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Chapter 2

Successive Approximations

In this chapter we continue exploring the mathematical implications of the
S-I-R model. In the last chapter we calculated future values of S, I, and R
by assuming that the rates S ′, I ′, and R′ stayed fixed for a whole day. Since
the rates are not fixed—they change with S, I, and R—the values of S, I,
and R we obtained have to be considered as estimates only. In this chapter
we will see how to build a succession of better and better estimates that get
us as close as we wish to the true values implied by the model.

This method of successive approximation is a basic tool of calculus. It
is the one fundamentally new process you will encounter, the ingredient that
sets calculus apart from the mathematics you have already studied. With it
you will be able to solve a vast array of problems that other methods can’t
handle.

2.1 Making Approximations

In chapter 1 we looked at the specific S-I-R model:

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

with initial values at time t = 0:

S = 45400, I = 2100, R = 2500.

61



DVI file created at 11:25,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

62 CHAPTER 2. SUCCESSIVE APPROXIMATIONS

We originally developed this model as a description of the relations among
the different components of an epidemic. Almost immediately, though, we
began using the rate equations in the model as a recipe for predicting what
happens over the course of the epidemic: If we know at some time t the values
of S(t), I(t), and R(t)), then the equations tell us how to estimate values ofRate equations tell us

where to go next the functions at other times. We used this approach in the last chapter to
move backwards and forwards in time, calculating the values of S, I, and R
as we went.

While we got numbers, there were some questions about how accurate
these numbers were—that is, how exactly they represented the values implied
by the model. In the process we called “there and back again” we used current
values of S, I, and R to find the rates, used these rates to go forward one
day, recalculate the rates, and come back to the present—and we got different
values from the ones we started with! Resolving this discrepancy will be an
important feature of the technique developed in this section.

The Longest March Begins with a Single Step

So far, in generating numbers from the S-I-R rate equations, we have as-
sumed that the rates remained constant over an entire day, or longer. Since
the rates aren’t constant—they depend on the values of S, I, and R, which
are always changing—the values we calculated for the variables at times other
than the given initial time are, at best, estimates. These estimates, while
incorrect, are not useless. Let’s see how they behave in the “there and back
again” process of chapter 1 as we recalculate the rates more and more fre-
quently, producing a sequence of approximations to the values we are looking
for.

There and Back Again Again

On page 14 in chapter 1 we used the rate equations to go forward a day and
come back again. We started with the initial values

S(0) = 45400, I(0) = 2100, R(0) = 2500,

calculated the rates, went forward a day to t = 1, recalculated the rates, and
came back a day to t = 0. We ended up with the estimates

S(0) = 45737.1, I(0) = 1820.3, R(0) = 2442.6
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—which are rather far from the values of S(0), I(0), and R(0) we started
with.

A clue to the resolution of this discrepancy appeared in problem 18,
page 23. There you were asked to go forward two days and come back
again in two different ways, using ∆t = 2 (a total of 2 steps) in the first case
and ∆t = 1 (a total of 4 steps) in the second. Here are the resulting values
calculated for S(0) in each case and the discrepancy between this value and
the original value S(0) = 45400:

step size new S(0) discrepancy

∆t = 2 46717.6 1317.6
∆t = 1 46021.3 621.3

While the discrepancy is fairly large in either case, ∆t = 1 clearly does
better than ∆t = 2. But if smaller is better, why stop at ∆t = 1? What Smaller steps generate

a smaller discrepancyhappens if we take even smaller time steps, get the corresponding new values
of S, I, and R, and use these values to recalculate the rates each time?

Recall that the rate S ′ (or I ′ or R′) is simply the multiplier which gives
∆S—the (estimated) change in S—for a given change ∆t in t

∆S = S ′ · ∆t .

This relation holds for any value of ∆t, integer or not. Once we have this
value for ∆S, we can then calculate

new (estimated) S = current (estimated) S + ∆S

in the usual way. Note that we have written “(estimated)” throughout to
emphasize the fact that if S ′ is not constant over the entire time ∆t, then
the value we get for ∆S will typically be only an approximation to the real
change in S.

Let’s try going forward one day and coming back, using different values
for ∆t. As we reduce ∆t the number of calculations will increase. The pro-
gram SIR we used in the last chapter can still be used to do the tedious
calculations. Thus if we decide to use 10 steps of size ∆t = .1, we would just
change two lines in that program:

deltat = .1

FOR k = 1 TO 10

If we now run SIR with these modifications we can verify the following se-
quence of values (The values have been rounded off, and the PRINT statement
has been modified to show the new values of the rates at each step as well):
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Estimated values of S, I, and R
for step sizes ∆t = .1

t S(t) I(t) R(t) S′(t) I ′(t) R′(t)

0.0
0.1
0.2
0.3

...
1.0

45 400.0
45 304.7
45 205.9
45 103.6

...
44 278.7

2100.0
2180.3
2263.6
2349.7

...
3042.9

2500.0
2515.0
2530.6
2546.7

...
2678.4

–953.4
–987.8

–1023.3
–1059.8

...
–1347.7

803.4
832.1
861.6
892.0

...
1130.0

150.0
155.7
161.7
167.8

...
217.4

Having arrived at t = 1, we can now use SIR to turn around and go back
to t = 0. Here’s how:

• Change the initial line of the program to t = 1 to reflect our new
starting time.

• Change the next three lines to use the values we just calculated for
S(1), I(1), and R(1) as our starting values in SIR.The sign of deltat

determines whether we
move forward or
backward in time

• Change the value of deltat to be -.1 (so each time the program exe-
cutes the command t = t + deltat it reduces the value of t by .1).

With these changes SIR will yield the desired estimates for S(0), I(0), and
R(0), and we get

S(0) = 45433.5, I(0) = 2072.3, R(0) = 2494.3.

This is clearly a considerable improvement over the values obtained with
∆t = 1.

With this promising result, the obvious thing to do is to try even smaller
values of ∆t, perhaps ∆t = .01. We could continue using SIR, making the
needed modifications each time. Instead, though, let’s rewrite SIR slightly to
make it better suited to our current needs. Look at the program SIRVALUE
below and compare it with SIR.
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Program: SIRVALUE

tinitial = 0

tfinal = 1

t = tinitial

S = 45400

I = 2100

R = 2500

numberofsteps = 10

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

NEXT k

PRINT t, S, I, R

Program: SIR

t = 0

S = 45400

I = 2100

R = 2500

deltat = .1

FOR k = 1 TO 10

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

PRINT t, S, I, R

NEXT k

You will see that the major change is to place the PRINT statement outside
the loop, so only the final values of S, I, and R get printed. This speeds up the
work, since otherwise, with ∆t = .001, for instance, we would be asking the
computer to print out 1000 lines—about 30 screens of text! Another change is
that the value of deltat no longer needs to be specified—it is automatically
determined by the values of tinitial, tfinal, and numberofsteps.

As written above, SIR and SIRVALUE both run for 10 steps of size 0.1 .
By changing the value of numberofsteps in the program we can quickly
get estimates for S(1), I(1), and R(1) for a wide range of values for ∆t . With a computer we

can generate lots of
data and look for

patterns

Moreover, once we have these estimates we can use SIRVALUE again to go
backwards in time to t = 0, by making changes similar to those we made in
SIR earlier. First, we need to change the value of tinitial to 1 and the
value of tfinal to 0. Notice that this automatically will make deltat a
negative quantity, so that each time we run through the loop we step back in
time. Second, we need to set the starting values of S, I, and R to the values
we just obtained for S(1), I(1), and R(1). With these changes, SIRVALUE
will give us the corresponding estimated values for S(0), I(0), and R(0).
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If we use SIRVALUE with ∆t ranging from 1 to .00001 (which means
letting numberofsteps range from 1 to 100,000) we get the table below. This
table lists the computed values of S(1), I(1), and R(1) for each ∆t, followed
by the estimated value of S(0) obtained by running SIRVALUE backward
in time from these new values, and, finally, the discrepancy between this
estimated value of S(0) and the original value S(0) = 45400.

Estimated values of S, I, and R when t = 1,

for step sizes ∆t = 10−N , N = 0, . . . 5,
together with the corresponding backwards estimate for S(0).

∆t S(1) I(1) R(1) new S(0) discrepancy

1.0
0.1
0.01
0.001
0.000 1
0.000 01

44 446.6
44 278.6648
44 257.8301
44 255.6960
44 255.4821
44 255.4607

2903.4
3042.9241
3060.1948
3061.9633
3062.1406
3062.1584

2650.0
2678.4111
2681.9751
2682.3406
2682.3773
2682.3809

45 737.0626
45 433.4741
45 403.3615
45 400.3363
45 400.0336
45 400.0034

337.0626
33.4741
3.3615
.3363
.0336
.0034

There are several striking features of this table. The first is that if we go
forward one day and come back again, we can get back as close as we want toSmaller steps generate

a discrepancy which
can be made as small
as we like

our initial value of S(0) provided we recalculate the rates frequently enough.
After 200,000 rounds of calculations (∆t = .00001) we ended up only .0034
away from our starting value. In fact, there is a clear pattern to the values
of the errors as we decrease the step size. In the exercises it is left for you to
explore this pattern and show that similar results hold for I and for R.

A second feature is that as we read down the column under S(1), we
find each digit stabilizes—that is, after changing for a while, it eventually
becomes fixed at a particular value. The initial digits 44 are the first to
stabilize, and that happens by the time ∆t = 0.1. Then the third digit 2
stabilizes, when ∆t = 0.01. Roughly speaking, one more digit stabilizes at
each successive level. The table is revealing to us, digit by digit, the true
value of S(1). By the fifth stage we learn that the integer part of S(1) is
44255. By the sixth stage we can say that the true value of S(1) is 44255.4 . . .
.

When we write S(1) = 44255.4 . . . we are expressing S(1) to one decimalApproximations lead to
exact values place accuracy. This says, first, that the decimal expansion of S(1) begins

with exactly the six digits shown and, second, that there are further digits
after the 4 (represented by the three dots “. . . ”). In this case, we can identify
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further digits simply by continuing the table. Since our step sizes have the
form ∆t = 10−N , we just need to increase N . For example, to express S(1)
accurately to six decimal places, we need to stabilize the first eleven digits in
our estimates of S(1). The table suggests that ∆t should probably be about
10−10—i.e., N = 10.

The true value of S(1) emerges through a process that generates a se-
quence of successive approximations. We say S(1) = 44255.4. . . is the limit
of this sequence as ∆t is made smaller and smaller or, equivalently, as N is
made larger and larger. We also say that the sequence of successive approxi-
mations converges to the limit S(1). Here is a mathematical notation that
expresses these statements more compactly:

S(1) = lim
∆t→0

{the estimate of S(1)} or, equivalently,

= lim
N→∞

{the estimate of S(1) with ∆t = 10−N}.

The symbol ∞ stands for “infinity,” and the expression N → ∞ is often
pronounced “as N goes to infinity.” However, it is often more instructive to
say “as N gets larger and larger, without bound.”

You should check that similar patterns are occurring in the I(1) and R(1)
columns as well.

The limit concept lies at the heart of calculus. Later on we’ll give a precise definition, but you
should first see limits at work in a number of contexts and begin to develop some intuitions about
what they are. This approach mirrors the historical development of calculus—mathematicians
freely used limits for well over a century before a careful, rigorous definition was developed.

One Picture Is Worth a Hundred Tables

As we noted, the program SIRVALUE prints out only the final values of
S, I, and R because it would typically take too much space to print out the
intermediate values. However, if instead of printing these values we plot them
graphically, we can convey all this intermediate information in a compact and
comprehensible form.

Suppose, for instance, that we wanted to record the calculations leading
up to S(3) by plotting all the points. The graphs below plot all the pairs
of values (t, S) that are calculated along the way for the cases ∆t = 1 (4
points), ∆t = .1 (31 points), and ∆t = .01 (301 points).
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42000
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S

t

By the time we get to steps of size .01, the resulting graph begins to
look like a continuous curve. This suggests that instead of simply plotting
the points we might want to draw lines connecting the points as they’re
calculated.

We can easily modify SIRVALUE to do this—the only changes will be to
replace the PRINT command with a command to draw a line and to move
this command inside the loop (so that it is executed every time new values
are computed). We will also need to add a line or two at the beginning to
tell the computer to set up the screen to plot points. This usually involves
opening a window—i.e., specifying the horizontal and vertical ranges the
screen should depict. Since programming languages vary slightly in the way
this is done, we use italicized text “Set up GRAPHICS” to make clear that
this statement is not part of the program—you will have to express this in
the form your programming language specifies. Similarly, the command

Plot the line from (t, S) to (t + deltat, S + deltaS)

will have to be stated in the correct format for your language. The computa-
tional core of SIRVALUE is unchanged. Here is what the new program looks
like if we want to use ∆t = .1 and connect the points with straight lines:
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Program: SIRPLOT

Set up GRAPHICS

tinitial = 0

tfinal = 3

t = tinitial

S = 45400

I = 2100

R = 2500

numberofsteps = 30

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

Plot the line from (t, S) to (t + deltat, S + deltaS)

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

NEXT k

If we had wanted just to plot the points, we could have used a command
of the form Plot the point (t, S) in place of the command to plot the line,
moving this command down two lines so it came after we had computed the
new values of t and S. We would also need to place that command before
the loop so that the initial point corresponding to t = 0 gets plotted.

When we “connect the dots” like this we emphasize graphically the under-
lying assumption we have been making in all our estimates: that the function
S(t) is linear (i.e., it is changing at a constant rate) over each interval ∆t.
Let’s see what the graphs look like when we do this for the three values of
∆t we used above. To compare the results more readily we’ll plot the graphs
on the same set of axes. (We will look at a program for doing this in the
next section.) We get the following picture:
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3 steps
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The graphs become indistinguishable from each other and increasingly
look like smooth curves as the number of segments increases. If we plottedGraphs made up of

line segments look like
smooth curves if
the segments are
short enough

the 3000-step graph as well, it would be indistinguishable from the 300-step
graph at this scale. If we now shift our focus from the end value S(3) and
look at all the intermediate values as well, we find that each graph gives an
approximate value for S(t) for every value of t between 0 and 3. We are
seeing the entire function S(t) over this interval.

Just as we wrote

S(3) = lim
N→∞

{the estimate of S(3) with ∆t = 10−N}.

We can also write

graph of S(t) = lim
N→∞

{line-segment approximations with ∆t = 10−N}.

The way we see the graph of S(t) emerging from successive approximations
is our first example of a fundamental result. It has wide-ranging implications
which will occupy much of our attention for the rest of the course.
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Piecewise Linear Functions

Let’s examine the implications of this approach more closely by considering
the “one-step” (∆t = 3) approximation to S(t) and the “three-step” (∆t = 1)
approximation over the time interval 0 ≤ t ≤ 3. In the first case we are
making the simplifying assumption that S decreases at the rate S ′ = −953.4
persons per day for the entire three days. In the second case we use three
shorter steps of length ∆t = 1, with the slopes of the corresponding segments
given by the table on page 13 in Chapter 1, summarized below (note that
since ∆t = 1 day we have that the magnitude of ∆S = S ′ ·∆t is the same as
the magnitude of S ′):

t S S ′

0
1
2
3

45 400.0
44 446.6
43 156.1
41 435.7

−953.4
−1 290.5
−1 720.4

Here are the corresponding graphs we get:
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−1290.5

−1720.4

3 days

−953.4 × 3

42539.8

41435.7

one large step

three small steps

Two approximations to S during the first three days

The “one-step” estimate. Assuming that S decreases at the rate
S ′ = −953.4 persons per day for the entire three days is equivalent to as-
suming that S follows the upper graph—a straight line with slope –953.4
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persons/day. In other words, the one-step approach approximates S by a
linear function of t. If we use the notation S1(t) to denote this (one-step)
linear approximation we have

One-step estimate: S(t) ≈ S1(t) = 45400 − 953.4 t .

Because the one-step estimate is actually a function we can find the value
of S1(t) for all t in the interval 0 ≤ t ≤ 3, not just t = 3, and thereby get
corresponding estimates for S(t) as well. For example,

S1(2) = 45400 − 953.4 × 2 = 43493.2

S1(1.7) = 45400 − 953.4 × 1.7 = 43779.22 .

The “three-step” estimate. With three smaller steps of size ∆t = 1,
we get a function whose graph is composed of three line segments, each
starting at the (t, S) point at the beginning of each day and with a slopeA single function

may not be specified
by a single equation

equal to the corresponding rate of new infections at the beginning of the day.
Let’s call this function S3(t). The three-step estimate S3(t) is hence not a
linear function, strictly speaking. However, since its graph is made up of
several straight pieces, it is called a piecewise linear function. Recalling
that the equation of a line through the point (x0, y0) with slope m can be
written in the form y = m(x − x0) + y0, we can use the values for S (which
correspond to the y-values) and S ′ (which give us the slopes of the segments)
at times t = 0, t = 1, and t = 2 calculated above to get an explicit formula
for S3(t):

S3(t) =







y = −953.4(t − 0) + 45400 if 0 ≤ t ≤ 1
y = −1290.5(t − 1) + 44446.6 if 1 ≤ t ≤ 2
y = −1720.4(t − 2) + 43156.1 if 2 ≤ t ≤ 3

Note that we have used ≤ in the defining formulas since at the values
t = 1 and t = 2 it doesn’t matter which equation we use. This is equivalent
to saying that the straight line segments are connected to each other. Since
the slopes of the three segments of S3(t) are progressively more negative,
the piecewise linear graph gets progressively steeper as t increases. This
explains why the value S3(3) is lower than the value of S1(3). While it
is rare that we would actually need to write down an explicit formula like
this for the piecewise-linear approximation—it is easier, and usually more
informative, just to define S3(t) by its graph—it is nevertheless important to
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realize that there really is an approximating function defined for all values
of t in the interval [0, 3], not just at the finite set of t values where we make
the recalculations.

By the time we are dealing with the 300-step function S300(t) we can’t
even tell by its graph that it is piecewise linear unless we zoom in very close.
In principle, though, we could still write down a simple linear formula for
each of its segments (see the exercises).

An appraisal. The graph of S1(t) gives us a rough idea of what is
happening to the true function S(t) during the first three days. It starts off
at the same rate as S ′, but subsequently the rates move apart. The value
of S ′

1 never changes, while S ′ changes with the (ever-changing) values of S
and I.

The graph of S3(t) is a distinct improvement because it changes its di-
rection twice, modifying its slope at the beginning of each day to come back
into agreement with the rate equation. But since the three-step graph is still
piecewise linear, it continues to suffer from the same shortcoming as the one-
step: once we restrict our attention to a single straight segment (for example,
where 1 ≤ t ≤ 2), then the three-step graph also has a constant slope, while
S ′ is always changing. Nevertheless, S3(t) does satisfy the rate equation in
our original model three times—at the beginning of each segment—and isn’t
too far off at other times. When we get to S300(t) we have a function which
satisfies the rate equation at 300 times and is very close in between.

Each of these graphs gives us an idea of the behavior of the true function
S(t) during the time interval 0 ≤ t ≤ 3. None is strictly correct, but none is
hopelessly wrong, either. All are approximations to the truth. Moreover,
S3(t) is a better approximation than S1(t)—because it reflects at least some
of the variability in S ′—and S300(t) is better still. Thus, even before we have
a clear picture of the shape of the true function S(t), we would expect it to
be closer to S300(t) than to S3(t). As we saw above, when we take piecewise
linear approximations with smaller and smaller step sizes, it is reasonable to
think that they will approach the true function S in the limit. Expressing
this in the notation we have used before,

the function S(t) = lim
N→∞

{the chain of linear functions with ∆t = 10−N}.
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Approximate versus Exact

You may find it unsettling that our efforts give us only a sequence of approx-
imations to S(3), and not the exact value, or only a sequence of piecewise-
linear approximations to S(t), not the “real” function itself. In what sense
can we say we “know” the number S(3) or the function S(t)? The answer
is: in the same sense that we “know” a number like

√
2 or π. There are twoWhat does it mean

to ”know” a number
like π?

distinct aspects to the way we know a number. On the one hand, we can
characterize a number precisely and completely:

π: the ratio of the circumference of a circle to its diameter;√
2: the positive number whose square is 2;

On the other hand, when we try to construct the decimal expansion of
a number, we usually get only approximate and incomplete results. For
example, when we do calculations by hand we might use the rough estimates√

2 ≈ 1.414 and π ≈ 3.1416. With a desk-top computer we might have√
2 ≈ 1.414 213 562 373 095 and π ≈ 3.141 592 653 589 793, but these are still

approximations, and we are really saying

√
2 = 1.414 213 562 373 09 . . .
π = 3.141 592 653 589 79 . . . .

The complete decimal expansions for
√

2 and π are unknown! The exact val-
ues exist as limits of approximations that involve successively longer strings
of digits, but we never see the limits—only approximations. In the final sec-
tion of this chapter we will see ways of generating these approximations for√

2 and for π.
What we say about π and

√
2 is true for S(3) in exactly the same way.

We can characterize it quite precisely, and we can construct approximations
to its numerical value to any desired degree of accuracy. Here, for example,
is a characterization of S(3):

The S-I-R problem for which a = .00001 and b = 1/14 and for
which S = 45400, I = 2100, R = 2500 when t = 0 determines
three functions S(t), I(t), and R(t). The number S(3) is the
value that the function S(t) has when t = 3.

You should try to extend this argument to describe the sense in which
we “know” the function S(t) by knowing its piecewise-linear approximations.
Try to convince yourself that this is operationally no different from the way
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we “know” functions like f(x) =
√

x. In each instance we can characterize
the function completely, but we can only construct an approximation to
most values of the function or to its graph.

All this discussion of approximations may strike you as an unfortunate
departure from the accuracy and precision you may have been led to expect
in mathematics up until now. In fact, it is precisely this ability to make quick Being able to

approximate a number
to 12 decimal places is

usually as good as
knowing its value

precisely

and accurate approximations to problems that is one of the most powerful
features of mathematics. This is what goes on every time you use your
calculator to evaluate log 3 or sin 37. Your calculator doesn’t really know
what these numbers are—but it does know how to approximate them quickly
to 12 decimal places. Similar kinds of approximations are also at the heart
of how bridges are built and spaceships are sent to the moon.

A Caution: The fact that computers and calculators are really only
dealing with approximations when we think they are being exact occasionally However . . .

leads to problems, the most common of which involves roundoff errors.
You can probably generate a relatively harmless manifestation of this on
your computer with the SIRVALUE program. Modify the PRINT line so it
prints out the final value of t to 10 or 12 digits, and try running it with
a high value for numberofsteps, say 1 million or 10 million. You would
expect the final value of t to be exactly 1 in every case, since you are adding
deltat = 1/numberofsteps to itself numberofsteps times. The catch is
that the computer doesn’t store the exact value 1/numberofsteps unless
numberofsteps is a power of 2. In all other cases it will only be using an
approximation, and if you add up enough quantities that are slightly off,
their cumulative error will begin to show. We will encounter a somewhat less
benign manifestation of roundoff error in the next chapter.

Exercises

There and back again

1. a) Look at the table on page 66. What is your best guess of the exact

value of I(1)? (Use the “. . . ” notation introduced on page 66.)

b) What is the exact value of R(1)?

2. We noted that the discrepancy (the difference between the new estimate
for S(0) and the original value) seemed to decrease as ∆t decreased.

a) What is your best estimate (using only the information in the table) for
the value of ∆t needed to produce a discrepancy of .001 ?
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b) More generally, express as precisely as you can the apparent relation
between the size of the discrepancy and the size of ∆t.

3. a) Suppose you wanted to try going three days forward and then coming
back, using ∆t = .01. What changes would you have to make in SIRVALUE
to do this?

b) Make a table similar to the one on page 66 for going three days forward
and coming back for ∆t = 1, .1, .01, and.001.

c) In this new table how does the size of the discrepancy for a given value
of ∆t compare with the value in the original table?

d) What value of ∆t do you think you would need to determine the integer
parts of S(3) and R(3) exactly?

Piecewise linear functions

4. Using this three-step approximation, what is S3(1.7)? What is S3(2.5)?

5. How would you modify SIRVALUE to get S3000(3) ? Do it; what do you
get?

6. What additional changes would you make to get the values of t, S, and
S ′ at the beginning of the 193rd segment of S300(t) ? [HINT: You only need
to alter the FOR k = 1 TO numberofsteps line (since you don’t want to go
all the way to the end) and the PRINT line. (Note that after running the loop
for, say, 20 times, the values of t and S are the values for the beginning of
the 21st segment, while the value of Sprime will still be the slope of the 20th
segment.)]

7. Suppose we wanted to determine the value of S300(2.84135).

a) In which of the 300 segments of the graph of S300(t) would we look to
find this information?

b) What are the values of t, S, and S ′ at the beginning of this segment?

c) What is the equation of this segment?

d) What is S300(2.84135) ?

8. How would you modify SIRVALUE to calculate estimates for S, I, and
R when t = −6, using ∆t = .05 ? Do it; what do you get?
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9. We want to use SIRPLOT to look at the graph of S(t) over the first 20
days, using ∆t = .01.

a) What changes would we have to make in the program?

b) Sketch the graph you get when you make these changes.

c) If you wanted to plot the graph of I(t) over this same time interval, what
additional modifications to SIRPLOT would be needed? Make them, and
sketch the result. When does the infection appear to hit its peak?

d) Modify SIRPLOT to sketch on the same graph all three functions over
the first 70 days. Sketch the result.

The DO–WHILE loop
A difficulty in giving a precise answer to the last question was that we

had to get all the values for 20 days, then go back to estimate by eye when
the peak occurred. It would be helpful if we could write a program that ran
until it reached the point we were looking for, and then stopped. To do this,
we need a different kind of loop—a conditional loop that keeps looping only
while some specified condition is true. A DO–WHILE loop is one useful way
to do this. Here’s how the modified SIRPLOT program would look:

Set up GRAPHICS

tinitial = 0

t = tinitial

S = 45400

I = 2100

R = 2500

Iprime = .00001 * S * I - I / 14

deltat = .01

DO WHILE Iprime > 0

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

Plot the line from (t, S) to (t + deltat, S + deltaS)
t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

LOOP

PRINT t - deltat
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The changes we have made are:

• Since we don’t know what the final time will be, eliminate the tfinal

= 20 and the numberofsteps = 2000 commands.

• Since the condition in our loop is keyed to the value of I ′, we have to
calculate the initial value of I ′ before the loop starts.

• Instead of deltat = (tfinal - tinitial)/numberofsteps use the
statement deltat = .01.

• The key change is to replace the FOR k = 1 TO numberofsteps line
by the line DO WHILE Iprime > 0.

• To denote the end of the loop we replace the NEXT k command with
the command LOOP.

• After the LOOP command add the line PRINT t - deltat. (The reason
we had to back up one step at the end is because due to the way the
program was written, the computer takes one final step with a negative
value for Iprime before it stops.)

The net effect of all this is that the program will continue working as
before, calculating values and plotting points (t, S), but only as long as

the condition in the DO WHILE statement is true. The condition we used here
was that I ′ had to be positive—this is the condition that ensures that values
of I are still getting bigger. While this condition is true, we can always get
a larger value for I by going forward another increment ∆t. As soon as the
condition is false—i.e., as soon as I ′ is negative—the values for I will be
decreasing, which means we have passed the peak and so want to stop.

10. Make these modifications; what value for t do you get?

11. You could modify the PRINT t command to also print out other quan-
tities.

a) What is the value of I at its peak?

b) What is the value of S when I is at its peak? Does this agree with the
threshold value we predicted in chapter 1?

12. Suppose you change the initial value of S to be 5400 and run the pre-
vious program. Now what happens? Why?
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13. Suppose we wanted to know how long the epidemic lasts. We could use
DO–WHILE and keep stepping forward using, say ∆t = .1, so long as I ≥ 1.
As soon as I was less than 1 we would want to stop and see what the value
of t was.

a) What modifications would you make in SIRVALUE to get this informa-
tion?

b) Run your modified program. What value do you get for t?

c) Run the program using ∆t = .01. Now what is your estimate for the
duration of the epidemic? What can you say about the actual time required
for I to drop below 1?

14. a) If we think the epidemic started with a single individual, we can
go backwards in time until I is no longer greater than 1, and see what the
corresponding time is. Do this for ∆t = −1,−.1, and − .01. What is your
best estimate for the time that the infection arrived?

b) How many Recovereds were there at the start of the epidemic? This would
be the people who had presumably been infected in a previous epidemic and
now had immunity.

2.2 The Mathematical Implications—

Euler’s Method

Approximate Solutions

In the last section we approximated the function S(t) by piecewise-linear
approximations using steps of size ∆t = 1, .1, and .01. This process can
clearly be extended to produce approximations with an arbitrary number of
steps. For any given step size ∆t, the result is a piecewise linear graph whose
segments are ∆t days wide. This graph then provides us with an estimate
for S(t) for every value of t in the interval 0 ≤ t ≤ 3. We call this process
of obtaining a function by constructing a sequence of increasingly better
approximations Euler’s method, after the Swiss mathematician Leonhard
Euler (1707–1783). Euler was interested in the general problem of finding
the functions determined by a set of rate equations, and in 1768 he proposed
this method to approximate them. The method is conceptually simple and
can indeed be used to get solutions for an enormous range of rate equations.
For this reason we will make it a basic tool.
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To begin to get a sense of the general utility of Euler’s method, let’s use it
in a new setting. Here is a simple problem that involves just a single variable
y that depends on t.

rate equation: y′ = .1 y
(

1 − y

1000

)

,

initial condition: y = 100 when t = 0.

To solve the problem we must find the function y(t) determined by this rate
equation and initial condition. We’ll work without a context, in order to
emphasize the purely mathematical nature of Euler’s method. However, this
rate equation is one member of a family called logistic equations frequently
used in population models. We will explore this context in the exercises.

Let’s now construct the function that approximates y(t) on the interval
0 ≤ t ≤ 75, using ∆t = .5 . We can make the suitable modifications in
SIRPLOT or SIRVALUE to get this approximation. Suppose we want to
view the approximation graphically. Here’s what the modified SIRPLOT
would look like:

Program: modified SIRPLOT

Set up GRAPHICS

tinitial = 0

tfinal = 75

t = tinitial

y = 100

numberofsteps = 150

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

yprime = .1 * y * (1 - y / 1000)

deltay = yprime * deltat

Plot the line from (t, y) to (t + deltat, y + deltay)

t = t + deltat

y = y + deltay

NEXT k

As before, words in italics, like “Plot the line from. . . to” need to be translated
into the specific formulation required by the computer language you are using.
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When we run this program, we get the following graph (axes and scales
have been added):

t

y

10 20 30 40 50 60 70

200

400

600

800

1000

As before, what we see here is only an approximation to the true solution
y(t). How can we get some idea of how good this approximation is?

Exact Solutions

For any chosen step size, we can produce an approximate solution to a rate
equation problem. We will call such an approximation an Euler approxi-
mation. In the last section we saw that we can improve the accuracy of the
approximation by making the steps smaller and using more of them.

For example, we have already found an approximate solution to the prob-
lem

y′ = .1y
(

1 − y

1000

)

; y(0) = 100

on the interval 0 ≤ t ≤ 75, using 150 steps of size ∆t = 1/2. Consider
a sequence of Euler approximations to this problem that are obtained by
increasing the number of steps from one stage to the next. To be system-
atic, let the first approximation have 1 step, the next 2, the next 4, and so
on. (The important feature is that the number of steps increases from one
approximation to the next, not necessarily that they double—going up by
powers of 10 would be just as good. A slight advantage in using powers of 2
is to maximize computer accuracy.) The number of steps thus has the form
2j−1, where j = 1, 2, 3, . . . . If we use yj(t) to denote the approximating



DVI file created at 11:25,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

82 CHAPTER 2. SUCCESSIVE APPROXIMATIONS

function with 2j−1 steps, then we have an unending list:

y1(t) : Euler’s approximation with 1 step
y2(t) : Euler’s approximation with 2 steps
y3(t) : Euler’s approximation with 4 steps

...
...

yj(t) : Euler’s approximation with 2j−1 steps
...

...

Here are the graphs of yj(t) for j = 1, 2, . . . , 7 plus the graph of y11(t):

t

y

j = 1

j = 2

j = 3

j = 11

10 20 30 40 50 60 70

250

500

750

1000

1250

These functions form a sequence of successive approximations to the
true solution y(t), which is obtained by taking the limit, as we did in the
last section:

y(t) = lim
j→∞

yj(t).

Earlier we noticed how the digits in the estimates for S(3) stabilized. If we
plot the approximations yj(t) together we’ll find that they stabilize, too. EachFunctions and graphs

can be limits, too graph in the sequence is different from the preceding one, but the differences
diminish the larger j becomes. Eventually, when j is large enough, the graph
of yj+1 does not differ noticeably from the graph of yj. That is, the position
of the graph stabilizes in the coordinate plane. In this example, at the scale
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in the graph above, this happens around j = 11. If we had drawn the graph
of y15 or y20, it would not have been distinguishable from the graph of y11. It Euler’s method is the

process of finding
solutions through a

sequence of successive
approximations

is this entire process of calculating a sequence of successive approximations
using increasingly many steps as far as is needed to get the desired level of
stabilization that is meant when we talk about Euler’s method.

The program SEQUENCE shown below plots 14 Euler approximations
to y(t), increasing the number of steps by a factor of 2 each time. It demon-
strates how the graphs of yj(t) stabilize to define y(t) as their limit.

Program: SEQUENCE

A sequence of graphs for y′ = .1y(1 − y/1000); y(0) = 100

Set up GRAPHICS

FOR j = 1 TO 14
tinitial = 0

tfinal = 75

t = tinitial

y = 100

numberofsteps = 2 ^ (j - 1)

deltat = (tfinal - tinitial) / numberofsteps

FOR k = 1 TO numberofsteps

yprime = .1 * y * (1 - y / 1000)

deltay = yprime * deltat

Plot the line from (t, y)
to (t + deltat, y + deltay)

Color the line with color j
t = t + deltat

y = y + deltay

NEXT k
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Program:
modified SIRPLOT

NEXT j

Notice that SEQUENCE contains the program SIRPLOT embedded in
a loop that executes SIRPLOT 14 times. In this way SEQUENCE plots 14
different graphs. The only new element that has been added to SIRPLOT is
“Color the line with color j”. When you express this in your programming
language it instructs the computer to draw the j-th graph using color number
j in the computer’s “palette.” In the exercises you are asked to use the
program SEQUENCE to explore the solutions to a number of rate equation
problems.
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Approximate solutions versus exact

By constructing successive approximations to the solution of a rate equation
problem, using a sequence of step sizes deltat = ∆t that shrink to 0, we
obtain the exact solution in the limit.

In practice, though, all we can ever get are particular approximations.
However, we can control the level of precision in our approximations by
adjusting the step size. If we are dealing with a model of some real process,
then this is typically all we need. For example, when it comes to interpreting
the S-I-R model, we might be satisfied to predict that there will be about
40500 susceptibles remaining in the population after three days. The table
on page 66 indicates we would get that level of precision using a step size of
about ∆t = 10−2. Greater precision than this may be pointless, because the
modelling process—which converts reality to mathematics—is itself only an
approximation.

The question we asked in the last section—In what sense do we know a
number?—applies equally to the functions we obtain using Euler’s method.
That is, even if we can characterize a function quite precisely as the solution of
a particular rate equation, we may be able to evaluate it only approximately.

A Caution

We have now seen how to take a set of rate equations and find approximations
to the solution of these equations to any degree of accuracy desired. It
is important to remember that all these mathematical manipulations are
only drawing inferences about the model. We are essentially saying that if

the original equations capture the internal dynamics of the situation being
modelled, then here is what we would expect to see. It is still essential at some
point to go back to the reality being modeled and check these predictions to
see whether our original assumptions were in fact reasonable, or need to be
modified. As Alfred North Whitehead has said:

There is no more common error than to assume that, because pro-
longed and accurate mathematical calculations have been made,
the application of the result to some fact of nature is absolutely
certain.
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Exercises

Approximate solutions

1. Modify SIRVALUE and SIRPLOT to analyze the population of Poland
(see exercise 25 of chapter 1, page 47). We assume the population P (t)
satisfies the conditions

P ′ = .009 P and P (0) = 37,500,000,

where t is years since 1985. We want to know P 100 years into the future;
you can assume that P does not exceed 100,000,000.

a) Estimate the population in 2085.

b) Sketch the graph that describes this population growth.

The Logistic Equation

Suppose we were studying a population of rabbits. If we turn 100 rabbits
loose in a field and let y(t) be the number of rabbits at time t measured in
months, we would like to know how this function behaves. The next several
exercises are designed to explore the behavior of the rate equation

y′ = .1y
(

1 − y

1000

)

; y(0) = 100

and see why it might be a reasonable model for this system.

2. By modifying SIRVALUE in the way we modified SIRPLOT to get SE-
QUENCE, obtain a sequence of estimates for y(37) that allows you to specify
the exact value of y(37) to two decimal places accuracy.

3. a) Referring to the graph of y(t) obtained in the text on page 82, what
can you say about the behavior of y as t gets large?

b) Suppose we had started with y(0) = 1000. How would the population
have changed over time? Why?

c) Suppose we had started with y(0) = 1500. How would the population
have changed over time? Why?

d) Suppose we had started with y(0) = 0. How would the population have
changed over time? Why?
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e) The number 1000 in the denominator of the rate equation is called the
carrying capacity of the system. Can you give a physical interpretation
for this number?

4. Obtain graphical solutions for the rate equation for different values of
the carrying capacity. What seems to be happening as the carrying capacity
is increased? (Don’t restrict yourself to t = 37 here.) In this problem and
the next you should sketch the different solutions on the same set of axes.

5. Keep everything in the original problem unchanged except for the con-
stant .1 out front. Obtain graphical solutions with the value of this constant
= .05, .2, .3, and .6. How does the behavior of the solution change as this
constant changes?

6. Returning to the original logistic equation, modify SIRVALUE or DO–
WHILE to find the value for t such that y(t) = 900.

7. Suppose we wanted to fit a logistic rate equation to a population, starting
with y(0) = 100. Suppose further that we were comfortable with the 1000 in
the denominator of the equation, but weren’t sure about the .1 out front. If
we knew that y(20) = 900, what should the value for this constant be?

Using SEQUENCE

8. Each Euler approximation is made up of a certain number of straight
line segments. What instruction in the program SEQUENCE determines the
number of segments in a particular approximation? The first graph drawn
has only a single segment. How many does the fifth have? How many does
the fourteenth have?

9. What is the slope of the first graph? What are the slopes of the two
parts of the second graph? [You should be able to answer these questions
without resorting to a computer.]

10. Modify the line in the program SEQUENCE which determines the num-
ber of steps by having it read numberofsteps = j, and run the modified pro-
gram. Again, we are getting a sequence of approximations, with the number
of steps increasing each time, but the approximations don’t seem to be get-
ting all that close to anything. Explain why this modified program isn’t as
effective for our purposes as the original.
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11. Modify SEQUENCE to produce a sequence of Euler approximations to
the function y(t) that satisfies the conditions

y′ = .2 y(5− y) and y(0) = 1.

on the interval 0 ≤ t ≤ 10. [You need to change the final t value in the
program, and you also need to ensure that the graphs will fit on your screen.]

a) What is y(10)? [If you add the line PRINT j, y just before the line NEXT

j, a sequence of 14 estimates for y(10) will appear on the screen with the
graphs.]

b) Make a rough sketch of the graph that is the limit of these approxima-
tions. The right half of the limit graph has a distinctive feature; what is
it?

c) Without doing any calculations, can you estimate the value of y(50)?
How did you arrive at this value?

d) Change the initial condition from y(0) = 1 to y(0) = 9. Construct the
sequence of Euler approximations beginning with numberofsteps being 1,
and make a rough sketch of the limit graph. What is y(10) now? Explain
why the first several approximations look so strange.

12. Modify SEQUENCE to construct a sequence of Euler approximations
for population of Poland (from exercise 1, above). Sketch the limit graph
P (t), and mark the values of P (0) and P (100) at the two ends.

13. Construct a sequence of Euler approximations to the function y(t) that
satisfies the conditions

y′ = 2 t and y(0) = 0

over the interval 0 ≤ t ≤ 2. Note that this time the rate y′ is given in
terms of t, not y. Euler’s method works equally well. Using your sequence
of approximations, estimate y(2). How accurate is your estimate?

14. Construct a sequence of Euler approximations to the function y(t) that
satisfies the conditions

y′ =
4

1 + t2
and y(0) = 0

over the interval 0 ≤ t ≤ 1. Estimate y(1). How accurate is your estimate?
[Note: the exact value of y(1) is π, which your estimates may have led you to
expect. By using special methods we shall develop much later we can prove
that y(1) = π.]
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2.3 Approximate Solutions

Our efforts to find the functions that were determined by the rate equations
for the S-I-R model have brought to light several important issues:

• We often have to deal with a question that does not have a simple,
straightforward answer; perhaps we are trying to determine a quantity
(like the square root of 2, or S(3) in the S-I-R model), to find some
function (like S(t)), or to understand a process (like an epidemic, or
buying and selling in a market). An approximation can get us started.

• In many instances, we can make repeated improvements in the approx-
imation. If these successive approximations get arbitrarily close to
the unknown, and they do it quickly enough, that may answer the ques-
tion for all practical purposes. In many cases, there is no alternative.

• The information that successive approximations give us is conveyed in
the form of a limit.

• The method of successive approximations can be used to evaluate many
kinds of mathematical objects, including numbers, graphs, and func-
tions.

• Limit processes give us a valuable tool to probe difficult questions.
They lie at the heart of calculus.

Even the process of building a mathematical model for a physical system can be seen as an
instance of successive approximations. We typically start with a simple model (such as the S-I-
R model) and then add more and more features to it (e.g., in the case of the S-I-R model we
might divide the population into different subgroups, have the parameters in the model depend
on the season of the year, make immunity of limited duration, etc.). Is it always possible, at
least in theory, to get a sequence of approximating mathematical models that approaches reality
in the limit?

In the following chapters we will apply the process of successive approx-
imation to many different kinds of problems. For example, in chapter 3 the
problem will be to get a better understanding of the notion of a rate of change
of one quantity with respect to another. Then, in chapter 4, we will return to
the task of solving rate equations using Euler’s method. Chapter 6 introduces
the integral, defining it through a sequence of successive approximations. As
you study each chapter, pause to identify the places where the method of
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successive approximations is being used. This can give you insight into the
special role that calculus plays within the broader subject of mathematics.

To illustrate the general utility of the method, we end this chapter by
returning to the problem raised in section 1 of constructing the values of

√
2

and π to an arbitrary number of decimal places.

Calculating π—The Length of a Curve

Humans were grappling with the problem of calculating π at least 3000 years
ago. In his work Measurement of the Circle, Archimedes (287–212 b.c.) used
the method of successive approximations to calculate π = 3.14 . . . . He did
this by starting with a circle of diameter 1, constructing an inscribed and
a circumscribed hexagon, and calculating the lengths of their perimeters.
The perimeter of the circumscribed hexagon was clearly an overestimate
for π, while the perimeter of the inscribed hexagon was an underestimate.
He then improved these estimates by going from hexagons to inscribed and
circumscribed 12-sided polygons and again calculating the perimeters. He
repeated this process of doubling the number of sides until he had inscribed
and circumscribed polygons with 96 sides. These left him with his final
estimate

3.1409 . . . = 3
2841

4

20171

4

< π < 3
6671

2

46731

2

= 3.1428 . . .

In grade school we learned a nice simple formula for the length of a circle,
but that was about it. We were never taught formulas for the lengths of
other simple curves like elliptic or parabolic arcs, for a very good reason—
there are no such formulas. There are various physical approaches we might
take. For example, we could get a rough approximation by laying a piece of
string along the curve, then picking up the string and measuring it with a
ruler. Instead of a physical solution, we can use the essence of Archimedes’
insight of approximating a circle by an inscribed “polygon”—what we have
earlier called a piecewise linear graph—to determine the length of any curve.
The basic idea is reminiscent of the way we made successive approximations
to the functions S(t), I(t), and R(t) in the first section of this chapter. Here
is how we will approach the problem:

• approximate the curve by a chain of straight line segments;

• measure the lengths of the segments;
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• use the sum of the lengths as an approximation to the true length of
the curve.

Repeat this process over and over, each time using a chain that has shorter
segments (and therefore more of them) than the last one. The length of the
curve emerges as the limit of the sums of the lengths of the successive chains.

Distance Formula If we are given two points P1(x1, y1) and
P2(x2, y2) in the plane, then the distance between them is just

d =

√

∆x2 + ∆y2

=
√

(x2 − x1)2 + (y2 − y1)2

That this follows directly from the Pythagorean theorem can be
seen from the picture below:
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∆x = x2 − x1

∆y = y2 − y1

We’ll demonstrate how this pro-
cess works on a parabola. Specifi-
cally, consider the graph of y = x2

on the interval 0 ≤ x ≤ 1. At the
right we have sketched the graph and
our initial approximation. It is a
piecewise linear approximation with
two segments whose end points have
equally spaced x-coordinates. -
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�����

















(1, 1)

(.5, .25)

y = x2

r

r

r

We can use the distance formula to find the lengths of the two segments.

first segment :
√

(.5 − 0)2 + (.25 − 0)2 = .559016994

second segment :
√

(1 − .5)2 + (1 − .25)2 = .901387819
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Their total length is the sum

.559016994 + .901387819 = 1.460404813.

The following program prints out the lengths of the two segments and
their total length.

Program: LENGTH
Estimating the length of y = x2 over 0 ≤ x ≤ 1

DEF fnf (x) = x ^ 2

xinitial = 0

xfinal = 1

numberofsteps = 2

deltax = (xfinal - xinitial) / numberofsteps

total = 0

FOR k = 1 TO numberofsteps

xl = xinitial + (k - 1) * deltax

xr = xinitial + k * deltax

yl = fnf(xl)

yr = fnf(xr)

segment = SQR((xr - xl) ^ 2 + (yr - yl) ^ 2)

total = total + segment

PRINT k, segment

NEXT k

PRINT numberofsteps, total

Finding Roots with a Computer

When we casually turn to our calculator and ask it for the value of
√

2, what Calculators and
computers really work

by making
approximations

does it really do? Like us, the calculator can only add, subtract, multiply,
and divide. Anything else we ask it to do must be reducible to these oper-
ations. In particular, the calculator doesn’t really “know” the value of

√
2.

What it does know is how to approximate
√

2 to, say, 12 significant figures
using only elementary arithmetic. In this section we will look at two ways we
might do this. Apart from the fact that both approaches use successive ap-
proximations, they are remarkably different in flavor. One works graphically,
using a computer graphing package, and the other is a numerical algorithm
that is about 4000 years old.
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A geometric approach

Exercise 9 on page 40 considered the problem of finding the roots of f(x) =
1 − 2x2. A bit of algebra confirms that

√
2/2 is a root—i.e., f(

√
2/2) = 0.

The question is: what is the numerical value of
√

2/2?
We’ll answer this question by constructing a sequence of approximations

that add digits, one at a time, to an estimate for
√

2/2. Since the root lies at
the point where the graph of f crosses the x-axis, we just magnify the graph
at this point over and over again, “trapping” the point between x values that
can be made arbitrarily close together.

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p
pp
pp
p
pp
pp
p
pp
pp
p
pp
pp
p
pp
pp
p
pp
p
pp
pp
p
pp
pp
p

x-1 1

y
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p

first digit
determined

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

x.60 .80

B
B
B
B
B
B
B
BB

.70 .71

p
p
p
p
p
p
p

p
p
p
p
p
p
p

q q q

q q q
first six digits
determined

p
p
p
p
p

p
p
p
p
p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

x.707100 .707110

B
B
B
B
B
B
B
BB

.707106 .707107

p
p
p
p
p
p
p

p
p
p
p
p
p
p

q q q

q q q

The graph of y = 1 − 2x2 under successive magnifications

If we make each stage a ten-fold magnification over the previous one, then,
as we zoom in on the next smaller interval that contains the root, one more
digit in our estimate will be stabilized. The first six stages are described
in the table below. They tell us

√
2/2 = .707106 . . . to six decimal places

accuracy.
Since this method of finding roots requires only that we be able to plot

successive magnifications of the graph of f on a computer screen, the method
can be applied to any function that can be entered into a computer.

The positive root of 1 − 2x2

when the root lies between: the decimal expansion
lower value upper value

.70

.700

.7070

.70710

.707100

.7071060
...

.80

.710

.7080

.70720

.707110

.7071070
...

of the root begins with

.7

.70

.707

.7071

.70710

.707106
...
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An algebraic approach – the Babylonian algorithm

About 4000 years ago Babylonian builders had a method for constructing
the square root of a number from a sequence of successive approximations.
To demonstrate the method, we’ll construct

√
5. We want to find x so that

x2 = 5 or x =
5

x
.

The second expression may seem a peculiar way to characterize x, but it is
at least equivalent to the first. The advantage of the second expression is
that it gives us two numbers to consider: x and 5/x.

For example, suppose we guess that x = 2. Of course this is incorrect,
because 22 = 4, not 5. The two numbers we get from the second expression
are 2 and 5/2 = 2.5. One is smaller than

√
5, the other is larger (because

2.52 = 6.25). Perhaps their average is a better estimate. The average is 2.25,
and 2.252 = 5.0625.

Although 2.25 is not
√

5, it is a better estimate than either 2.5 or 2. If
we change x to 2.25, then

x = 2.25 ,
5

x
= 2.222 , and their average is 2.236 .

Is 2.236 a better estimate than 2.5 or 2.222? Indeed it is: 2.2362 = 4.999696.
If we now change x to 2.236, a remarkable thing happens:

x = 2.236 ,
5

x
= 2.236 , and their average is 2.236 !

In other words, if we want accuracy to three decimal places, we have already
found

√
5. All the digits have stabilized.

Suppose we want greater accuracy? Our routine readily obliges. If we set
x = 2.236000, then

x = 2.236000 ,
5

x
= 2.236136 , and their average is 2.236068 .

In fact,
√

5 = 2.236068 . . . is accurate to six decimal places.

Here is a summary of the argument we have just developed, expressed in
terms of

√
a for an arbitrary positive number a.
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If x is an estimate for
√

a,
then the average of x and a/x

is a better estimate.

Once we choose an initial estimate, this argument constructs a sequence of
successive approximations to

√
a. The process of constructing the sequence

is called the Babylonian algorithm for square roots.

A procedure that tells us how to carry out a sequence of steps, one at
a time, to reach a specific goal is called an algorithm. Many algebraic
processes are algorithms. The word is a Latinization of the name of the
Persian astronomer Muhammad al-Khwarizmı (c.780a.d.–c.850a.d.), who
lived and worked in Baghdad. The title of his seminal book Hisab al-jabr

wal-muqa bala (830a.d.)—usually referred to simply as al-Jabr—has a Latin
form that is even more familiar to mathematics students.

The Babylonian algorithm takes the current estimate x for
√

a that we
have at each stage and says “replace x by the average of x and a/x.” This kind
of instruction is ideally suited to a computer, because A = B in a computer
program means “replace the current value of A by the current value of B.” In
the program BABYLON printed below, the algorithm is realized by a FOR -

NEXT loop with a single line that reads “x = (x + a / x) / 2”.

The three-step procedure that we used in chapter 1 to obtain values of
S, I, and R in the epidemic problem is also an algorithm, and for that
reason it was a straightforward matter to express it as the computer program
SIRVALUE.

Program: BABYLON
An algorithm to find

√
a

a = 5

x = 2

n = 6

FOR k = 1 TO n

x = (x + a / x) / 2

PRINT x

NEXT k

Output:

2.25

2.236111

2.236068

2.236068

2.236068

2.236068
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Exercises

In many of the questions below you are asked to do things like divide an arc
into 2,000,000 segments or find a certain number to 8 decimal places. This
assumes you have fast computers available. If you are using slower machines Use common sense in

deciding how close an
approximation to make

or programmable calculators, you should certainly feel free to scale back
what is called for—perhaps to 200,000 segments or 6 decimal places. Use
your own common sense; there’s no value in sitting in front of a screen for an
hour waiting for an answer to emerge. To approximate a length by 200,000
segments will take 10 times as long as to approximate it by 20,000 segments,
which in turn will take 10 times as long as the 2,000 segment approximation.
If you start with the cruder approximations, you should be able to get a good
sense of what is reasonable to attempt with the facilities you have available,
and modify what the problems call for accordingly.

1. By using a computer to graph y = x2 − 2x, find the solutions of the
equation x2 = 2x to four decimal place accuracy.

The program LENGTH

2. Run the program LENGTH to verify that it gives the lengths of the
individual segments and their total length.

3. What line in the program gives the instruction to work with the function
f(x) = x2? What line indicates the number of segments to be measured?

4. Each segment has a left and a right endpoint. What lines in the program
designate the x- and y-coordinates of the left endpoint; the right endpoint?

5. Where in the program is the length of the k-th segment calculated? The
segment is treated as the hypotenuse of a triangle whose length is measured
by the Pythagorean theorem. How is the base of that triangle denoted in the
program? How is the altitude of that triangle denoted?

6. Modify the program so that it uses 20 segments to estimate the length
of the parabola. What is the estimated value?

7. Modify the program so that it estimates the length of the parabola us-
ing 200, 2, 000, 20, 000, 200, 000, and 2, 000, 000 segments. Compare your
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results with those tabulated below. [To speed the process up, you will cer-
tainly want to delete the PRINT k, segment statement that appears inside
the loop. Do you see why?]

Number Sum
of line segments of their lengths

2
20

200
2 000

20 000
200 000

2 000 000

1.460 404 813
1.478 756 512
1.478 940 994
1.478 942 839
1.478 942 857
1.478 942 857
1.478 942 857

8. What is the length of the parabola y = x2 over the interval 0 ≤ x ≤ 1,
correct to 8 decimal places? What is the length, correct to 12 decimal places?

9. Starting at the origin, and moving along the parabola y = x2, where are
you when you’ve gone a total distance of 10?

10. Modify the program to find the length of the curve y = x3 over the
interval 0 ≤ x ≤ 1. Find a value that is correct to 8 decimal places.

11. Back to the circle. Consider the unit circle centered at the origin.
Pythagoras’ Theorem shows that a point (x, y) is on the circle if and only if
x2 + y2 = 1. If we solve this for y in terms of x, we get y = ±

√
1 − x2, where

the plus sign gives us the upper half of the circle and the minus sign gives
the lower half. This suggests that we look at the function g(x) =

√
1 − x2.

The arclength of g(x) over the interval −1 ≤ x ≤ 1 should then be exactly
π.

a) Divide the interval into 100 pieces—what is the corresponding length?

b) How many pieces do you have to divide the interval into to get an accuracy
equal to that of Archimedes?

c) Find the length of the curve y = g(x) over the interval −1 ≤ x ≤ 1,
correct to eight decimal places accuracy.

12. This question concerns the function h(x) =
4

1 + x2
.
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a) Sketch the graph of y = h(x) over the interval −2 ≤ x ≤ 2.

b) Find the length of the curve y = h(x) over the interval −2 ≤ x ≤ 2.

13. Find the length of the curve y = sin x over the interval 0 ≤ x ≤ π.

The program BABYLON

14. Run the program BABYLON on a computer to verify the tabulated
estimates for

√
5.

15. In whatever computer language you are using, it should be possible to
tell the computer to print out more decimals. Your teacher can tell you
how this is handled on your computers. Modify BABYLON to run with at
least 14-digit precision in this and the following problems. Also modify the
program so it prints out the square of the estimate each time as well. What
is the estimated value of

√
5 in this circumstance? How many steps were

needed to get this value? Use the square of this estimate as a measure of its
accuracy. What is the square?

16. Use the Babylonian algorithm to find
√

80.

a) First use 2 as your initial estimate. How many steps are needed for the
calculations to stabilize—that is, to reach a value that doesn’t change from
one step to the next?

b) Since 92 = 81, a good first estimate for
√

80 is 9. How many steps are
needed this time for the calculations to stabilize? Are the final values in (a)
and (b) the same?

17. Use the Babylonian algorithm to find
√

250 and
√

1990. If you use
2 as the initial estimate in each case, how many steps are needed for the
calculations to stabilize? If you use the integer nearest to the final answer as
your initial estimate, then how many steps are needed? Square your answers
to measure their accuracy.

18. The Babylonian algorithm is considered to be very fast, in the sense
that each stage roughly doubles the number of digits that stabilize. Does your
work on the preceding exercises confirm this observation? By comparison,
is the routine that got the estimates for S(3) (computed with the program
SIRVALUE) faster or slower than the Babylonian algorithm?
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2.4 Chapter Summary

The Main Ideas

• The exact numerical value of a quantity may not be known; the value
is often given by an approximation.

• A numerical quantity is often given as the limit of a sequence of suc-
cessive approximations.

• When a particular digit in a sequence of successive approximations
stabilizes, that digit is assumed to appear in the limit.

• Euler’s method is a procedure to construct a sequence of increas-
ingly better approximations of a function defined by a set of rate
equations and initial conditions. Each approximation is a piecewise
linear function.

• The exact function defined by a set of rate equations and initial condi-
tions can be expressed as the limit of a sequence of successive Euler
approximations with smaller and smaller step sizes.

Expectations

• You should be able to use a program to construct a sequence of
estimates for S, I, and R, given a specific S-I-R model with initial
conditions.

• You should be able to modify the SIRVALUE and SIRPLOT programs
to construct a sequence of estimates for the values of functions defined
by other rate equations and initial conditions.

• You should be able to use programs that construct a sequence of Eu-
ler approximations for the function defined by a rate equation with
an initial condition. The programs should provide both tabular and
graphical output.

• You should be able to estimate the values of the roots of an equation
f(x) = 0 using a computer graphing package.
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• You should be able to find a square root using the Babylonian algo-
rithm.

• You should be able to find the length of any piece of any curve.

Chapter Exercises

1. a) We have considered the logistic equation

y′ = .1y
(

1 − y

1000

)

On page 81 we looked at the resulting graph of y vs. t, using the starting
value y(0) = 100. There is another graphical interpretation, though, that is
also instructive. Note that the logistic equation specifies y′ as a function of y.
Sketch the graph of this function. That is, plot y values on the horizontal
axis and y′ values on the vertical axis; points on the graph will thus be of
the form (y, y′), where the y′-coordinate is the value given by the logistic
equation for the given y value. What shape does the graph have?

b) For what value of y does this graph take on its largest value? Where does
this y value appear in the graph of y(t) versus t?

c) For what values of y does the graph of y′ versus y cross the y-axis? Where
do these y values appear in the graph of y(t) versus t?

Grids on Graphs

When writing a graphing program it is often useful to have the computer draw
a grid on the screen. This makes it easier to estimate numerical values, for
instance. We can use a simple FOR–NEXT loop inside a program to do this.
For instance, suppose we had written a program (SIRPLOT or SEQUENCE,
for instance) with the graphics already in place. Suppose the screen window
covered values from 0 to 100 horizontally, and 0 to 50,000 vertically. If we
wanted to draw 21 vertical lines (including both ends) spaced 5 units apart
and 11 horizontal lines spaced 5,000 units apart, the following two loops
inserted in the program would work:



DVI file created at 11:25,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

100 CHAPTER 2. SUCCESSIVE APPROXIMATIONS

FOR k = 0 TO 20

Plot the line from (5 * k, 0) to (5 * k, 50000)

NEXT k

FOR k = 0 TO 10
Plot the line from (0, 5000 * k) to (100, 5000 * k)

NEXT k

You should make sure you see how these loops work and that you can modify
them as needed.

2. If the screen window runs from −20 to 120 horizontally, and 250 to 750
vertically, how would you modify the loops above to create a vertical grid
spaced 10 units apart and a horizontal grid spaced 25 units apart?

3. Go back to our basic S-I-R model. Modify SIRPLOT to calculate and
plot on the same graph the values of S(t), I(t), and R(t) for t going from 0
to 120, using a stepsize of ∆t = .1. Include a grid with a horizontal spacing
of 5 days, and a vertical spacing of 2000 people. You should get something
that looks like this:


