagation equation for
absolute error, we get

∆V ≈ 3s2 · ∆s.

To see how relative error propagates, let us divide this equation by V = s3:

∆V

V
≈ 3s2 · ∆s

s3
= 3

∆s

s

The relative errors are proportional, but the multiplier is always 3; it doesn’t
depend on the size of the cube, as it did for absolute errors.

Return to the case where ∆s = .5 inch and s = 200 inches. Since ∆s
and s have the same units, the relative error ∆s/s is “dimensionless”—it
has no units. We can, however, describe ∆s/s as a percentage: ∆s/s =
.5/200 = .25%, or 1/4 of 1%. For this reason, relative error is sometimes Percentage error

is relative errorcalled percentage error. It tells us the error in measuring a quantity as a
percentage of the value of that quantity. Since the percentage error in volume
is

∆V

V
=

60,000 cu. in.

8,000,000 cu. in.
= .0075 = .75%

we see that the percentage error in volume is 3 times the percentage error in
length—and this is independent of the length and volumes involved. This is
what the propagation equation for relative error says: A 1% error in measur-
ing s, whether s = .0002 inches or s = 2000 inches, will produce a 3% error
in the calculated value of the volume.

Exercises

Estimation

1. a) Suppose you are going on a 110 mile trip. Then the time T it takes
to make the trip is a function of how fast you drive:

T (v) =
110 miles

v miles per hour
= 110 v−1 hours .

If you drive at v = 55 miles per hour, T will be 2 hours. Use a computer
microscope to calculate T ′(55) and write an English sentence interpreting
this number.
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b) More generally, if you and a friend are driving separate cars on a 110 mile
trip, and you are travelling at some velocity v, while her speed is 1% greater
than yours, then her travel time is less. How much less, as a percentage of
yours? Use the formula T ′(v) = −110v−2, which can be obtained using rules
given in the next section.

2. a) Suppose you have 600 square feet of plywood which you are going to
use to construct a cubical box. Assuming there is no waste, what will its
volume be?

b) Find a general formula which expresses the volume V of the box as a
function of the area A of plywood available.

c) Use a microscope to determine V ′(600), and express its significance in an
English sentence.

d) Use this multiplier to estimate the additional amount of plywood you
would need to increase the volume of the box by 10 cubic feet.

e) In the original problem, if you had to allow for wasting 10 square feet of
plywood in the construction process, by how much would this decrease the
volume of the box?

f) In the original problem, if you had to allow for wasting 2% of the ply-
wood in the construction process, by what percentage would this decrease
the volume of the box?

3. Let R(s) = 1/s. You can use the fact that R′(s) = −1/s2, to be
established in section 5. Since R(100) = and R′(100) =

, we can make the following approximations:

1/97 ≈ 1/104 ≈ R( ) ≈ .0106 .

4. Using the fact that the derivative of f(x) =
√

x is f ′(x) = 1/(2
√

x), you
can estimate the square roots of numbers that are close to perfect squares.

a) For instance f(4) = and f ′(4) = , so
√

4.3 ≈ .

b) Use the values of f(4) and f ′(4) to approximate
√

5 and
√

3.6.

c) Use the values of f(100) and f ′(100)to approximate
√

101 and
√

99.73.
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Error analysis

5. a) If you measure the side of a square to be 12.3 inches, with an uncer-
tainty of ±.05 inch, what is your relative error?

b) What is the area of the square? Write an error propagation equation that
will tell you how uncertain you should be about this value.

c) What is the relative error in your calculation of the area?

d) If you wanted to calculate the area with an error of less than 1 square
inch, how accurately would you have to measure the length of the side? If
you wanted the error to be less than .1 square inch, how accurately would
you have to measure the side?

6. a) Suppose the side of a square measures x meters, with a possible error
of ∆x meters. Write the equation that describes how the error in length
propagates to an error in the area. (The derivative of f(x) = x2 is f ′(x) = 2x;
see section 5.)

b) Write an equation that describes how the relative error in length propa-
gates to a relative error in area.

7. You are trying to measure the height of a building by dropping a stone
off the top and seeing how long it takes to hit the ground, knowing that the
distance d (in feet) an object falls is related to the time of fall, t (in seconds),
by the formula d = 16t2. You find that the time of fall is 2.5 seconds, and
you estimate that you are accurate to within a quarter of a second. What
do you calculate the height of the building to be, and how much uncertainty
do you consider your calculation to have?

8. You see a flash of lightning in the distance and note that the sound of
thunder arrives 5 seconds later. You know that at 20◦C sound travels at
343.4 m/sec. This gives you an estimate of

5 sec × 343.4
meters

sec
= 1717 meters

for the distance between you and the spot where the lightning struck. You
also know that the velocity v of sound varies as the square root of the tem-
perature T measured in degrees Kelvin (the Kelvin temperature = Celsius
temperature + 273), so

v(T ) = k
√

T
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for some constant k.

a) Use the information given here to determine the value of k.

b) If your estimate of the temperature is off by 5 degrees, how far off is
your estimate of the distance to the lightning strike? How significant is this
source of error likely to be in comparison with the imprecision with which
you measured the 5 second time lapse? (Suppose your uncertainty about the
time is .25 seconds.) Give a clear analysis justifying your answer.

9. We can measure the distance to the moon by bouncing a laser beam off a
reflector placed on the moon’s surface and seeing how long it takes the beam
to make the round trip. If the moon is roughly 400,000 km away, and if light
travels at 300,000 km/sec, how accurately do we have to be able to measure
the length of the time interval to be able to determine the distance to the
moon to the nearest .1 meter?
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3.5 A Global View

Derivative as Function

Up to now we have looked upon the derivative as a number. It gives us
information about a function at a point—the rate at which the function is
changing, the slope of its graph, the value of the multiplier in the microscope
equation. But the numerical value of the derivative varies from point The derivative

is a function
in its own right

to point, and these values can also be considered as the values of a new
function—the derivative function—with its own graph. Viewed this way the
derivative is a global object.

The connection between a function and its derivative can be seen very
clearly if we look at their graphs. To illustrate, we’ll use the function I(t)
that describes how the size of an infected population varies over time, from
the S-I-R problem we analyzed in chapter 1. The graph of I appears below,
and directly beneath it is the graph of I ′, the derivative of I. The graphs
are lined-up vertically: the values of I(a) and I ′(a) are recorded on the same
vertical line that passes through the point t = a on the t-axis.
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To understand the connection between the graphs, keep in mind that the
derivative represents a slope. Thus, at any point t, the height of the lowerThe height of I ′

is the slope of I graph (I ′) tells us the slope of the upper graph (I). At the points where I is
increasing, I ′ is positive—that is, I ′ lies above its t-axis. At the point where I
is increasing most rapidly, I ′ reaches its highest value. In other words, where
the graph of I is steepest, the graph of I ′ is highest. At the point where I is
decreasing most rapidly, I ′ has its lowest value.

Next, consider what happens when I itself reaches its maximum value.
Since I is about to switch from increasing to decreasing, the derivative must
be about to switch from positive to negative. Thus, at the moment when I is
largest, I ′ must be zero. Note that the highest point on the graph of I lines
up with the point where I ′ crosses the t-axis. Furthermore, if we zoomed in
on the graph of I at its highest point, we would find a horizontal line—in
other words, one whose slope is zero.

All functions and their derivatives are related the same way that I and
I ′ are. In the following table we list the various features of the graph of
a function; alongside each is the corresponding feature of the graph of the
derivative.

function derivative

increasing
decreasing
horizontal
steep (rising or falling)
gradual (rising or falling)
straight

positive
negative
zero
large (positive or negative)
small (positive or negative)
horizontal

By using this table, you should be able to make a rough sketch of the graph of
the derivative, when you are given the graph of a function. You can also read
the table from right to left, to see how the graph of a function is influenced
by the graph of its derivative.

For instance, suppose the graph of the function L(x) is

a

b c
de

f g

h
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Then we know that its derivative L′ must be 0 at points a, b, c, and d; that the Finding a derivative
“by eye”derivative must be positive between a and b and between c and d, negative

otherwise; that the derivative takes on relatively large values at e and g
(positive) and at f and h (negative); that the derivative must approach 0 at
the right endpoint and be large and negative at the left endpoint. Putting
all this together we conclude that the graph of the derivative L′ must look
something like following:

a b c de
f

g
h L' = 0

Conversely, suppose all we are told about a certain function G is
that the graph of its derivative G′ looks like this:

c
a

b
G' = 0

Then we can infer that the function G itself is decreasing between a and b
and is increasing everywhere else; that the graph of G is horizontal at a, b,
and c; that both ends of the graph of G slope upward from left to right—the
left end more or less straight, the right getting steeper and steeper.

Formulas for Derivatives

Basic Functions

If a function is given by a formula, then its derivative also has a formula,
defined for the points where the function is locally linear. The formula is
produced by a definite process, called differentiation. In this section we
look at some of the basic aspects, and in the next we will take up the chain
rule, which is the key to the whole process. Then in chapter 5 we will review
differentiation systematically.
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Most formulas are constructed by combining only a few basic functionsFormulas are
combinations of basic
functions

in various ways. For instance, the formula

3 x7 − sin x

8
√

x
,

uses the basic functions x7, sin x, and
√

x. In fact, since
√

x = x1/2, we can
think of x7 and

√
x as two different instances of a single basic “power of

x”—which we can write as xp.
The following table lists some of the more common basic functions with

their derivatives. The number c is an arbitrary constant, and so is the power
p. The last function in the table is the exponential function with base b. Its
derivative involves a parameter kb that varies with the base b. For instance,
exercise 6 in section 3 established that, when b = 2, then k2 ≈ .69. Exercise 7
established, for any base b, that kb is the value of the derivative of bx when
x = 0. We will have more to say about the parameter kb in the next chapter.

function derivative

c 0

xp pxp−1

sin x cos x

cos x – sin x

tan x sec2 x

bx kb · bx

Remember that the input to the trigonometric functions is always measured in radians; the
above formulas are not correct if x is measured in degrees. There are similar formulas if you
insist on using degrees, but they are more complicated. This is the principal reasons we work in
radians—the formulas are nice!

For example,

• the derivative of 1/x = x−1 is −x−2 = −1/x2;

• the derivative of
√

w = w1/2 is 1
2
w−1/2 =

1

2
√

w
;

• the derivative of xπ is πxπ−1; and

• the derivative of πx is kπ · πx ≈ 1.14 πx.
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Compare the last two functions. The first, xπ, is a power function—it is
a power of the input x. The second, πx, is an exponential function—the
input x appears in the exponent. When you differentiate a power function,
the exponent drops by 1; when you differentiate an exponential function, the
exponent doesn’t change.

Basic Rules

Since basic functions are combined in various ways to make formulas, we
need to know how to differentiate combinations . For example, suppose we
add the basic functions g(x) and h(x), to get f(x) = g(x) + h(x). Then The addition rule

f is differentiable, and f ′(x) = g′(x) + h′(x). Actually, this is true for all

differentiable functions g and h, not just basic functions. It says: “The rate
at which f changes is the sum of the separate rates at which g and h change.”
Here are some examples that illustrate the point.

If f(x) = tan x + x−6, then f ′(x) = sec2 x − 6x−7.

If f(w) = 2w +
√

w, then f ′(w) = k2 2w +
1

2
√

w
(and k2 ≈ .69).

Likewise, if we multiply any differentiable function g by a constant c, then
the product f(x) = cg(x) is also differentiable and f ′(x) = cg′(x). This says: The constant multiple

rule“If f is c times as large as g, then f changes at c times the rate of g.” Thus
the derivative of 5 sin x is 5 cosx. Likewise, the derivative of (5x)2 is 50 x.
(This took an extra calculation.) However, the rule does not tell us how to
find the derivative of sin(5x), because sin(5x) 6= 5 sin(x). We will need the
chain rule to work this one out.

The rules about sums and constant multiples of functions are just the first
of several basic rules for differentiating combinations of functions. We will
describe how to handle products and quotients of functions in chapter 5. For
the moment we summarize in the following table the rules we have already
covered.

function derivative

f(x) + g(x) f ′(x) + g′(x)

c · f(x) c · f ′(x)

With just the few facts already laid out we can differentiate a variety of
functions given by formulas. In particular, we can differentiate any polyno-
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mial function:

P (x) = anxn + an−1x
n−1 + · · ·+ a2x

2 + a1x + a0.

Here an, an−1, . . . , a2, a1, a0 are various constants, and n is a positive integer,
called the degree of the polynomial. A polynomial is a sum of constant
multiples of integer powers of the input variable. A polynomial of degree 1
is just a linear function. The derivative is

P ′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · ·+ 2a2x + a1.

All the rules presented up to this point are illustrated in the following
examples; note that the first three involve polynomials.

function derivative

7x + 2 7

5x4 − 2x3 20x3 − 6x2

5x4 − 2x3 + 17 20x3 − 6x2

3u15 + .5u8 − πu3 + u −
√

2 45u14 + 4u7 − 3πu2 + 1

6 · 10z + 17/z5 6·k10 10z − 85/z6

3 sin t − 2t3 3 cos t − 6t2

π cos x −
√

3 tanx + π2 −π sin x −
√

3 sec2 x

The first two functions have the same derivative because they differ only by
a constant, and the derivative of a constant is zero. The constant k10 that
appears in the fourth example is approximately 2.30.

Exercises

Sketching the graph of the derivative

1. Sketch the graphs of two different functions that have the same deriva-
tive. (For example, can you find two linear functions that have the same
derivative?)



DVI file created at 11:46,  21 May 2008
Copyright 1994, 2008 Five Colleges, Inc.

3.5. A GLOBAL VIEW 151

2. Here are the graphs of four related functions: s, its derivative s′, another
function c(t) = s(2t), and its derivative c′(t). The graphs are out of order.
Label them with the correct names s, s′, c, and c′.

a b c
d

3. a) Suppose a function y = g(x) satisfies g(0) = 0 and 0 ≤ g′(x) ≤ 1 for
all values of x in the interval 0 ≤ x ≤ 3. Explain carefully why the graph of
g must lie entirely in the triangular region shaded below:

0 1 2 3 4

1

2

3

y

x

b) Suppose you learn that g(1) = .5 and g(2) = 1. Draw the smallest shaded
region in which you can guarantee that the graph of g must lie.

4. Suppose h is differentiable over the interval 0 ≤ x ≤ 3. Suppose h(0) = 0,
and that

.5 ≤ h′(x) ≤ 1 for 0 ≤ x ≤ 1

0 ≤ h′(x) ≤ .5 for 1 ≤ x ≤ 2

−1 ≤ h′(x) ≤ 0 for 2 ≤ x ≤ 3

Draw the smallest shaded region in the x, y-plane in which you can guarantee
that the graph of y = h(x) must lie.
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5. For each of the functions graphed below, sketch the graph of its deriva-
tive.

y

x

i. y

x

ii. y

x

iii.

y

x

iv. y

x

v. y

x

vi.

y

x

vii. y

x

viii. y

x

ix.
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Differentiation

6. Find formulas for the derivatives of the following functions; that is, dif-

ferentiate them.

a) f(x) = 3x7 − .3x4 + πx3 − 17

b) g(x) =
√

3
√

x +
7

x5

c) h(w) = 2w8 − sin w +
1

3w2

d) R(u) = 4 cosu − 3 tanu + 3
√

u

e) V (s) = 4
√

16 − 4
√

s

f) F (z) =
√

7 · 2z + (1/2)z

g) P (t) = −a

2
t2 + v0t + d0 (a, v0, and d0 are constants)

7. Use a computer graphing utility for this exercise. Graph on the same
screen the following three functions:

1. the function f given below, on the indicated interval;

2. the function g(x) = (f(x + .01) − f(x − .01)) /.02 that estimates the
slope of the graph of f at x;

3. the function h(x) = f ′(x), where you use the differentiation rules to
find f ′.

a) f(x) = x4 on −1 ≤ x ≤ 1.

b) f(x) = x−1 on 1 ≤ x ≤ 8.

c) f(x) =
√

x on .25 ≤ x ≤ 9.

d) f(x) = sin x on 0 ≤ x ≤ 2π.

The graphs of g and h should coincide—or “share phosphor”—in each case.
Do they?

8. In each case below, find a function f(x) whose derivative f ′(x) is:

a) f ′(x) = 12 x11.

b) f ′(x) = 5x7.

c) f ′(x) = cos x + sin x.

d) f ′(x) = ax2 + bx + c.
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e) f ′(x) = 0.

f) f ′(x) =
5√
x

.

9. What is the slope of the graph of y = x−√
x at x = 4? At x = 100? At

x = 10000?

10. a) For which values of x is the function x − x3 increasing?

b) Where is the graph of y = x − x3 rising most steeply?

c) At what points is the graph of y = x − x3 horizontal?

d) Make a sketch of the graph of y = x − x3 that reflects all these results.

11. a) Sketch the graph of the function y = 2x +
5

x
on the interval .2 ≤

x ≤ 4.

b) Where is the lowest point on that graph? Give the value of the x-
coordinate exactly. [Answer: x =

√

5/2.]

12. What is the slope of the graph of y = sin x + cos x at x = π/4?

13. a) Write the microscope equation for y = sin x at x = 0.

b) Using the microscope equation, estimate the following values: sin .3,
sin .007, sin(−.02). Check these values with a calculator. (Remember to
set your calculator to radian mode!)

14. a) Write the microscope equation for y = tanx at x = 0.

b) Estimate the following values: tan .007, tan .3, tan(−.02). Check these
values with a calculator.

15. a) Write the microscope equation for y =
√

x at x = 3600.

b) Use the microscope equation to estimate
√

3628 and
√

3592. How far are
these estimates from the values given by a calculator?

16. If the radius of a spherical balloon is r inches, its volume is 4
3
πr3 cubic

inches.

a) At what rate does the volume increase, in cubic inches per inch, when
the radius is 4 inches?

b) Write the microscope equation for the volume when r = 4 inches.
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c) When the radius is 4 inches, approximately how much does it increase if
the volume is increased by 50 cubic inches?

d) Suppose someone is inflating the balloon at the rate of 10 cubic inches
of air per second. If the radius is 4 inches, at what rate is it increasing, in
inches per second?

17. A ball is held motionless and then dropped from the top of a 200 foot
tall building. After t seconds have passed, the distance from the ground to
the ball is d = f(t) = −16t2 + 200 feet.

a) Find a formula for the velocity v = f ′(t) of the ball after t seconds. Check
that your formula agrees with the given information that the initial velocity
of the ball is 0 feet/second.

b) Draw graphs of both the velocity and the distance as functions of time.
What time interval makes physical sense in this situation? (For example,
does t < 0 make sense? Does the distance formula make sense after the ball
hits the ground?)

c) At what time does the ball hit the ground? What is its velocity then?

18. A second ball is tossed straight up from the top of the same building
with a velocity of 10 feet per second. After t seconds have passed, the distance
from the ground to the ball is d = f(t) = −16t2 + 10t + 200 feet.

a) Find a formula for the velocity of the second ball. Does the formula
agree with given information that the initial velocity is +10 feet per second?
Compare the velocity formulas for the two balls; how are they similar, and
how are they different?

b) Draw graphs of both the velocity and the distance as functions of time.
What time interval makes physical sense in this situation?

c) Use your graph to answer the following questions. During what period of
time is the ball rising? During what period of time is it falling? When does
it reach the highest point of its flight?

d) How high does the ball rise?

19. a) What is the velocity formula for a third ball that is thrown downward

from the top of the building with a velocity of 40 feet per second? Check
that your formula gives the correct initial velocity.

b) What is the distance formula for the third ball? Check that it satisfies
the initial condition (namely, that the ball starts at the top of the building).
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c) When does this ball hit the ground? How fast is it going then?

20. A steel ball is rolling along a 20-inch long straight track so that its
distance from the midpoint of the track (which is 10 inches from either end)
is d = 3 sin t inches after t seconds have passed. (Think of the track as
aligned from left to right. Positive distances mean the ball is to the right of
the center; negative distances mean it is to the left.)

a) Find a formula for the velocity of the ball after t seconds. What is
happening when the velocity is positive; when it is negative; when it equals
zero? Write a sentence or two describing the motion of the ball.

b) How far from the midpoint of the track does the ball get? How can you
tell?

c) How fast is the ball going when it is at the midpoint of the track? Does
it ever go faster than this? How can you tell?

21. A forester who wants to know the height of a tree walks 100 feet from
its base, sights to the top of the tree, and finds the resulting angle to be 57
degrees.

a) What height does this give for the tree?

b) If the measurement of the angle is certain only to 5 degrees, what can you
say about the uncertainty of the height found in part (a)? (Note: you need
to express angles in radians to use the formulas from calculus: π radians =
180 degrees.)

22. a) In the preceding problem, what percentage error in the height of the
tree is produced by a 1 degree error in measuring the angle?

b) What would the percentage error have been if the angle had been 75
degrees instead of 57 degrees? 40 degrees?

c) If you can measure angles to within 1 degree accuracy and you want to
measure the height of a tree that’s roughly 150 feet tall by means of the
technique in the preceding problem, how far away from the tree should you
stand to get your best estimate of the tree’s height? How accurate would
your answer be?
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3.6 The Chain Rule

Combining Rates of Change

Let’s return to the expanding house that we studied in section 4. When the
temperature T increased, every side s of the house got longer; when s got
longer, the volume V got larger. We already discussed how V responds to
changes in s, but that’s only part of the story. What we’d really like to know
is this: exactly how does the volume V respond to changes in temperature
T ? We can work this out in stages: first we see how V responds to changes
in s, and then how s responds to changes in T .

Stage 1. Our “house” is a cube that measures 200 inches on a side, and the
microscope equation (section 4) describes how V responds to changes in s:

How volume responds
to changes in length∆V ≈ 120000

cubic inches of volume

inch of length
· ∆s inches.

Stage 2. Physical experiments with wood show that a 200 inch length of
wood increases about .0004 inches in length per degree Fahrenheit. This is
a rate, and we can build a second microscope equation with it:

How length responds
to changes in
temperature∆s ≈ .0004

inches of length

degree F
· ∆T degrees F,

where ∆T measures the change in temperature, in degrees Fahrenheit.

We can combine the two stages because ∆s appears in both. Replace
∆s in the first equation by the right-hand side of the second equation. The
result is

∆V ≈ 120000
cubic inches

inch
× .0004

inches

degree F
· ∆T degrees F.

We can condense this to
How volume responds

to changes in
temperature

∆V ≈ 48
cubic inches

degree F
· ∆T degrees F.

This is a third microscope equation, and it shows directly how the volume
of the house responds to changes in temperature. It is the answer to our
question.

As always, the multiplier in a microscope equation is a rate. The mul-
tiplier in the third microscope equation, 48 cubic inches/degree F, tells us
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the rate at which volume changes with respect to temperature. Thus, if the
temperature increases by 10 degrees between night and day, the house will be-
come about 480 cubic inches larger. Recall that Bodanis (see section 4) said
that the house might become only a few cubic inches larger—say, ∆V = 3
cubic inches. If we solve the microscope equation

3 ≈ 48 · ∆T

for ∆T , we see that the temperature would have risen only 1/16-th of a
degree F!

The rate that appears as the multiplier in the third microscope equation
is the product of the other two:

How the rates combine 48
cubic inches

degree F
= 120000

cubic inches

inch
× .0004

inches

degree F
.

Each of these rates is a derivative:

48
cubic inches

degree F
︸ ︷︷ ︸

dV/dT

= 120000
cubic inches

inch
︸ ︷︷ ︸

dV/ds

× .0004
inches

degree F
︸ ︷︷ ︸

ds/dT

.

We wrote the derivatives in Leibniz’s notation because it’s particularly help-
ful in keeping straight what is going on. For instance, dV/dT indicates very
clearly the rate at which volume is changing with respect to temperature, and
dV/ds the rate at which it is changing with respect to length. These rates
are quite different—they even have different units—but the notation V ′ does
not distinguish between them. In Leibniz’s notation, the relation between
the three rates takes this striking form:

dV

dT
=

dV

ds
· ds

dT
.

This relation is called the chain rule for the variables T , s, and V . (We’ll
see in a moment what this has to do with chains.)

The chain rule is a consequence of the way the three microscope equations
are related to each other. We can see how it emerges directly from the
microscope equations if we replace the numbers that appear as multipliers in
those equations by the three derivatives. To begin, we write

∆V ≈ dV

ds
· ∆s and ∆s ≈ ds

dT
· ∆T.
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Then, combining these equations, we get

∆V ≈ dV

ds
· ds

dT
· ∆T.

In fact, this is the microscope equation for V in terms of T , which can be
written more directly as

∆V ≈ dV

dT
· ∆T.

In these two expressions we have the same microscope equation, so the mul-
tipliers must be equal. Thus, we recover the chain rule:

dV

ds
· ds

dT
=

dV

dT
.

Recall that Leibniz worked directly with differentials, like dV and ds, so a derivative was a genuine
fraction. For him, the chain rule is true simply because we can cancel the two appearances of
“ds” in the derivatives. For us, though, a derivative is not really a fraction, so we need an
argument like the one in the text to establish the rule.

Chains and the Chain Rule

Let’s analyze the relationships between the three variables in the expanding
house problem in more detail. There are three functions involved: volume is a
function of length: V = V (s); length is a function of temperature: s = s(T );
and finally, volume is a function of temperature, too: V = V (s(T )). To
visualize these relationships better, we introduce the notion of an input–
output diagram. The input–output diagram for the function s = s(T ) is
just T → s. It indicates that T is the input of a function whose output is
s. Likewise s → V says that volume V is a function of length s. Since the
output of T → s is the input of s → V , we can make a chain of these two
diagrams:

An input–output chainT −→ s −→ V.

The result describes a function that has input T and output V . It is thus an
input–output diagram for the third function V = V (s(T )).

We could also write the input–output diagram for the third function sim-
ply as T → V ; in other words,

T −→ V equals T −→ s −→ V.
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We say that T → s → V is a chain that is made up of the two links T → sA chain and its links

and s → V . Since each input–output diagram represents a function, we
can attach a derivative that describes the rate of change of the output with
respect to the input:

-T s

ds

dT
-s V

dV

ds
-T V

dV

dT

Here is a single picture that shows all the relationships:

T s V-
ds

dT

-
dV

ds

�� XXz

dV

dT

We can thus relate the derivative dV/dT of the whole chain to the derivatives
dV/ds and ds/dT of the individual links by

dV

dT
=

dV

ds
· ds

dT
.

The same argument holds for any chain of functions. If u is a function of
x, and if y is some function of u, then a small change in x produces a small
change in u and hence in y. The total multiplier for the chain is simply the
product of the multipliers of the individual links:

The chain rule:
dy

dx
=

dy

du
·

du

dx

Moreover, an obvious generalization extends this result to a chain containing
more than two links.
A simple example. We can sometimes use the chain rule without giving it
much thought. For instance, suppose a bookstore makes an average profit of
$3 per book, and its sales are increasing at the rate of 40 books per month.
At what rate is its monthly profit increasing, in dollars per month? Does it
seem clear to you that the rate is $120 per month?
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Let’s analyze the question in more detail. There are three variables here:

time t measured in months;

sales s measured in books;

profit p measured in dollars.

The two known rates are

dp

ds
= 3

dollars

book
and

ds

dt
= 40

books

month
.

The rate we seek is dp/dt, and we find it by the chain rule:

dp

dt
=

dp

ds
· ds

dt

= 3
dollars

book
× 40

books

month

= 120
dollars

month

Chains, in general. The chain rule applies whenever the output of one
function is the input of another. For example, suppose u = f(x) and y =
g(u). Then y = g(f(x)), and we have:

x u y-

du

dx

-

dy

du

�� XXz

dy

dx

dy

dx
=

dy

du
· du

dx

Let’s take
u = x2 and y = sin(u);

then y = sin(x2), and it is not at all obvious what the derivative dy/dx ought
to be. None of the basic rules in section 4 covers this function. However,
those rules do cover u = x2 and y = sin(u):

du

dx
= 2x and

dy

du
= cos(u).

We can now get dy/dx by the chain rule:

dy

dx
=

dy

du
· du

dx
= cos(u) · 2x.
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Since we are interested in y as a function of x—rather than u—we should
rewrite dy/dx so that it is expressed entirely in terms of x:

If y = sin(x2), then
dy

dx
= 2x cos(u) = 2x cos(x2).

Let’s start over, using the function names f and g we introduced at the
outset:

u = f(x) and y = g(u), so y = g(f(x)).

The third function, y = g(f(x)), needs a name of its own; let’s call it h. Thus

Composition
of functions

y = h(x) = g(f(x)).

We say that h is composed of g and f , and h is called the composite, or
the composition, of g and f .

The problem is to find the derivative h′ of the composite function, knowing
g′ and f ′. Let’s translate all the derivatives into Leibniz’s notation.

h′(x) =
dy

dx
g′(u) =

dy

du
f ′(x) =

du

dx
.

We can now invoke the chain rule:

h′(x) =
dy

dx
=

dy

du
· du

dx
= g′(u) · f ′(x).

Although h′ is now expressed in terms of g′ and f ′, we are not yet done. The
variable u that appears in g′(u) is out of place—because h is a function of
x, not u. (We got to the same point in the example; the original form of the
derivative of sin(x2) was 2x cos(u).) The remedy is to replace u by f(x); we
can do this because u = f(x) is given.

The chain rule: h′(x) = g′(f(x))·f ′(x) when h(x) = g(f(x))

There is a certain danger in a formula as terse and compact as this that it
loses all conceptual meaning and becomes simply a formal string of symbols
to be manipulated blindly. You should always remember that the expression
in the box is just a mathematical statement of the intuitively clear idea that
when two functions are chained together, with the output of one serving as
the input of the other, then the combined function has a multiplier which is
simply the product of the multipliers of the two constituent functions.
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Using the Chain Rule

The chain rule will allow us to differentiate nearly any formula. The key is
to recognize when a given formula can be written as a chain—and then, how
to write it.
Example 1. Here is a problem first mentioned on page 149: What is the
derivative of y = sin(5x)? If we set

y = sin(u) where u = 5x,

then we find immediately

dy

du
= cos(u) and

du

dx
= 5.

Thus, by the chain rule we see

dy

dx
=

dy

du
· du

dx
= cos(u) · 5 = 5 cos(5x).

Example 2. w = 2cos z. Set

w = 2u and u = cos z.

Then, once again, the basic rules from section 4 are sufficient to differentiate
the individual links:

dw

du
= k2 2u and

du

dz
= − sin z.

The chain rule does the rest:

dw

dz
=

dw

du
· du

dz
= k2 2u · (− sin z) = −k2 sin z2cos z.

Example 3. p =
√

7t3 + sin2 t. This presents several challenges. First let’s
make a chain:

p =
√

u where u = 7t3 + sin2 t.

The basic rules give us dp/du = 1/2
√

u, but it is more difficult to deal with
u. Let’s at least introduce separate labels for the two terms in u:

q = 7t3 and r = sin2 t.
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Then
du

dt
=

dq

dt
+

dr

dt
and

dq

dt
= 21t2.

The remaining term r = sin2 t = (sin t)2 can itself be differentiated by
the chain rule. Set

r = v2 where v = sin t.

Then
dr

dv
= 2v and

dv

dt
= cos(t),

so
dr

dt
=

dr

dv
· dv

dt
= 2v cos t = 2 sin t cos t.

The final step is to assemble all the pieces:

dp

dt
=

dp

du
· du

dt
=

1

2
√

u
·
(
21t2 + 2 sin t cos t

)
=

21t2 + 2 sin t cos t

2
√

7t3 + sin2 t

By breaking down a complicated expression into simple pieces, and ap-
plying the appropriate differentiation rule to each piece, it is possible to
differentiate a vast array of formulas. You may meet two sorts of difficulties:
you may not see how to break down the expression into simpler parts; and
you may overlook a step. Practice helps overcome the first, and vigilance the
second.

Here is an example of the second problem: find the derivative of y =
−3 cos(2x). The derivative is not 3 sin(2x); it is 6 sin(2x). Besides remem-
bering to deal with the constant multiplier −3, and with the fact that there
is a minus sign in the derivative of cos u, you must not overlook the link
u = 2x in the chain that connects y to x.

Exercises

1. Use the chain rule to find dy/dx, when y is given as a function of x in
the following way.

a) y = 5u − 3, where u = 4 − 7x.

b) y = sin u, where u = 4 − 7x.

c) y = tan u, where u = x3.
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d) y = 10u, where u = x2.

e) y = u4, where u = x3 + 5.

2. Find the derivatives of the following functions.

a) F (x) = (9x + 6x3)5.

b) G(w) =
√

4w2 + 1.

c) S(w) =
√

(4w2 + 1)3.

d) R(x) =
1

1 − x
. (Hint: think of

1

1 − x
as (1 − x)−1.)

e) D(z) = 3 tan

(
1

z

)

.

f) dog(w) = sin2(w3 + 1).

g) pig(t) = cos(2t).

h) wombat(x) = 51/x.

3. If h(x) = (f(x))6 where f is some function satisfying f(93) = 2 and
f ′(93) = −4, what is h′(93)?

4. If H(x) = F (x2 − 4x + 2) where F is some function satisfying F ′(2) = 3,
what is H ′(4)?

5. If f(x) = (1 + x2)5, what are the numerical values of f ′(0) and f ′(1)?

6. If h(t) = cos(sin t), what are the numerical values of h′(0) and h′(π)?

7. If f ′(x) = g(x), which of the following defines a function which also must
have g as its derivative?

f(x + 17) f(17x) 17f(x) 17 + f(x) f(17)

8. Let f(t) = t2 + 2t and g(t) = 5t3 − 3. Determine all of the following:
f ′(t), g′(t), g(f(t)), f(g(t)), g′(f(t)), f ′(g(t)), (f(g(t)))′, (g(f(t)))′.

9. a) What is the derivative of f(x) = 2−x2

?

b) Sketch the graphs of f and its derivative on the interval −2 ≤ x ≤ 2.

c) For what values(s) of x is f ′(x) = 0? What is true about the graph of f
at the corresponding points?
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d) Where does the graph of f have positive slope, and where does it have
negative slope?

10. a) With a graphing utility, find the point x where the function y =
1/(3x2 − 5x + 7) takes its maximum value. Obtain the numerical value of x
accurately to two decimal places.

b) Find the derivative of y = 1/(3x2−5x+7), and determine where it takes
the value 0.

[Answer: y′ = −(6x − 5)(3x2 − 5x + 7)−2, and y′ = 0 when x = 5/6.]

c) Using part (b), find the exact value of x where y = 1/(3x2−5x+7) takes
its maximum value.

d) At what point is the graph of y = 1/(3x2 − 5x + 7) rising most steeply?
Describe how you determined the location of this point.

11. a) Write the microscope equation for the function y = sin
√

x at x = 1.

b) Using the microscope equation, estimate the following values: sin
√

1.05,
sin

√
.9.

12. a) Write the microscope equation for w =
√

1 + x at x = 0.

b) Use the microscope equation to estimate the values of
√

1.1056 and√
.9788. Compare your estimates with the values provided by a calculator.

13. When the sides of a cube are 5 inches, its surface area is changing at
the rate of 60 square inches per inch increase in the side. If, at that moment,
the sides are increasing at a rate of 3 inches per hour, at what rate is the
area increasing: is it 60, 3, 63, 20, 180, 5, or 15 square inches per hour?

14. Find a function f(x) for which f ′(x) = 3x2(5 + x3)10. Find a function
p(x) for which p′(x) = x2(5 + x3)10. A useful way to proceed is to guess. For
instance, you might guess f(x) = (5 + x3)11. While this guess isn’t correct,
it suggest what modification you might make to get the answer.

15. Find a function g(t) for which g′(t) = t/
√

1 + t2.
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3.7 Partial Derivatives

Let’s return to the sunrise function once again. The time of sunrise depends
not only on the date, but on our latitude. In fact, if we are far enough north
or south, there are days when the sun never rises at all. We give in the table
below the time of sunrise at eight different latitudes on March 15, 1990.

Latitude 36◦N 38◦N 40◦N 42◦N 44◦N 46◦N 48◦N 50◦N
Mar 15 6:10 6:11 6:12 6:13 6:13 6:13 6:14 6:14

Thus on March 15, the time of sunrise increases as latitude increases.
Clearly what this shows is that the time of sunrise is actually a function The time of sunrise

depends on latitude as
well as on the date

of two independent inputs: the date and the latitude. If T denotes the time
of sunrise, then we will write T = T (d, λ) to make explicit the dependence of
T on both the date d and the latitude λ. To capture this double dependence,
we need information like the following table:

Latitude 36◦N 38◦N 40◦N 42◦N 44◦N 46◦N 48◦N 50◦N
Mar 3 6:24 6:27 6:31 6:33 6:34 6:36 6:38 6:40

7 6:20 6:22 6:25 6:26 6:27 6:29 6:30 6:32
11 6:15 6:17 6:19 6:19 6:20 6:21 6:22 6:23
15 6:10 6:11 6:12 6:13 6:13 6:13 6:14 6:14
19 6:06 6:06 6:06 6:06 6:06 6:06 6:06 6:06
23 6:01 6:00 5:59 5:59 5:58 5:58 5:58 5:57
27 5:56 5:54 5:53 5:52 5:51 5:50 5:49 5:48

Thus we can say T (74, 42◦N) = 6:13 (March 15 is the 74-th day of the year).
Note, though, that at this date and place the time of sunrise is changing in
two very different senses:

First: At 42◦N, during the eight days between March 11 and March 19, the
time of sunrise gets 13 minutes earlier. We thus would say that on
March 15 at 42◦N, sunrise is changing at –1.63 minutes/day.

Second: On the other hand, on March 15 we see that the time of sunrise
varies by 1 minute as we go from 40◦N to 44◦N. We would thus say
that at 42◦N the rate of change of sunrise as the latitude varies is
approximately 1 minute/4◦ = +.25 minutes/degree of latitude.

Two quite different rates are at work here, one with respect to time, the
other with respect to latitude.
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We need a notation which allows us to talk about the different rates at
which a function can change, when that function depends on more than oneA function of several

variables has several
rates of change

variable. A rate of change is, of course, a derivative. But since a change
in one input produces only part of the change that a function of several
variables can experience, we call the rate of change with respect to any one
of the inputs a partial derivative. If the value of z depends on the variables
x and y according to the rule z = F (x, y), then we denote the rate at which
z is changing with respect to x when x = a and y = b by

Fx(a, b) or by
∂z

∂x
(a, b).

We call this rate the partial derivative of F with respect to x. Similarly,Partial derivatives

we define the partial derivative of F with respect to y to be the rate at which
z is changing when y is varied. It is denoted

Fy(a, b) or
∂z

∂y
(a, b).

There is nothing conceptually new involved here; to calculate either of these
partial derivatives you simply hold one variable constant and go through
the same limiting process as before for the input variable of interest. Note
that, to call attention to the fact that there is more than one input variable
present, we write

∂z

∂x
rather than

dz

dx
,

as we did when x was the only input variable.
To calculate the partial derivative of F with respect to x at the point

(a, b), we can use

Fx(a, b) =
∂z

∂x
(a, b) = lim

∆x→0

F (a + ∆x, b) − F (a, b)

∆x
.

Similarly,

Fy(a, b) =
∂z

∂y
(a, b) = lim

∆y→0

F (a, b + ∆y) − F (a, b)

∆y
.

By using this notation for partial derivatives, we can cast some of our
earlier statements about the sunrise function T = T (d, λ) in the following
form:

Td(74, 42◦N) ≈ −1.63 minutes per day;

Tλ(74, 42◦N) ≈ +.25 minutes per degree.
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Partial Derivatives as Multipliers

For any given date d and latitude λ we can write down two microscope
equations for the sunrise function T (d, λ). One describes how the time of
sunrise responds to changes in the date, the other to changes in the latitude.
Let’s consider variations in the time of sunrise in the vicinity of March 15
and 42◦N.

The partial derivative Td(74, 42◦N) of T with respect to d is the multiplier
in the first of these microscope equations:

The microscope
equation for dates∆T ≈ Td(74, 42◦N) · ∆d.

For example, from March 15 to March 17 (∆d = 2 days), we would expect
the time of sunrise to change by

∆T ≈ −1.63
min

day
× 2 days = −3.3 minutes.

Thus, we would expect the time of sunrise on March 17 at 42◦N to be ap-
proximately

T (76, 42◦N) ≈ 6:09.7.

The partial derivative Tλ(74, 42◦N) of T with respect to λ is the multiplier
in the second microscope equation:

The microscope
equation for latitudes∆T ≈ Tλ(74, 42◦N) · ∆λ.

If, say, we moved 1◦ north, to 43◦N, we would expect the time of sunrise on
March 7 to change by

∆T ≈ .25
min

deg
× 1 degree = .25 minute.

The time of sunrise on March 15 at 43◦N would therefore be

T (74, 43◦N) ≈ 6:13.25.

We have seen what happens to the time of sunrise from March 15 to
March 17 if we stay at 42◦N, and we have seen what happens to the time
on March 15 if we move from 42◦N to 43◦N. Can we put these two pieces
of information together? That is, can we determine the time of sunrise on
March 17 at 43◦N? This involves changing both the date and the latitude.
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To determine the total change we shall just combine the two changes ∆TThe total change

we have already calculated. Making the date two days later moves the time
of sunrise 3.3 minutes earlier, and travelling one degree north makes the time
of sunrise .25 minutes later, so the net effect would be to change the time of
sunrise by

∆T ≈ −3.3 min + .25 min ≈ −3 minutes.

This puts the time of sunrise at T (76, 43◦N) ≈ 6:10.

We can formulate this idea more generally in the following way: par-
tial derivatives are not only multipliers for gauging the separate effects that
changes in each input have on the output, but they also serve as multipliers
for gauging the cumulative effect that changes in all inputs have on the out-
put. In general, if z = F (x, y) is a function of two variables, then near the
point (a, b), the combined change in z caused by small changes in x and y
can be stated by the full microscope equation:

The full microscope equation:

∆z ≈ Fx(a, b) · ∆x + Fy(a, b) · ∆y

As was the case for the functions of one variable, there is an important
class of functions for which we may write “=” instead of “≈” in this relation,
the linear functions. The most general form of a linear function of two
variables is z = F (x, y) = mx + ny + c, for constants m, n, and c.

In the exercises you will have an opportunity to verify that for a linear
function z = F (x, y) = mx+ny+c and for all (a, b), we know that Fx(a, b) =
m and Fy(a, b) = n, and the full microscope equation ∆z = Fx(a, b) · ∆x +
Fy(a, b) · ∆y is true for all values of ∆x and ∆y.

Formulas for Partial Derivatives

No new rules are needed to find the formulas for the partial derivatives of
a function of two variables that is given by a formula. To find the partialTo find a partial

derivative, treat the
other variable as a
constant

derivative with respect to one of the variables, just treat the other variable
as a constant and follow the rules for functions of a single variable. (The
basic rules are described in section 5 and the chain rule in section 6.) We
give two examples to illustrate the method.
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Example 1. For z = F (x, y) = 3x2y + 5y2
√

x, we have

Fx(x, y) = 3y(2x) + 5y2 1

2
√

x
= 6xy +

5y2

2
√

x

Fy(x, y) = 3x2 + 10y
√

x

Example 2. For w = G(u, v) = 3u5 sin v − cos v + u, we have

∂w

∂u
= 15u4 sin v + 1

∂w

∂v
= 3u5 cos v + sin v

The formulas for derivatives and the combined multiplier effect of partial
derivatives allow us to determine the effect of changes in length and in width
on the area of a rectangle. The area A of the rectangle is a simple function
of its dimensions l and w, A = F (l, w) = lw. The partial derivatives of the
area are then

Fl(l, w) = w and Fw(l, w) = l.

area = l · w

area = l · ∆w � area = ∆l · ∆w

� area = w · ∆l

∆w

{

w







l
︷ ︸︸ ︷

∆l
︷︸︸︷

Changes ∆l and ∆w in the dimensions produce a change
The full microscope

equation for
rectangular area

∆A ≈ w · ∆l + l · ∆w

in the area. The picture below shows that the exact value of ∆A includes
an additional term—namely ∆l · ∆w—that is not in the approximation w ·
∆l + l ·∆w. The difference, ∆l ·∆w, is very small when the changes ∆l and
∆w are small. In chapter 5 we will have a further look at the nature of this
approximation.
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Exercises

1. Use differentiation formulas to find the partial derivatives of the following
functions.

a) x2y.

b)
√

x + y.

c) x2y + 5x3 −√
x + y.

d) 10xy.

e)
y

x
.

f) sin
y

x
.

g) 17
x2

y3
− x2 sin y + π.

h)
uv

5
+

5

uv
.

i) 2
√

x 3
√

y − 7 cos x.

j) x tan y.

2. On March 7 in the Northern Hemisphere, the farther south you are the
earlier the sun rises. The sun rises at 6:25 on this date at 40◦N. If we had
been far enough south, we could have experienced a 6:25 sunrise on March
5. Near what latitude did this happen?

3. The volume V of a given quantity of gas is a function of the temperature
T (in degrees Kelvin) and the pressure P . In a so-called ideal gas the func-
tional relationship between volume and pressure is given by a particularly
simple rule called the ideal gas law:

V (T, P ) = R
T

P
,

where R is a constant.

a) Find formulas for the partial derivatives VT (T, P ) and VP (T, P )

b) For a particular quantity of an ideal gas called a mole, the value of R
can be expressed as 8.3×103 newton-meters per degree Kelvin. (The newton

is the unit of force in the meter-kilogram-second (or MKS) system of units.
Check that the units in the ideal gas law are consistent if V is measured in
cubic meters, T in degrees Kelvin, and P in newtons per square meter.
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c) Suppose a mole of gas at 350 degrees Kelvin is under a pressure of 20
newtons per square meter. If the temperature of the gas increases by 10
degrees Kelvin and the volume increases by 1 cubic meter, will the pressure
increase or decrease? By about how much?

4. Write the formula for a linear function F (x, y) with the following prop-
erties:

Fx(x, y) = .15 for all x and y

Fy(x, y) = 2.31 for all x and y

F (4, 1) = 8

5. The purpose of this exercise is to verify the claims made in the text
for the linear function z = F (x, y) = mx + ny + c, where m, n and c are
constants.

a) Use the differentiation rules to find the partial derivatives of F .

b) Use the definition of the partial derivative Fx(a, b) to show that Fx(a, b) =
m for any input (a, b). That is, show that the value of

F (a + ∆x, b) − F (a, b)

∆x

exactly equals m, no matter what a and b are.

c) Compute the exact value of the change

∆z = F (a + ∆x, b + ∆y) − F (a, b)

corresponding to changing a by ∆x and b by ∆y.

6. Suppose w = G(u, v) =
uv

3 + v
.

a) Approximate the value of the partial derivative Gu(1, 2) by computing
∆w/∆u for ∆u = ±.1, ±.01, . . . , ±.00001.

b) Approximate the value of Gv(1, 2) by computing ∆w/∆v for ∆v = ±.1,
±.01, . . . , ±.00001.

c) Write the full microscope equation for G(u, v) at (u, v) = (1, 2).

d) Use the full microscope equation to approximate G(.8, 2.1). How close is
your approximation to the true value of G(.8, 2.1)?
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7. a) A rectangular piece of land has been measured to be 51 feet by 2034
feet. What is its area?

b) The narrow dimension has been measured with an accuracy of 4 inches,
but the long dimension is accurate only to 10 feet. What is the error, or
uncertainty, in the calculated area? What is the percentage error?

8. Suppose z = f(x, y) and

f(3, 12) = 240, fx(3, 12) = 7, fy(3, 12) = 4.

a) Estimate f(4, 12), f(3, 13), f(4, 13), f(4, 10).

b) When x = 3 and y = 12, how much does a 1% increase in x cause z to
change? How much does a 1% increase in y cause z to change? Which has
the larger effect: a 1% increase in x or a 1% increase in y?

9. Let P (K, L) represent the monthly profit, in thousands of dollars, of a
company that produces a product using capital whose monthly cost is K
thousand dollars and labor whose monthly cost is L thousand dollars. The
current levels of expense for capital and labor are K = 23.5 and L = 39.0.
Suppose now that company managers have determined

∂P

∂K
(23.5, 39.0) = −.12,

∂P

∂L
(23.5, 39.0) = −.20.

a) Estimate what happens to the monthly profit if monthly capital expenses
increase to $24,000.

b) Each typical person added to the work force increases the monthly labor
expense by $1,500. Estimate what happens to the monthly profit if one more
person is added to the work force. What, therefore, is the rate of change of
profit, in thousands of dollars per person? Is the rate positive or negative?

c) Suppose managers respond to increased demand for the product by adding
three workers to the labor force. What does that do to monthly profit? If
the managers want to keep the profit level unchanged, they could try to alter
capital expenses. What change in K would leave profit unchanged after the
three workers are added? (This is called a trade-off.)

10. A forester who wants to know the height of a tree walks 100 feet from
its base, sights to the top of the tree, and finds the resulting angle to be 57
degrees.
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a) What height does this give for the tree?

b) If the 100-foot measurement is certain only to 1 foot and the angle mea-
surement is certain only to 5 degrees, what can you say about the uncertainty
of the height measured in part (a)? (Note: you need to express angles in ra-

dians to use calculus: π radians = 180 degrees.)

c) Which would be more effective: improving the accuracy of the angle mea-
surement, or improving the accuracy of the distance measurement? Explain.
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3.8 Chapter Summary

The Main Ideas

• The functions we study with the calculus have graphs that are locally
linear; that is, they look approximately straight when magnified under
a microscope.

• The slope of the graph at any point is the limit of the slopes seen
under a microscope at that point.

• The rate of change of a function at a point is the slope of its graph
at that point, and thus is also a limit. Its dimensional units are (units
of output)/(unit of input).

• The derivative of f(x) at x = a is name given to both the rate of
change of f at a and the slope of the graph of f at (a, f(a)).

• The derivative of y = f(x) at x = a is written f ′(a). The Leibniz
notation for the derivative is dy/dx.

• To calculate the derivative f ′(a), make successive approximations
using ∆y/∆x:

f ′(a) = lim
∆x→0

∆y

∆x
= lim

h→0

f(a + h) − f(a − h)

2h
= lim

h→0

f(a + h) − f(a)

h
.

• The microscope equation ∆y ≈ f ′(a) ·∆x describes the relation
between x and y = f(x) as seen under a microscope at (a, f(a)); ∆x
and ∆y are the microscope coordinates.

• The microscope equation describes how the output changes in response
to small changes in the input. The response is proportional, and the
derivative f ′(a) plays the role of multiplier, or scaling factor.

• The microscope equation expresses the local linearity of a function in
analytic form. The microscope equation is exact for linear functions.

• The microscope equation describes error propagation when one quan-
tity, known only approximately, is used to calculate another.
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• The derivative function is the rule that assigns to any x the number
f ′(x).

• The derivative of a function gives information about the shape of the
graph of the function, and conversely.

• If a function is given by a formula, its derivative also has a formula.
There are formulas for the derivatives of the basic functions, and
there are rules for the derivatives of combinations of basic functions.

• The chain rule gives the formula for the derivative of a chain, or
composite of functions.

• Functions that have more than one input variable have partial deriva-
tives. A partial derivative is the rate at which the output changes with
respect to one variable when we hold all the others constant.

• If a multi-input function is given by a formula, its partial derivatives
also have formulas that can be found using the same rules that apply
to single-input functions.

• A function z = F (x, y) of two variables also has a microscope equa-
tion:

∆z ≈ Fx(a, b) · ∆x + Fy(a, b) · ∆y.

The partial derivatives are the multipliers in the microscope equation.

Expectations

• You should be able to approximate f ′(a) by zooming in on the graph
of f near a and calculating the slope of the graph on an interval on
which the graph appears straight.

• You should be able to approximate f ′(a) using a table of values of f
near a.

• From the microscope equation ∆y ≈ f ′(a) · ∆x, you should be able to
estimate any one of ∆x, ∆y and f ′(a) if given the other two.

• If y = f(x) and there is an error in the measured value of x, you should
be able to determine the absolute and relative error in y.
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• You should be able to sketch the graph of f ′ if you are given the graph
of f .

• You should be able to use the basic differentiation rules to find the
derivative of a function given by a formula that involves sums of con-
stant multiples of xp, sin x, cos x, tanx, or bx.

• You should be able to break down a complicated formula into a chain
of simple pieces.

• You should be able to use the chain rule to find the derivative of a
chain of functions. This could involve several independent steps.

• For z = F (x, y), you should be able to approximate any one of ∆z,
∆x, ∆y, Fx(a, b) and Fy(a, b), if given the other four.

• You should be able to find formulas for partial derivatives using the
basic rules and the chain rule for finding formulas for derivatives.


