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Chapter 12

Case Studies

To enable you to further explore the ways the concepts of calculus are used
as analytical tools in scientific and mathematical investigations, this chapter
presents four extended case studies. The four can be studied separately,
although the first two and the last two are loosely linked

Stirling’s Formula As an example of the way many of the ideas—Taylor
series, numerical integration, reduction formulas, limits—developed in
the earlier chapters of this book can be used in a tightly-reasoned ar-
gument to produce some powerful mathematical insights, in the first
section we derive a famous formula approximating n!. This formula is
then applied to the binomial probability distribution.

The Poisson Distribution Chapter 12.2 continues the probability theme
by developing the Poisson distribution and using it to study the fre-
quency of radioactive decay events.

The Power Spectrum Chapter 12.3 builds on the study of periodicity be-
gun in chapter 7. We develop the Fourier transform, a basic tool in the
sciences for detecting the relative strength of periodic components in a
noisy data set.

Fourier Series Chapter 12.4 expands on some of the ideas in chapter 11.
Here we develop tools for approximating functions over intervals using
sums of sine and cosine terms. This is an extensively used method in
a wide range of disciplines, from thermodynamics to music synthesis.
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12.1 Stirling’s Formula

Given a positive integer n, we define n!—pronounced n factorial—by the rule
n! = 1 · 2 · 3 · · · (n − 1) · n . This is a convenient concept which occurs in a
number of settings, particularly combinatorial and probabilistic ones. ForFactorials

in probability instance, the probability of getting exactly n heads out of 2n tosses of a coin
turns out to be

(2n)!

22n(n!)2
.

Unfortunately, evaluating n! for values of n at all large is cumbersome at best.
Although though many calculators will compute factorials, few of them can
handle numbers as large as 1000! . Even when we can evaluate n!, we are often
as interested in the asymptotic behavior of a certain expression as much as in
its exact value for specific n. For instance, using methods we develop below,n! is difficult

to calculate it turns out that the above expression for the probability of n heads in 2n
tosses is very close to 1/

√
πn, with the approximation being more accurate

the larger n is. In fact, for n ≥ 8, the approximation is good to two places;
for n ≥ 25, the approximation gives three-place accuracy.

In his book Methodus differentialis (1730), the British mathematician
James Stirling published the following approximation, now know as Stir-

ling’s formula, for the factorial operator:

n! ∼
√

2π nn+ 1

2 e−n.

While the right-hand side may look much more complicated than the left,
think which one you would rather evaluate for, say, n = 100. To see how
good this approximation is, here are some comparisons:

Stirling’s
n n! approximation

2 2 1.9190
10 3,628,800 3,598,695.6
50 3.0414 × 1064 3.0363 × 1064

100 9.3326 × 10157 9.3248 × 10157

1000 4.02387× 102567 4.02354 × 102567

10000 2.84626 × 1035659 2.84624 × 1035659

As an example of the way elementary ideas in calculus can be used to
derive powerful and subtle results, we will outline a derivation of Stirling’s
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approximation for n!. You should write up your own summary of this proof,
filling in the gaps in the text below. We will work in two stages. In the first
stage, we will show that

n! ∼ c nn+ 1

2 e−n.

for some constant c. In the second stage we will show that this constant is
actually

√
2π.

Stage One: Deriving the General Form

We first observe that

ln(n!) = ln 1 + ln 2 + . . . + ln n.

It turns out to be easier to prove things about this logarithmic form. In fact,
we will deal most easily with

An = ln 1 + ln 2 + . . . + ln(n − 1) +
1

2
ln n.

Thus ln(n!) = An + 1
2
ln n . Even though ln 1 = 0, it will be useful to retain

the term in the expression for An.
We will find upper and lower bounds for An (and hence for ln(n!) ) by

approximating the area under the curve y = ln x by certain inscribed and
circumscribed trapezoids. We will then use these bounds to predict the
asymptotic behavior of An for large values of n.

The upper bound: Note that if we inscribe
a trapezoid under the graph of y = ln x be-
tween x = k − 1 and x = k, its area will
be 1

2
(ln(k − 1) + ln k). (How do we know

that the straight line connecting the points
(k − 1, ln(k − 1)) and (k, ln k) will lie under
the graph of y = ln x?) The sum of the areas
of all such trapezoids from x = 1 to x = n
is clearly less than the area under the curve
y = ln x over the interval [1, n]. x = k − 1 x = k 

graph of  y = ln x (k , ln k )

(k − 1, ln( k −1))

We therefore have the inequality

1

2
(ln 1 + ln 2) +

1

2
(ln 2 + ln 3) + · · ·+ 1

2
(ln(n − 1) + ln n) <

∫ n

1

ln x dx,
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which is equivalent to An <

∫ n

1

ln x dx.

x = k − .5 x = k x = k + .5

tangent line: slope 1/k

graph of  y = ln x

(k , ln k )

The lower bound: On the other hand if we
draw the tangent line to y = ln x at x = k
and form the trapezoid between x = k − .5
and x = k + .5, its area will just be ln k
and will be greater than the area under the
curve over the same interval. (We’ve used the
fact—which you should check—that the area
of a trapezoid equals the distance between the
parallel sides times the distance between the
midpoints of the other two sides.)

Adding up all such trapezoids, we get the
inequality

∫ n

3

2

ln x dx < An.

Since we know that
∫

lnx dx = x ln x − x, we can evaluate these upper
and lower bounds to conclude

n ln n − n − 3

2
ln

3

2
+

3

2
< An < n ln n − n + 1,

which in turn yields
(

n +
1

2

)

ln n − n +
3

2

(

1 − ln
3

2

)

< ln n! <

(

n +
1

2

)

ln n − n + 1.

Pause for a moment to observe that the difference

Dn =

(

n +
1

2

)

ln n − n + 1 − ln n!

between the expressions on the two sides of the rightmost inequality is just
the accumulated error from approximating the area under y = ln x by the
inscribed trapezoids. Since the error over each interval is always positive, Dn

must therefore get larger as n increases, We will need this fact shortly.
Returning to our inequalities, they can finally be rewritten as

3

2

(

1 − ln
3

2

)

< ln n! −
(

n +
1

2

)

ln n + n < 1.
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Evaluating the constants, we thus have that for any value of n,

.8918 < ln n! −
(

n +
1

2

)

ln n + n < 1.

If we exponentiate, this becomes

2.395 <
n!

nn+ 1

2 e−n
< 2.719,

or
2.395 nn+ 1

2 e−n < n! < 2.719 nn+ 1

2 e−n.

Notice that these bounds are already quite strong and would be adequate These estimates
are often adequatefor many estimates. Moreover, they are true for any value of n. If we are

only interested in large values of n, we can do a little better. Let

δn = ln n! −
(

n +
1

2

)

ln n + n.

Then 1−δn = (n+ 1
2
) ln n−n+1− lnn! is just the expression we called Dn a

moment ago and said had to be increasing as n increases. But if Dn = 1− δn

is increasing, it must be true that δn itself is decreasing as n gets larger. We
thus must have 1 > δ1 > δ2 > . . . > δn . . . > .8918. There must therefore be
some constant d ≥ .8918 such that limn→∞ δn = d. Define the constant c by
c = ed. Then

lim
n→∞

n!

nn+ 1

2 e−n
= c,

which is what we mean when we write

n! ∼ c nn+ 1

2 e−n.

This completes stage 1. In stage 2 we will see that c =
√

2π.

Stage Two: Evaluating c

We will do this using an interesting result of a 17th century English mathe-
matician, John Wallis, who showed that

Wallis’s formulalim
n→∞

2

1
× 2

3
× 4

3
× 4

5
× 6

5
× 6

7
× · · · × 2n

2n − 1
× 2n

2n + 1
=

π

2
.
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Suppose for the moment that we had proved Wallis’s formula. We can
express it in terms of factorials by noting that we can rewrite the product
of the first n even numbers—2 × 4 × 6 × . . . × (2n)—by factoring a 2 out of
each term, leaving us

2 × 4 × 6 × . . . × (2n) = 2n (n!).

Similarly, we can take the product of the first n odd integers—1 × 3 × 5 ×
7 × . . . × (2n − 1)—and insert the missing even terms to get

1 × 3 × 5 × 7 × . . . × (2n − 1) =
1 × 2 × 3 × 4 × . . . × (2n − 1) × (2n)

2 × 4 × 6 × . . . × (2n)

=
(2n)!

2n (n!)
.

We can thus rewrite Wallis’s formula as

lim
n→∞

(2n n!)4

((2n)!)2 (2n + 1)
=

π

2
.

If we now replace all the factorials by their corresponding expressions
using Stirling’s approximation, we get

lim
n→∞

24nc4n4n+2e−4n

c2(2n)4n+1e−4n(2n + 1)
=

π

2
,

which, after a great deal of cancelation, reduces to

lim
n→∞

c2n

2(2n + 1)
=

π

2
.

Now since

lim
n→∞

n

2n + 1
=

1

2
,

this reduces to
c2

4
=

π

2
,

so
c2 = 2π,

and
c =

√
2π,

as desired.



DVI file created at 17:56,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

12.1. STIRLING’S FORMULA 775

Deriving Wallis’s formula

One way to derive Wallis’s formula involves the integrals

Ik =

∫ π/2

0

sink x dx.

Note that I0 > I1 > I2 > I3 > . . . . Moreover, you should verify that

I0 =
π

2
and I1 = 1.

Using the reduction formula derived in chapter 11.5 for antiderivatives of
sinn x, we have a similar reduction formula for the Ik:

Ik =

∫ π/2

0

sink x dx

=
−1

k
sink−1 x cos x

∣

∣

∣

∣

π/2

0

+
k − 1

k

∫ π/2

0

sink−2 x dx

=
k − 1

k
Ik−2.

This in turn leads to

Ik =















2n − 1

2n
· 2n − 3

2n − 2
· · · 1

2
· π

2
if k = 2n is even,

2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3
· 1 if k = 2n + 1 is odd.

Further, note that

I2n+2/I2n =
2n + 1

2n + 2
,

which has the limit 1 for large n. Since I2n > I2n+1 > I2n+2, it follows that
I2n+1/I2n approaches 1 for large n. But this gives us

1 = lim
n→∞

I2n+1/I2n

= lim
n→∞

(

2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3
· 1
)

÷
(

2n − 1

2n
· 2n − 3

2n − 2
· · · 1

2
· π

2

)

= lim
n→∞

2n

2n + 1
· 2n

2n − 1
· 2n − 2

2n − 1
· · · 2n − 2

2n − 3
· · · 2

3
· 2

1
· 2

π

If we multiply both sides of this equation by π/2, we get Wallis’s formula.
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Further refinements

Using even more careful methods of analysis, it is possible to improve onSome refinements

Stirling’s approximation and derive approximations like

n! ∼
√

2π nn+ 1

2 e−n+ 1

12n
− 1

360n3
+ 1

1260n5
−···.

If we use this expression to approximate 1000!, for instance, our result is
accurate for the first 24 digits.

While this approximation and Stirling’s original one are good in the sense
that they give more and more accurate digits the larger n gets—so that the
ratio of n! to either approximation goes to 1 as n gets large—they are bad in
the sense that the difference between n! and either approximation becomes
infinite as n gets large.

The Binomial Distribution

One of the most frequently encountered concepts in probability theory is
the binomial probability distribution. Suppose we repeat a certain
experiment—flipping a penny, rolling a single die, mating a pair of fruit
flies, feeding cholesterol to a lab rat—over and over. Suppose further that
there is some outcome we are looking for—getting heads, rolling a 2, getting
a red-eyed offspring, developing liver cancer in the rat—in each experiment.
If p is the probability p of obtaining the looked-for outcome in any one exper-
iment, denote by P (n, k, p) the probability of the outcome happening exactly
k times in n experiments. It turns out that

P (k, n, p) =
n!

k!(n − k)!
pk(1 − p)n−k.

Example 1 How likely is it to get four 2’s if we roll twelve dice? The

probability of getting a 2 by throwing one die is
1

6
. Therefore the answer to

the question is

P (12, 4, 1
6
) =

12!

4! 8!

(

1

6

)4(
5

6

)8

= .0888281

—we should get exactly four 2’s slightly less frequently than once out of every
11 times we roll twelve dice.
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Example 2 What is the probability of getting exactly 47 heads if we flip
100 pennies? Since the probability of getting heads on a single toss of a
penny is 1

2
,

P (100, 47, 1
2
) =

100!

47! 53!

(

1

2

)100

= .0665905,

—on the average, if we flip 100 pennies, we should get 47 heads about once
out of every 15 times.

The second example demonstrates the fact that calculating binomial prob-
abilities can get very messy very quickly. Several of the exercises are designed
to show how Stirling’s formula can give us quick estimates that are easy to
calculate and work with.

Exercises

1. Go through the derivation in this section and find several passages that
seem to you to go a bit fast or skip over details. Rewrite these sections to
make them clearer and more complete.

2. Confirm the values given in the table on page 770 for the approximations
of 100! and 1000! that Stirling’s formula produces.

3. Rate of growth of n! Factorials get very large very rapidly. The
purpose of this exercise is to develop a sense of just how rapidly n! grows by
comparing it to exponential functions.

Let N be some integer > 1, and consider the sequence a1, a2, a3, . . . defined
by

an =
Nn

n!
.

a) Show that ak =
N

k
ak−1, and conclude that

if k < N then ak−1 < ak;
if k > N then ak−1 > ak;
if k = N then ak−1 = ak.

We thus have a sequence that increases for a while:

a1 < a2 < · · ·aN−1 = aN ,
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and then decreases forever after:

aN > aN+1 > aN+2 > · · · .

b) If k > 2N show that ak < .5ak−1. Hence conclude that lim
n→∞

an = 0.

c) Use Stirling’s approximation to show that

aN ≈ eN

√
2πN

.

Calculate the values of this expression for N = 10 and N = 100 to get an
idea of how large the sequence {an} can get. This shows that for a while,
the exponential series {Nn} can get large much more rapidly than the series
{n!}.
d) Show that an < 1 if n > eN . This gives an upper bound on how long it
takes the factorials to catch up with the exponentials.

4. If n ≥ 5, then n! terminates in a certain number of zeroes. For instance,
5! = 120 ends in one zero, 23! = 25852016738884976640000 ends in four
zeroes, and so on. How many zeroes are there at the end of 1000! ?

The binomial distribution

5. The formula for the binomial distribution gives us that the probability
of getting exactly n heads in 2n flips of a coin is

(2n)!

(n!)2

(

1

2

)2n

.

Show using Stirling’s formula this can be approximated by

1√
πn

.

Use this approximation to find the probability of getting 50 heads out of 100
tosses of a coin. If you have a computer or calculator which can compute
factorials, use the original binomial distribution formula to calculate the
exact probability of getting 50 heads and compare the answers.

6. More generally, if we try a certain experiment n times with a probability p
of success each time, the most likely number of successes is k = np. (Assume
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that p is a fraction and n is such that n · p is an integer.) Use Stirling’s
approximation to show that the probability of getting exactly np successes
is

P (n, np, p) ≈ 1
√

2πnp(1 − p)
.

Is this consistent with the answer to the previous exercise?

7. One-dimensional random walk An important class of problems, in-
cluding diffusion and Brownian motion involve the long-term behavior of
particles moving randomly. We will look at the simplest case of such prob-
lems. A particle starts at the origin on a line and at each stage moves one
unit to the right or one unit to the left, being equally likely to do either.
What can we say about where the particle will be after n steps? In this
problem we will use Stirling’s formula to develop some useful insights into
this question.

a) Explain why the particle will be r units to the right of the origin after
n steps if and only if it has moved to the right k = (n + r)/2 times and to
the left n − k = (n − r)/2 times. Explain why it could never be 3 units or 7
units to the right after 100 steps.

b) Using the same symbols as in part (a), show that the probability of the
particle’s being exactly r units to the right after n steps is

n!

k!(n − k)!

(

1

2

)n

.

c) Use Stirling’s formula to show that this probability of being r units to
the right after n steps is approximately

√
2

√
πn(1 + (r/n))

1

2
(n+r+1) (1 − (r/n))

1

2
(n−r+1)

.

d) To simplify the denominator of this fraction, recall the Taylor series ap-
proximation for ln(1 + x):

ln(1 + x) = x − x2

2
+ · · · .

Hence, if r is much smaller than n, ln(1 + r/n) can be approximated by
r/n − r2/(2n2), and ln(1 − r/n) can be approximated by −r/n − r2/(2n2).
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By ignoring all powers of r greater than the second, conclude that

(1 + (r/n))
1

2
(n+r+1) (1 − (r/n))

1

2
(n−r+1) ≈ er2/(2n),

so that the probability of being r units to the right after n steps is

√

2

πn
e−r2/2n.

e) Explain how we can get the answer to exercise 5 as a special case of the
result just obtained in part (d).

f) Using the approximation from part (d), calculate the probability that
after 100 steps the particle will be no more than 5 units away from the
starting point to either the right or the left. Remember that after 100 steps
it is impossible to be an odd number of units away from the starting point.
The exact probability is

52
∑

k=48

100!

k!(100 − k)!

(

1

2

)100

= .382701.
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12.2 The Poisson Distribution

A Linear Model for α-Ray Emission

When a radioactive element decays, we know from the study of differential
equations in chapter 4 that the amount A(t) of radioactive material present
at time t satisfies the differential equation

A′ = −kA,

where k > 0 is the decay constant. If A0 is the amount present at time t = 0,
then the solution is

A(t) = A0e
−kt.

The time T it takes for a given amount of radioactive material to decay
to half the starting quantity is known as the half life of the element. Since,
by definition, A(T ) = .5 A(0) = .5 A0, we must have

e−kT =
1

2
,

which leads to

kT = ln 2

and therefore The relation between
the half-life and

the decay constantT =
ln 2

k
.

Suppose, for example, that we have a sample of polonium, which is a
radioactive isotope of radium. The decay constant of polonium is k = .500865
% per day, and thus its half life is

T =
ln 2

k
=

ln 2

.00500865
= 138.39 days.

By local linearity, A(t) is closely approximated by a linear function for short
intervals of time. Because polonium has a half-life of 138.39 days, a “short
time” means several hours in this case. Thus, if we spend an afternoon in
a laboratory studying the decay of polonium, we can assume that A(t) is
linear.
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When polonium decays, it produces various sorts of radiation, including
α-rays (“alpha rays”). Using a scintillation counter, one can determine the
number of rays emitted in given directions:

A setup like this will count a fixed percentage of the total number of α-rays
emitted. Since our model of decay is linear, it follows that the number of
α-rays detected should be a linear function of time. If we start counting at
time t = 0, the number of particles observed will have a straight-line graph:

In the early 20th century, researchers like Marie Curie and Ernest Ruther-
ford did numerous studies of the α-rays emitted by polonium. For example,
in 1911, Rutherford, Geiger and Bateman counted the number of α-rays de-
tected in a 7.5-second time period. They repeated their experiment 2608
times and detected a total of 10,097 α-rays. This is an average of

10097

2608
= 3.8715 α-rays per 7.5-second period,

so the number of α-rays per second is

3.8715

7.5
= .5162 α-rays per second.

Thus the straight line in the above graph has slope .5162.
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This model of α-ray production has several problems. First, it predicts the
existence of fractional α-rays, which makes no sense—the number detected
is always a nonnegative integer. To remedy this, we can modify our model
as follows:

Notice that the graph is now a step function. It shows that we should see a
new α-ray every 1/.5162 = 1.937 seconds. This model also has the following
consequence: if we observe the number of α-rays produced in a 7.5-second
interval, then we will always see 3 or 4 particles:

As the picture indicates, whether we get 3 or 4 depends on where the interval
starts. Now comes the serious problem: this prediction is inconsistent with
the experimental data collected by Rutherford and the others in 1911. For
example, in 57 of the 2608 times they ran the experiment, no α-rays were
observed, while in 139 cases, 7 α-rays were observed. Here are the complete
data of the experiment:
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number of number of
α-rays observed occurrences

n Nn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

57
203
383
525
532
408
273
139
45
27
10
4
0
1
1

Total 2608

It follows that the linear model of α-ray emission doesn’t apply to time
intervals of length 7.5 seconds. This is a common occurrence—a model may
work nicely over a certain range, but outside of that range, its answers may
be meaningless. The problem in our case comes from the random nature of
radioactive decay. In fact, there are two sources of randomness to deal with:
the time when a polonium atom decays is random, and the direction in which
it then emits an α-ray is also random (this affects us since the scintillation
counter only detects emissions in certain directions). We need to modify our
model to take the randomness into account, and this is where probability
enters in.

Probability Models

The basic idea of probability theory is that the outcome of a certain event canRandomness has
structure be unpredictable in the individual instance but predictable on the average.

Throwing dice and tossing a coin are familiar examples. In this section, we
will show how the Poisson probability distribution gives an excellent model
of the α-ray experiment described above.
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The definition of probability

We will let pn denote the probability of observing exactly n α-rays in a 7.5-
second time interval. By this statement, we mean the following. Suppose
we run the experiment N times, where N is large. Let Nn be the number
of times we observed n α-rays. Then the ratio Nn/N is the frequency with
which this outcome occurs. Now imagine N getting larger and larger. Being
“predictable on the average” means that the ratios Nn/N approach a fixed
number, that is, the limit limN→∞ Nn/N exists. We then define this number
to be the probability pn. Thus

pn = lim
N→∞

Nn

N
.

For example, the data presented on page 784 were obtained from N = 2608
repetitions of our experiment. From the table given there, we see that 0 α-
rays were observed 57 times. This means N0 = 57, and thus the probability
of detecting 0 α-rays is

p0 ≈
N0

N
=

57

2608
= .0218.

Similarly, we can approximate p1, p2, etc., using the data in the table. Our
goal is to describe these probabilities p0, p1, . . . .. Ideally, we would like to
have a way of determining the numbers p0, p1, p2, . . . “before the fact.”

Some properties of probabilities

In any introductory course on probability, one learns certain basic principles
for working with probabilities. We will give examples to illustrate some of
these principles, and more examples may be found in the exercises.

For our purposes, we will be working in the following setting. There is
a certain experiment being performed. This might consist of flipping a The general context

coin and noting which side comes up, or running a survey asking people at
random their opinions about a certain TV show, or, in our case, counting
the number of α-rays detected in a 7.5-second interval. Moreover, there is a
discrete set of possible outcomes of the experiment. That is, the possible
outcomes can be listed in a sequence O1, O2, O3, . . . . In some cases, like
throwing a pair of dice, this list might be finite. In other cases, like our α-ray
experiment, the list might be infinite. What is ruled out are experiments like
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choosing a person at random and measuring the person’s height—there is
a continuum of possible outcomes here which cannot be listed in the way
we’ve specified. Moreover, there should be a probability assigned to each
outcome, with the outcome On having probability pn.. Finally, the possible
outcomes should be disjoint—two different outcomes can’t both result from
a single experiment. Thus if we are examining the attributes of a group
of people, “being male” and “having green eyes” would not be acceptable
outcomes in our sense unless we somehow knew in advance that there were
no green-eyed males in the group.

Knowing the probabilities p0, p1, . . . of the possible outcomes allows us to
compute other, possibly more complicated probabilities. This brings in the
concept of an event, which is basic to probability. In the case of our α-ray
experiment, here are some examples of events:

• Detecting 3 α-rays.

• Detecting 2 or 4 α-rays.

• Detecting an odd number of α-rays.

In general, an event is a subcollection of the possible outcomes.

The addition rule
for probabilities

Rule 1 The probability of an event is simply the sum

of the probabilities of its component outcomes.

Thus, for the events just described, we have:

• The probability of detecting 3 α-rays is p3;

• The probability of detecting 2 or 4 α-rays is p2 + p4;

• The probability of detecting an odd number of α-rays is the infinite
sum

p1 + p3 + p5 + p7 + · · ·

(since an odd number of α-rays means that 1 or 3 or 5 or 7 etc. have
been detected).

Another important property of probabilities follows directly from Rule 1:
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Rule 2 The sum of the probabilities of all possible out-

comes is 1:
∞
∑

k=0

pk = 1.

The reason for this is that the list of outcomes was stipulated to be the list
of all possible outcomes. Hence the event consisting of all these outcomes is
bound to occur every time—its probability is 1.

A third rule we will need relates the probabilities of independent events.
Two events are independent if the occurrence or non- occurrence of one of
the events has no impact on the probability of the second event occurring.
For instance, suppose we are examining a group of people. Consider the
following events which may or may not occur each time we look at a person:

1. The person is female;

2. The person has green eyes;

3. The person is over 5’7” tall.

We would expect the first and second events to be independent, and also the
second and third, but not the first and third.

The product rule
for probabilities

Rule 3 The probability that two or more independent

events all occur is the product of their separate proba-

bilities.

Thus, for example, suppose that in our hypothetical group of people 1
2

are
female, 1

8
are green-eyed, and 1

3
are taller than 5’7”. We might then expect

roughly 1
24

of them to be green-eyed and over 5’7”, but we would have no
particular reason to expect that 1

6
of them are females taller than 5’7”.

A final rule that is often useful is

The probability
that something
doesn’t happen

Rule 4 If a certain event has a probability p of hap-

pening, then the probability that the event doesn’t take

place is 1 − p.

For example, in our group of people, we would expect 2
3

of them to be less
than 5’7” tall, 7

8
of them to have eyes colored something other than green,

etc.
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The notion of a probability model

A model is a mathematical picture of a real-life phenomenon. We have seen
that dynamical systems can be used to create models of physical situations.
Another type of mathematical model is a probability model. In general, a
probability model for an experiment with a finite number of outcomes is
a listing of all possible outcomes and an assignment of probabilities to each

outcome so that their sum is 1. In order that the probability model be a
good picture of reality, we ask that the probability assigned to an outcome

should be the relative frequency with which that outcome would appear if the

experiment were duplicated independently a large number of times.
As an example, a probability model for one toss of a fair die consists of

a list of all possible outcomes, namely 1, 2, 3, 4, 5, 6, and an assignment of
a probability to each, namely 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, respectively. We assign the

number 1
6

to each outcome because we expect that if the the experiment were
repeated (that is, if the die were tossed) a large number of times, then any
particular outcome (3, say) would occur about one sixth of the time. Another
probability model for the experiment consisting of a toss of a die might be a
list of all outcomes, again 1, 2, 3, 4, 5, 6, together with an assignment of the
numbers 1

2
, 0, 1

6
, 0, 0, 1

3
to 1, 2, 3, 4, 5, 6, respectively. This is a probability

model, because the numbers we have assigned add to 1, but it certainly does
not model very well the throw of a fair die.

We would like to set up a probability model for our experiment with α-
rays. The outcomes are 0, 1, 2, 3, 4, ... where, for example, the number 5
labels the outcome in which we observe 5 α-rays in our 7.5-second interval.
The total number of outcomes is equal to the number of α-rays that we
could conceivably see in a 7.5-second interval. Since it is conceivable (but
extremely unlikely) that every atom in the sample could decay and emit an α-
ray in the direction of the scintillation counter in one 7.5-second interval, we
could conceivably see as many α-rays as there are atoms in the sample. This
number is so large that we can think of it as infinite. To have a probability
model, we need to assign numbers p0, p1, p2, . . . to the outcomes 0, 1, 2, . . . ,
respectively, so that p0+p1+p2+ · · · = 1. For the model to be reasonable, we
would like each pn to be approximately equal to the corresponding number
Nn/N observed by Rutherford, Geiger, and Bateman.
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The Poisson Probability Distribution

The Poisson model of α-ray emission

To describe the probabilities p0, p1, . . . , pn, . . . that we will observe 0, 1, . . . ,
n, . . .α-rays in a 7.5-second interval for our α-ray experiment, we use the
Poisson probability distribution

pn =
λne−λ

n!
,

where λ is a number yet to be determined, and n! is the familiar n-factorial

function,

n! =

{

n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1 if n > 0,

1 if n = 0.

Thus the first few Poisson probabilities are:

p0 = e−λ, p1 = λe−λ, p2 =
λ2e−λ

2
, p3 =

λ3e−λ

6
.

Note that this assignment does indeed give us a probability model, be-
cause

p0 + p1 + p2 + p3 + · · · =
λ0

0!
e−λ +

λ

1!
e−λ +

λ2

2!
e−λ +

λ3

3!
e−λ + · · ·

= e−λ

(

1 +
λ

1!
+

λ2

2!
+

λ3

3!
+ · · ·

)

= e−λ · eλ

= 1.

(The transition from the second line to the third uses the fact that the
expression in parentheses is just the Taylor series for eλ.)

We will shortly derive the Poisson distribution from basic principles. For
the moment, though, we will assume that the probabilities p0, p1, . . . for α-
ray emission are given by the above formulas, where we still need to choose
an appropriate value for the parameter λ. The key to determining λ is the
notion of expectation, which for us will mean the average number of α-rays
observed in a 7.5-second interval.
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Suppose we repeat our experiment N times. As usual, we let Nn denote
the number of times exactly n α-rays were observed. Then the total number
of α-rays observed in the N experiments is

0 · N0 + 1 · N1 + 2 · N2 + 3 · N3 + · · · .

Then the “average number of α-rays observed in a 7.5-second interval” means
the limit

E = lim
N→∞

0 · N0 + 1 · N1 + 2 · N2 + 3 · N3 + · · ·
N

.

This limit is called the expected value or expectation (which explains
why it is denoted E).

We claim that for the Poisson distribution, the expected value E is exactly
the number λ. To see this, notice that the above limit can be written in the
form

E = lim
N→∞

(

0 · N0

N
+ 1 · N1

N
+ 2 · N2

N
+ 3 · N3

N
+ · · ·

)

.

Since we defined

pn = lim
N→∞

Nn

N
,

it follows that we get the following formula for the expectation:

The general formula
for the expected value
in a probability model

E = 0 · p0 + 1 · p1 + 2 · p2 + 3 · p3 + · · · =
∞
∑

n=0

npn.

(Note that this equality is true for any probability model, not just the one
we are considering)

Substituting in the values of pn given by the Poisson distribution, we have

E = 0 · e−λ + 1 · λe−λ + 2 · λ2

2!
e−λ + 3 · λ3

3!
e−λ + · · ·

=

∞
∑

n=0

n
λn

n!
e−λ

= λe−λ
∞
∑

n=1

λn−1

(n − 1)!
,

where we pulled the common factor λe−λ outside the summation, noted that
the term in the summation corresponding to n = 0 is 0, and observed that

n

n!
=

n

n(n − 1) · · · · · 2 · 1 =
1

(n − 1)!
.
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Letting k = n − 1, we have (again recognizing the Taylor series for eλ)

E = λe−λ
∞
∑

k=0

λk

k!
= λe−λeλ = λ.

This proves that the expected value is λ as claimed.
Now that we know how to interpret λ, it is easy to determine what it

should be for the α-ray experiment. The data given on page 784 covered
N = 2608 repetitions of the experiment, with

0 · N0 + 1 · N1 + · · · = 10097

in this case. Thus

0 · N0 + 1 · N1 + · · ·
N

=
10097

2608
= 3.8715

is an approximation of the expected value λ. However, since this is the only
information about λ we have, we will let λ = 3.8715. Using this value of λ,
we can then compare the frequencies predicted by the Poisson distribution
to the actual data from on page 784:

number of number of probability Poisson Poisson
α-rays observed occurrences approximation probability prediction

n Nn Nn/N pn 2608 pn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

57
203
383
525
532
408
273
139
45
27
10
4
0
1
1

.021855

.077837

.146855

.201303

.203398

.156441

.104677

.053297

.017254

.010352

.003834

.001533

.000000

.000383

.000383

.020827

.080632

.156083

.201426

.194955

.150953

.097402

.053870

.026070

.011214

.004341

.001528

.000492

.000146

.000040

54.3
210.3
407.1
525.3
508.4
393.7
254.0
140.5
68.0
29.2
11.3
4.0
1.3
.4
.1

Totals 2608 1 1 2608
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The Poisson model agrees nicely with the data since for each n, Nn/N and pn

are reasonably close. Notice that we shouldn’t expect perfect agreement since
Nn/N is only an approximation to pn. We would expect these approximations
to get better as we take larger values of N .

Look at the last column, labelled “Poisson prediction.” The numbers here
are the Poisson probabilities multiplied by N = 2608, and they represent the
“ideal” number of occurrences. This makes it easier to compare the model
to the data. For example, the graph below plots the number of occurrences,
both actual and predicted. The circles are the experimental data, while the
line-segment graph connects the Poisson predictions.

Although the model seems to fit the data nicely, we should point out that
there are statistical tests which can be used measure the fit more precisely.
These tests are part of the material covered in courses in probability and
statistics.

A final and very important point to make concerns the number of α-rays
observed over a long period of time. Our particular Poisson model with
λ = 3.8715 only works for a 7.5-second interval. What happens if we count
α-rays over a longer time period? For simplicity, assume that we have a time
interval of length T which is a multiple of 7.5 seconds, so that T = 7.5 N
for some large integer N . We can regard this as running our 7.5-second
experiment N consecutive times. Thus the ratio

total number of α-rays observed

N
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is an approximation to the expected value λ = 3.8715. It follows that

total number of α-rays observed ≈ 3.8715 N =
3.8715

7.5
7.5 N = .5162 T.

This shows that for large time intervals, we recover the linear model of α-ray
emissions discussed on page 782. Thus our probabilistic model is consistent
with what we did earlier and yet allows us to describe what happens when
the linear model breaks down.

Derivation of the Poisson model

In the previous discussion we simply assumed that the α-ray probabilities
were given by the Poisson distribution, and found that the Poisson probabil-
ities agreed with the experimental data. Let’s see where the Poisson formulas
come from. It turns out that we can derive the Poisson probabilities pn from
the following assumptions:

• We have an extremely large number M of polonium atoms;

• Each atom has a small but equal probability of emitting an α-ray that
is detected by our scintillation counter in a 7.5-second period;

• Observing an α-ray from a given atom is independent of observing an
α-ray from any other atom.

Now suppose that we see an average of λ = 3.8715 α-rays in a 7.5-second
period. Because the number of atoms M is large (in the Rutherford-Geiger-
Bateman experiment M > 1018), then the probability that a single fixed
atom emits an α-ray detected by our scintillation counter in a given time
period is very close to λ/M . The probability that the single atom does not
emit a detected α-ray in the period is then 1 − λ/M (by Rule 4, page 787).
Thus, the probability p0 that none of the M atoms emits an α-ray in the
7.5-second period is (1 − λ/M)M (by Rule 3, page 787).

The fact that M is so large allows us to make a simplifying approximation.
Recall that for any value of x, positive or negative,

ex = lim
n→∞

(

1 +
x

n

)n

.

Therefore

p0 =

(

1 − λ

M

)M

≈ e−λ.
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You might calculate some sample values for various values of M to see how
good this approximation is.

To derive the values of pk for k > 1, we need a slight improvement on the
estimate we just made. Let k be a relatively small (compared to the size of
M) number. Then

(

1 − λ

M

)M−k

=

(

(

1 − λ

M

)M
)

M−k

M

.

Now if M is very large compared to k—we will be thinking of values of M on
the order of magnitude of 1018 and k < 100—then (M−k)/M will essentially(M − k)/M is

essentially equal to 1 equal 1, Hence
(

1 − λ

M

)M−k

≈
(

e−λ
)1

= e−λ.

We can now work out p1. Fix your attention first on a particular atom.
The probability that that atom does emit an α-ray detected by the scintilla-
tion counter while the other M − 1 atoms do not is (again by Rule 3)

(

λ

M

)1(

1 − λ

M

)M−1

≈ λ

M
e−λ,

by the preceding approximation.
Since there are altogether M atoms which might have been responsible

for the single α-ray emission, the probability that some unspecified atom
emits an α-ray while the others do not is (Rule 1, page 786) the sum of the
probability we just calculated for each of the M atoms, which is equal to M
times that probability. The total probability is p1:

p1 ≈ M
λ

M
e−λ = λ e−λ.

To work out p2, note that the probability that each atom of some fixed
pair of atoms emits an α-ray detected by the counter, and no other atoms
does, is

(

λ

M

)(

λ

M

)(

1 − λ

M

)M−2

≈ λ2

M2
e−λ,

using our usual approximation. Since there are 1
2
M(M − 1) different pairs

of atoms (we can choose the first M different ways and the second (M − 1)
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ways, but each pair gets counted twice in this scheme, so we have to divide
by 2), we obtain

p2 ≈
M(M − 1)

2

λ2

M2
e−λ =

(

1 − 1

M

)

λ2

2
e−λ ≈ λ2

2
e−λ.

As one can easily imagine, the computations for p3, p4, . . . are similar.
The observant reader will note that the exact values we got for p0, p1 and
p2 are not the values given by the Poisson distribution. We got the Poisson
probabilities only by making various approximations that were justified by
the large value of M . The assumptions we have made actually lead to what
is called the binomial distribution (see chapter 12.1), a distribution which
tends to the Poisson distribution in the limit M → ∞. In this case, where M
is large and λ relatively small, the binomial distribution is extremely close
to the Poisson distribution.

Other applications of the Poisson distribution

The Poisson distribution can be used to model many other situations that
have a random element. Examples include:

• The number of chromosome interchanges caused by exposure to X-rays
for a fixed interval of time.

• The number of bacteria in a given unit of area on a Petri dish.

• The number of misprints on a page in a book.

• The number of flying-bomb hits per unit area in London during World
War II.

In the exercises we will explore some examples.

Exercises

Probability models

1. A fair coin is tossed. If it comes up H (heads), a fair die is rolled. If the
coin comes up T , the coin is tossed again. Construct a probability model for
this experiment, listing the possible outcomes and their probabilities. (Hint:
the list of outcomes is H, 1, H, 2, . . ., H, 6, TT , TH .)
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2. Two identical fair coins are put in cup, shaken, and spilled out onto a
table. Construct a probability model for this experiment.

3. a) In the disintegration of large numbers of particles of radium (Ra), it
is noted that 29% of the disintegrations result in

Ra −→ P + A

and the remainder in
Ra −→ He+ + B.

What is a model for the disintegration of a single particle of Ra?

b) Construct a probability model for the disintegration of two particles
of Ra.

The Poisson distribution

4. The purpose of this exercise is to present another way to show that the
expected value E of the Poisson distribution is equal to λ. As in the text we
have

E = 0 · p0 + 1 · p1 + 2 · p2 + 3 · p3 + · · · =
∞
∑

n=0

npn.

The numbers npn can be simplified as follows:

0 · p0 = 0,

1 · p1 = 1 · λe−λ = λ · e−λ = λp0,

2 · p2 = 2 · λ2e−λ

2
= λ · λe−λ = λp1,

3 · p3 = 3 · λ3e−λ

6
= λ · λ2e−λ

2
= λp2.

a) This pattern generalizes: show that

npn = λpn−1 for all n > 0 .

b) Use part (a) to compute the expectation E (you will need to use the fact
that the sum of the probabilities is p0 + p1 + p2 + · · · = 1).
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5. A model is to be constructed for the number of rain drops that fall per
square foot over a short time interval. Under what conditions would a Poisson
distribution be appropriate. Under what conditions would a linear model be
better?

6. In analyzing flying-bomb hits in the south of London during World War
II, investigators partitioned the are into 576 small sectors, each being 1

4
of

a square kilometer. There were 229 sectors with no hits, 211 sectors with
exactly 1 hit, 93 sectors with exactly 2 hits, 35 sectors with 3 hits, 7 sectors
with 4 hits, and one sector with 5 or more hits. What might lead you to
expect that a Poisson distribution might be a good model for the number of
hits on each sector? Fit a Poisson distribution to the data by taking λ to be
the average number of hits per sector. Use this λ to compute the theoretical
frequencies of 0, 1, 2, 3, 4 and 5 hits in 576 sectors.

7. A meteorite shower sprinkles a large area of the earth’s surface with small
meteorite hits. The average density is 5×10−6 hits per square meter. Set up
a model assigning a probability to the number of hits per square kilometer.

8. The central processing unit (CPU) of a laptop computer will freeze if
more than ten instructions are received in a millisecond. If the average
number of instructions per second received in the course of executing a large
program is one per millisecond, what is the probability that the instructions
received by the CPU will cause it to freeze (and, hence, the program to
crash).
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12.3 The Power Spectrum

This section is an application of ideas about periodic functions and integralsThe problem of
signal + noise to the problem of separating a signal from noise. We face this problem in our

daily life. Radio and television signals have noise added to them from other
radio sources we can’t control. The noise sounds like hissing static on a radio
and looks like “snow” on a television screen. A good receiver is designed to
filter out the noise while allowing the the transmitted signal to come through
undistorted.

1820 1840 1860 1880 1900 1920

2000

4000

6000

year

Annual harvest of lynx pelts

pe
lts

Scientific data and a radio broadcast have something in common: both are
combinations of signal and noise. For instance, consider the annual harvest
of lynx pelts by the Hudson’s Bay Company. It is conceivable that the lynx
population itself (the signal) was periodic, but various random fluctuations
(the noise) caused the harvest (which is signal + noise) to take the form it
did. If this is the case, then we should try to “filter out” the noise and findThe power spectrum

filters noise to detect
periodic signals

the underlying periodic signal. There is a mathematical tool to do this; it
is called the power spectrum. We will discuss the ideas behind the power
spectrum and show how it can be used to detect the underlying in noisy data.

Signal + Noise

To prepare for working with the power spectrum, let’s first see what happens
to a periodic signal that has some noise added to it. The signal we will use is
a pure sine wave. The information that the signal carries is the frequency of
that wave. The noise will also be a function, but one whose values vary in a
random fashion. It can be thought of as a combination of periodic signals of
all frequencies. For this reason it is sometimes called “white noise,” because
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white light is a combination of light rays of all colors (i.e., frequencies). Here
is the question we will explore: If we increase the strength of the noise, when
do we lose the information contained in the original signal?

The signal and noise are shown below. As you can see, the amplitude of A signal with
faint noisethe signal is about 4 times as large as the amplitude of the noise. We say

signal:

noise:

signal + noise:

that the signal-to-noise ratio is 4:1. The combined signal + noise is no
longer a pure sine wave, of course. However, it is still recognizable as a
“noisy” wave with the same frequency as the original signal. The information
from the signal has not yet been lost.

Look what happens when we increase the amplitude of the noise. In the The noise level
becomes strongerfigure below, the noise has been increased by a factor of 4, so the signal-

to-noise ratio is now 1:1. The combined signal + noise is now very noisy.
Would you be willing to argue that it is a wave of the same frequency as the
original signal? Or would you prefer to say that it has no periodic pattern
whatsoever? It appears we are close to losing the information from the
original signal.

signal:

(× 4):noise

signal + noise:



DVI file created at 17:56,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

800 CHAPTER 12. CASE STUDIES

If we increase the original noise level by a factor of 10, we appear to loseThe noise level
becomes overwhelming the original signal altogether. The signal-to-noise ratio is now 1:2.5, and the

signal

noise (× 10)

signal + noise

signal + noise appears to be as random as the noise itself. In spite of appear-
ances, the signal is still there, and it will be detected in the power spectrum!

Detecting the Frequency of a Signal

Assume we have a signal that may be distorted by a lot of noise. We wantCompare the signal
to a probe whose
frequency can be varied

to decide whether the signal has a periodic component; if it does, we want to
determine its frequency. Our detector is based on this simple idea: Compare

the signal to a test probe of known frequency; vary the frequency of the probe

until there is a positive response. Of course, we still need to explain how the
comparison is made, and what constitutes a positive response.

Although the detector will work on a very noisy signal, like the one above,
we will understand it better if we first use it to analyze a signal whose periodic
nature is evident. Let the signal S(t) be a pure sine wave lying above theThe test probe

t-axis, and suppose that t is the time measured in seconds. Our test probe
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is the function

P (t) = sin(2πωt)

whose frequency is ω cycles per second. As its graph demonstrates, the values
of P are equally likely to be positive or negative.

Is the same true for the product P (t)S(t)? Suppose first that S(t) has When the signal
matches the

test frequency
the same frequency as P (t) (below, left). As you can see, the positive values
of P (t) are always multiplied by the larger values of S(t). By contrast, the
negative values of P (t) are always multiplied by the smaller values of S(t).
Consequently, the positive values of P (t)S(t) outweigh the negative ones. On
average, the value of the product is positive. In fact, the average value of
the product is half the amplitude of the original signal. Later on we will see
why this is so.

original
signal

t

S
frequencies match

2A

test
probe t

P

their
product t

S·P

S·P = A/2

average value = A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

On the right we see what happens if S(t) is not related to P (t). In that When the signal
doesn’t match the

test frequency
case, a large value of S(t) is just as likely to multiply a positive value of P (t)
as a negative one. Consequently, the product P (t)S(t) will have both large
positive and large negative values. On average, the value of the product will
be about 0.

Let’s use the detector on the signals we constructed on page 799. In both
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we started with a pure sine wave and added some white noise. In the first,
the signal-to-noise ratio was 4:1.

original
signalt

S
frequencies match

A

test
probet

P

their
productt

S·P

S·P ≈ A/2

average value ≈ A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

In the second the noise was stronger; the signal-to-noise ratio was 1:1.

original
signalt

S
frequencies match

A

test
probet

P

their
productt

S·P

S·P ≈ A/2

average value ≈ A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

To use the detector yourself, you have to be able to calculate the average
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value of a function. This is discussed in chapter 6.3. The average value of
y = f(x) on the interval a ≤ x ≤ b is

The average value
of a function

1

b − a

∫ b

a

f(x) dx.

Our detector is the average value of the product of the signal S(t) and the
test probe P (t) = sin(2πωt).

Frequency detector: D(ω) =
1

b − a

∫ b

a

S(t) sin(2πωt) dt.

Clearly, the value of the detector depends on the frequency ω of the probe Integrals
with parameters
define functions

P . We have tried to reflect this in the notation: the detector is a function D
whose input is the frequency ω. The output of the function is calculated as
an integral in which the input ω plays the role of a parameter.

This is the first time we have defined a function as an integral with a
parameter. Let’s see how the detector works to analyze the signal S(t) =
3 sin(5t) over the interval 0 ≤ t ≤ 10. We have

D(ω) =
1

10

∫ 10

0

3 sin(5t) sin(2πωt) dt.

In the exercises at the end of chapter 11.3 we obtained an explicit formula
for the integral of the product of two sine functions. Find that formula and
check that it yields the following:

D(ω) =
3

10(4π2ω2 − 25)
(5 cos(50) sin(20πω)− 2πω sin(50) cos(20πω)).

Notice, in your own calculations, that ω emerges as the variable on which
the whole expression depends.

The graph of D(ω) is shown on the top of the next page. You should plot
it yourself, using a computer graphing utility. For most frequencies ω, the D(ω) peaks when

ω is the frequency
of the signal

value of the detector D is close to 0. There is a single strong peak, which
you can find at ω ≈ .795 cycles/sec. As it happens, the frequency of the
signal S = 3 sin(5t) is 5/2π = .79577 . . . cycles/sec! Moreover, the height of
the peak is about 1.5, which is exactly half the amplitude of the signal.
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1 2 3

1

ω
cycles/sec

y

y = D(ω)

5/2π
Detecting the frequency of 3sin(5t ) on the interval  0 ≤ t ≤ 10

The graph above tests the signal S(t) when the detector is integrated
over a time interval that is 10 seconds long. That is, 0 ≤ t ≤ 10 seconds. If
we repeat the test by integrating over a much larger interval, the frequency
detector gives us a sharper report on the frequency of the signal. In the
graph below the function D(ω) was calculated by integrating over the interval
0 ≤ t ≤ 100 seconds.

The peak in D(ω)
is sharper if the signal
is tested over a
longer time interval

1 2 3

1

ω
cycles/sec

y

y = D(ω)

5/2π
Detecting the frequency of 3sin(5t ) on the interval  0 ≤ t ≤ 100

Computation. Of course, it is rare to find a formula for D(ω) in terms of
the frequency ω. For most signals S(t), the best we can do is calculate the
value of the integral numerically for a sequence of values of the parameter
ω. The program DETECTOR, which is listed on the next page, does this.The program

DETECTOR As it is written, it analyzes the function 3 sin(5t) on the interval 0 ≤ t ≤ 10,
and it produces the graph D(ω) at the top of this page. The “outer loop”

FOR j = 1 TO omegasteps . . . NEXT j

plots D(ω) over the interval 0 ≤ ω ≤ 3, using 210 equally spaced values of
ω. Each D(ω) is an integral whose value is first calculated as a midpoint
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Riemann sum with 27 steps. The calculation is carried out by the short
“inner loop”

FOR k = 1 TO numberofsteps . . . NEXT k,

which you should recognize as an adaptation of the program RIEMANN from
chapter 6.

Program: DETECTOR

To detect the frequency of a signal

Set up GRAPHICS
startomega = 0

endomega = 3

omegasteps = 2 ^ 10

deltaomega = (endomega - startomega) / omegasteps

twopi = 8 * ATN(1)

DEF fnf (t) = 3 * SIN(5 * t)

a = 0

b = 10

numberofsteps = 2 ^ 7

deltat = (b - a) / numberofsteps

omega = startomega

oldomega = omega

oldaccum = 0

FOR j = 1 TO omegasteps

t = a + deltat / 2

accum = 0

FOR k = 1 TO numberofsteps

deltaS = (fnf(t) * SIN(twopi * omega * t) * deltat) / (b - a)

accum = accum + deltaS

t = t + deltat

NEXT k

omega = omega + deltaomega

Plot the line from (oldomega, oldaccum) to (omega, accum)

oldomega = omega

oldaccum = accum

NEXT j

If we modify the program DETECTOR so that it analyzes the function

S(t) = 3 sin(5t) + sin(8t),

we get the graph at the top of the next page. The scale on the ω-axis has also
been modified to make it easier to read multiples of 1/2π cycles per second.
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Notice the strongest peak is at ω = 5/2π cycles/sec, and D ≈ 1.5 there. But
there is now a second peak at ω = 8/2π cycles/sec, where D ≈ .5. Indeed,
S consists of two periodic components, one with three times the amplitude
of the other. The stronger component has frequency 5/2π cycles/sec, the
weaker 8/2π cycles/sec.

ω

5/2π 10/2π 15/2π

0

1

y

cycles/sec

The following example first appeared in chapter 7.2. It is clear from the
graph that it has a basic frequency of 5 Hz. The detector shows that it also
has an equally strong component at 10 Hz and a much weaker component at
15 Hz. Can you guess a formula for g(t)?

A periodic
signal . . .

. . . and its
frequency detector

0 1 2 3 seconds

t

y
y = g(t)

ω
0

5 10 15

2

10

12.5
z

z = D(ω)

cycles/sec

The graph of z = D(ω) was produced by DETECTOR. The integral was
calculated for a = 0, b = 10, and numberofsteps = 2 ^ 9.
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The Problem of Phase

Our detector is built on the premise that, if you take the
product of two functions of the same frequency, its average
value will be different from 0. This is illustrated by the
top three graphs on the left. The signal and the probe
are both sin(t). Their product is a function that ranges
between 0 and 1, and has average value 1/2. However,
something quite different happens if we change the signal
from sin(t) to cos(t). This doesn’t change the period, but it
does change the product, as you can see in the three lower
graphs. The new product is centered around the t-axis; its
average value is 0. Thus the detector fails to reveal that
the signal has the same frequency as the probe.

A closer look at the two sets of graphs will show what
has happened. In the first case, when P is positive, so is
S. When P is negative, so is S. Thus, the product S · P
is never negative; on average, its value is positive. This is
what we expect.

The second case is only a little more complicated. When
P is positive, S is positive only half the time; the other half
it is negative. Consequently, the product S · P takes both
positive and negative values. The same thing happens when
P is negative. On average, the value of the product is 0,
even though the frequencies of P and S match.

The problem is that their phases don’t match. The
signal S = cos(t) hits its peak π/2 seconds before the probe
P = sin(t). This kind of a difference is called a phase

shift. In the exercises for chapter 7.2, you showed that if
the phase of the sine function is shifted to the left by π/2,
the result is the cosine function:

S = sin(t + π/2) = cos(t).

t

S S = sin(t )

signal and probe
in phase

t

P P = sin(t )

t

S·P

t

S S = cos(t )

signal and probe
out of phase

t

P P = sin(t )

t

S·P

Since π/2 radians is the same as 90◦, we sometimes express this equation by
saying that “the sine and the cosine are 90◦ out of phase.”

Of course the signal could involve a phase shift of any amount ϕ: S = Arbitrary phase shifts

sin(t − ϕ). All these signals have the same period as the probe P = sin(t).
Exercise 20 of chapter 7.2 shows what happens if this signal is tested against
the probe: the average value of the product S · P is cos(ϕ)/2. Clearly,
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this depends on the size of the phase shift ϕ. In particular, if ϕ = 0 (soThe average value
varies with the phase S = sin(t)), the average value is 1/2. If ϕ = −π/2 (so S = cos(t)), the

average value is 0. The formula therefore agrees with what we already know
for the two signals we considered as examples.

There is one more case worth glancing at: ϕ = ±π. This is also called
a phase shift of 180◦. It doesn’t matter whether you go forward 180◦ or
backward; in either case S = sin(t ± π) = − sin(t). This time the average
value of the product is −1/2.

The problem of phase is now be clear: The probes P = sin(2πωt) haveThe problem
of phase . . . trouble detecting the frequency of a signal that is out of phase with them.

However, any phase-shifted sine function can be expressed as a sum of pure
sine and cosine functions:

sin(bt − ϕ) = M sin(bt) + N cos(bt),

where M = cos(ϕ) and N = − sin(ϕ). (See the exercises.) Since the sine
probes P will detect M sin(bt), we need only construct a second set of probes. . . and its solution

to detect N cos(bt). The test probes we add are the cosine functions

Pc = cos(2πωt).

We use the subscript “c” to distinguish these from the sine probes, which
henceforth will be denoted Ps.

We must also construct a second detector, to handle the new cosineTwo new detectors

probes. Let’s take this opportunity to make a technical adjustment: we
redefine a detector to be twice the average value of the signal and the probe.
In that way, the height of the detector at a peak equals the amplitude of the
signal at that frequency—rather than half the amplitude.

Sine detector: Ds(ω) =
2

b − a

∫ b

a

S(t) sin(2πωt) dt.

Cosine detector: Dc(ω) =
2

b − a

∫ b

a
S(t) cos(2πωt) dt.

You can modify the program DETECTOR to produce the graphs of Ds(ω)The graphs of
Ds and Dc and Dc(ω). You can see below how they analyze the signal S = cos(7t) over

the interval 0 ≤ t ≤ 10. The cosine detector Dc has a shape we’ve seen
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ω

5/2π 10/2π 15/2π

0

1
y

cycles/sec

sine
detector

y = Ds(ω)

ω

5/2π 10/2π 15/2π

0

1

y

cycles/sec

cosine
detector

y = Dc(ω)

before. It has a single peak at ω = 7/2π cycles/sec, which is the frequency
of the signal. The peak is 1 unit high, which is the amplitude of the signal.
The sine detector has an unfamiliar shape. Notice first that Ds(7/2π) = 0.
This confirms our earlier observation that the average value of the product
of a sine and a cosine at the same frequency is 0. For values of ω slightly
larger or smaller than 7/2π, though, the sine detector swings relatively far
from 0. This pattern is typical when a detector is analyzing a signal that is
90◦ out of phase with the probes.

Resonance. Try this experiment. Sit at a piano and hold all the pedals
down. Then sing a note. If you sing loud enough, and hold the note long
enough, one of the piano strings will start vibrating. If you stop abruptly
and listen to the string, you will hear it sounding the same note you were
singing. The piano has detected the frequency of your signal! It is the The physical analogue

of a detector
is a resonator

physical analogue of our mathematical frequency detectors. The response of
the string is called resonance. Had you sung a lower note, a larger string
would have resonated.

Resonance gives us a vivid language for describing how our detectors
work. We can say a test probe “resonates” with a signal when their product
is different from zero on average. The larger the average value, the stronger
the resonance.
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Resonance occurs all around us. Sometimes it is a nuisance—for instance, when the windows in
our house rattle while a heavy truck drives by, or an air conditioner runs. Sometimes we exploit
it deliberately—for instance, when we use a radio tuner as an electronic resonator to detect and
amplify certain electromagnetic waves.

Detector as transform

We now have two distinct ways to describe a signal S. The function S(t)
is one way. It tells us how strong the signal is at each instant t. But we
can also think of the signal as a mixture of sine and cosine waves of different
frequencies. The detectors Ds(ω) and Dc(ω) tell us how strong the signal is
at each frequency ω. That is the second way.

There is a direct connection between these two descriptions, of course. It
is provided by the formulas

Ds(ω) =
2

b − a

∫ b

a

S(t) sin(2πωt) dt Dc(ω) =
2

b − a

∫ b

a

S(t) cos(2πωt) dt.

In effect, these formulas tell us how to transform the first description S(t)Integrals transform
S into Ds and Dc into the second Ds(ω), Dc(ω). The transformation is so complete that even

the input variable is changed—from t to ω. Look back at the formulas to see
how the new variable ω is brought in.

Our detectors are essentially the same as the Fourier sine transform

and the Fourier cosine transform. There is also an inverse Fourier

transform that works in reverse: it produces S(t) from the frequency data
Ds(ω) and Dc(ω). The Fourier transforms are an important tool in mathe-
matics and in science. For example, a hologram is the Fourier transform of
an ordinary image. Fourier transforms and their inverses are used in photo
restoration, in the enhancement of the digitized pictures sent back from cam-
eras in space, and in filtering the signal in a stereo set.

The French mathematician Jean Baptiste Fourier (1768–1830) introduced what we call Fourier
transforms and Fourier series to study the conduction of heat. Now his methods are used to
study all sorts of periodic and non-periodic phenomena. They are also the foundation for the
part of pure mathematics called harmonic analysis.

The Power Spectrum

The sine and cosine detectors provide enough information to reconstruct theA detector that ignores
phase differences original signal in complete detail—including phase. Often, though, they pro-

vide more detail than we want. We can use another tool—called the power
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spectrum—to determine only the strength of the different frequencies that
occur in a signal, without regard to their phase. The power spectrum is
constructed from the two detectors in the following way:

Power spectrum: P (ω) =
√

[Ds(ω)]2 + [Dc(ω)]2

To see how the power spectrum works, we’ll consider the signal S(t) =
A sin(7t − ϕ). This is a sine wave of frequency ω = 7/2π and amplitude A.
Let’s concentrate first on ω = 7/2π. If there were no phase shift ϕ present,
we would expect that

Ds(7/2π) = A Dc(7/2π) = 0.

However, because there is a phase shift, the actual values turn out to be

Ds(7/2π) = A cos ϕ Dc(7/2π) = −A sin ϕ.

(These calculations are given as exercises.) The values of the detectors clearly
depend on the phase shift. By contrast,

P (7/2π) =
√

[Ds(7/2π)]2 + [Dc(7/2π)]2

=

√

A2 cos2 ϕ + A2 sin2 ϕ

= A.

We have used the fact that cos2 ϕ + sin2 ϕ = 1 for every ϕ. Thus, the power
spectrum does not depend on the phase. It tells us only the amplitude of
the signal at the frequency ω = 7/2π.

If we calculate the power spectrum over all frequencies ω, we get the
graph shown at the top of the next page. The program POWER generates The program POWER

this graph. It was derived from the program DETECTOR. Compare the
two programs, particularly the terms deltaS and deltaC. In POWER, they
have been multiplied by 2, to agree with our new definition of Ds and Dc on
page 808.

Power spectrum of
3 sin(7t − π/3)

ω

5/2π 10/2π 15/2π
0

3

y

cycles/sec

y = P(ω)
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Program: POWER

The power spectrum of a signal

Set up GRAPHICS
startomega = 0

endomega = 3

omegasteps = 2 ^ 9

deltaomega = (endomega - startomega) / omegasteps

pi = 4 * ATN(1)

twopi = 2 * pi

DEF fnf (t) = 3 * SIN(7 * t - pi / 3)

a = 0

b = 10

numberofsteps = 2 ^ 6

deltat = (b - a) / numberofsteps

omega = startomega

oldomega = omega

oldpower = 0

FOR j = 1 TO omegasteps

t = a + deltat / 2

accumS = 0

accumC = 0

power = 0

FOR k = 1 TO numberofsteps

deltaS = 2 * (fnf(t) * SIN(twopi * omega * t) * deltat) / (b - a)

accumS = accumS + deltaS

deltaC = 2 * (fnf(t) * COS(twopi * omega * t) * deltat) / (b - a)

accumC = accumC + deltaC

t = t + deltat

NEXT k

power = SQR(accumS ^ 2 + accumC ^ 2)

omega = omega + deltaomega

Plot the line from (oldomega, oldpower) to (omega, power)

oldomega = omega

oldpower = power

NEXT j

To see how the power spectrum detects the frequencies in a signal whileTwo signals whose
components differ
only in phase

overlooking the phases of the different components, consider these two sig-
nals:

g(t) = 10 sin(7t) + 7 cos(13t) + 5 cos(23t)

h(t) = 10 sin(7t) + 7 cos(13t) − 5 cos(23t)

They differ only in the sign of the last term. This is equivalent to a phase
shift of 180◦ in that term. The graphs are drawn below (with constants
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0 2 4 6 8 10 12 seconds

t

y

y = h(t)

y = g(t)

added to separate them vertically). It is remarkable how different the graphs
appear to be, considering how nearly alike their formulas are. You can find
similarities if you look closely, though. For instance, the peaks of one graph
tend to match the peaks of the other.

ω

5/2π 10/2π 15/2π 20/2π
0

5

10
y

cycles/sec

y = P(ω)

power
spectrum

of g(t )

ω

5/2π 10/2π 15/2π 20/2π
0

5

10
y

cycles/sec

power
spectrum

of h(t )

The power spectrum, however, has no trouble detecting the similarities
between the two signals. As you can see, they indicate that the same domi-
nant frequencies occur in g and h, and that corresponding frequencies occur
with the same amplitude. We learn that the formula for g or h can be written
as

10 sin(7t − ϕ1) + 7 sin(13t − ϕ2) + 5 sin(23t − ϕ3).

The only thing we can’t learn from the power spectrum are the three phase
differences ϕ1, ϕ2, ϕ3.
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The graphs of the power spectra were drawn by POWER, using the fol-
lowing values:

endomega = 4

omegasteps = 2 ^ 8

numberofsteps = 2 ^ 7

These two graphs actually differ very slightly. You can see the difference
most clearly near ω = 20/2π.

For a final demonstration of the properties of the power spectrum, weDetecting a periodic
wave in a noisy signal return to the signal + noise problem that we raised at the beginning of this

section. Let’s see what happens to the power spectrum of a pure sine wave
when we gradually gradually add noise. For simplicity, we take the frequency
of the pure signal to be 2 cycles/sec. The spectrum has a single strong spike
at this frequency.

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

pure signal

seconds1 2 3 4 5 6

One the following pages you can see what happens as the noise level
is increased. The power spectrum, which was virtually zero for all ω > 3
cycles/sec, is now non-zero for almost all frequencies in the range we have
graphed. In other words, the noise is a mixture of many frequencies. NoticeIn the power spectrum,

noise and signal are
separated

how the height of the power graph increases with the strength of the noise.
This is most noticeable in the higher frequencies. Eventually, in the final
graph, we lose sight of the signal; the noise has swamped it. The signal
to noise ratio is 1:2.5, meaning that the noise is 21

2
times as strong as the

signal. Nevertheless, the power spectrum still shows a strong spike at ω = 2
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cycles/sec. This corresponds to the signal. The power spectrum can still see
the signal even when we can’t!

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

signal to noise
ratio: 4:1 seconds1 2 3 4 5 6

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

signal to noise
ratio: 1:1 seconds3 6
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ω
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Exercises

The problem of phase

1. Use the “sum of two angles formula,”

sin(A + B) = sin(A) cos(B) + cos(A) sin(B),

to show that the circular function sin(bt − ϕ) with period 2π/b and phase
difference ϕ can be written as a combination of pure sine and cosine functions
of the same period:

sin(bt − ϕ) = M sin(bt) + N cos(bt).

show that M = cos(ϕ) and N = − sin(ϕ). [Note that M2 + N2 = 1.]

2. a) Express sin(5t − π/3) as a sum of a pure sine function and a pure
cosine function.
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b) Express
√

3
2

sin(7t) + 1
2
cos(7t) in the form A sin(bt − ϕ). To check your

result, graph it together with the given function using a computer graphing
utility.

c) Express f(t) = sin(t) + 2 cos(t) in the form A sin(bt − ϕ). Notice that
the formula in exercise 1 requires that M2 + N2 = 1, but in this example
M2 + N2 = 5. Therefore, first write

f(t) =
√

5
(

1√
5
sin(t) + 2√

5
cos(t)

)

.

The expression in parentheses has the right form. Does your result check on
a computer?

3. Suppose

A sin(bt − ϕ) = M sin(bt) + N cos(bt).

How are A, M , and N related?

4. The functions sin(t) + 2 cos(t) and 2 sin(t) + cos(t) have the same period
but differ in phase. What is the phase difference? Determine this two ways:
by graphing, and by writing each expression as a single function of the form
A sin(bt − ϕ).

5. Choose values for A, b, and ϕ so that the function

3 sin(2x) + 4 cos(2x) + A sin(bx − ϕ)

is identically zero—that is, equal to 0 for every value of x.

6. Choose values of A and ϕ so that the function

sin(x) + sin(x + 1) + sin(x + 2) + A sin(x − ϕ)

is identically zero.

The programs DETECTOR and POWER

The purpose of these exercises is to give you experience interpreting the power
spectrum of a known signal using the program POWER and modifications
of DETECTOR. The first exercise asks you to construct these modifications.
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7. Modify DETECTOR to produce two new programs, SDETECTOR and
CDETECTOR, which generate the sine detector and the cosine detector
functions that appear on page 808.

8. a) Compare the outputs of f(t) = sin(t) and g(t) = cos(t) on POWER.
Use the domain 0 ≤ ω ≤ 1. Does POWER distinguish between these func-
tions? Would you expect it to?

b) Compare f(t) and g(t) using SDETECTOR. Does SDETECTOR distin-
guish between these functions? Would you expect it to?

c) Compare f(t) and g(t) using CDETECTOR. Does CDETECTOR distin-
guish between these functions? Is the output of g(t) on CDETECTOR the
same as the output of f(t) on SDETECTOR?

9. a) Describe the power spectrum of the signal S = sin(t) + cos(t). How
many peaks are there, and where are they?

b) How does the spectrum of S compare with the two generated in the last
question?

c) Describe the output of SDETECTOR and CDETECTOR for the signal
S. Compare these outputs to the corresponding outputs for f and g in the
last exercise.

10. a) Graph the function

h(t) = 10 sin(7t) + 7 cos(13(t) − 5 cos(23t)

over the domain 0 ≤ t ≤ 14. Compare your result with the graph on page 812.

b) Graph the power spectrum of h(t) over the frequency domain 0 ≤ ω ≤ 4.
Compare your result with the text. How many peaks are there? Where are
they? How high are they? Do these results agree with the amplitude and
frequency information provided by the formula for h(t)?

11. (Continuation of the previous exercise.) Use SDETECTOR to analyze
h(t) over the same frequency domain. Compare the pattern near ω = 13/2π
with the patterns generated by the sine and cosine detectors that appear on
page 809. Compare the patterns near ω = 7/2π and near ω = 23/2π the
same way. Would you expect the patterns near ω = 13/2π and ω = 23/2π
to be similar? Are they? Are they similar to the pattern near ω = 7/2π? Is
this what you would expect?
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12. (Continuation.) Use CDETECTOR to analyze h(t). Follow the guide-
lines of the previous question.

A Grain of Salt

The purpose of the power spectrum is to make visible the periodic patterns
contained with a given function. However, our method of computing the
spectrum can introduce spurious information, too. It can tell us there are
periods that are not really present in the function. So we must take the
calculations with a grain of salt. The purpose of these exercises is to point
out the spurious information, show why it arises, and how we can get rid of
it.

13. Use the program POWER to graph the power spectrum of the function
sin 2πx on the interval 0 ≤ x ≤ 10. Let 0 ≤ ω ≤ 3. Set

numberofsteps = 100

but let all the other parameters keep the values they have in the program.

[Answer: The power spectrum has a single peak of height 1 at ω ≈ 1]

14. Now increase the domain of integration to 0 ≤ x ≤ 30, and set

numberofsteps = 300

to adjust for the increase in the size of the domain. Use POWER again to
graph the power spectrum. Compare this spectrum with the previous one.

15. Leave 0 ≤ x ≤ 30, but restore numberofsteps = 100. Use POWER
once again to graph the power spectrum. Compare this spectrum with the
previous two.

[Answer: A new peak, of height 1, appears at ω ≈ 7/3.]

16. Let numberofsteps = 50, and calculate the power spectrum one more
time. What happens?

When we reduce the number of integration steps, new peaks appear in
the power spectrum. These new peaks represent spurious information: the
function sin 2πx has no components whose frequencies are 2/3, 7/3, or 8/3.
Let’s see why this happens. We’ll concentrate on ω = 7/3. First, you must
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decide whether the peak in the power spectrum at ω = 7/3 comes from the
sine or the cosine detector.

17. Use SDETECTOR and CDETECTOR to analyze sin(2πx). Take 0 ≤
x ≤ 30, 0 ≤ ω ≤ 3, and set numberofsteps = 100. One of these detectors
has the value 0 when ω = 7/3. Which one?

18. According to the previous exercise, the peak in the power spectrum that
is detected at ω ≈ 7/3 comes from the integral

2

30

∫ 30

0

sin(2πx) sin
(

2π 7
3
x
)

dx,

not from the cosine integral. By using one of the sine and cosine integrals
from the exercises for chapter 11.3, determine the exact value of this integral.
Is this the value you expected to get?

The program POWER calculates the spectrum numerically. In particular,
we used it to calculate

∫ 30

0

sin(2πx) sin
(

2π 7
3
x
)

dx,

with 100 steps. The step size is therefore ∆x = .3. In the following exercises
you will duplicate this numerical work “by hand.”

19. Make a sketch of the graph of the function

h(x) = sin(2πx) sin
(

2π 7
3
x
)

on an appropriate interval. What is the period of this function?

20. Determine the value of h(x) at x = 0, .3, .6, .9, 1.2, and 1.5, and use
these values to construct a Riemann sum for the integral

∫ 1.5

0

h(x) dx

using left endpoints and a step size of ∆x = .3. Mark these values of h on
the sketch you made in the previous exercise.

[Answer: The Riemann sum is −.3(2 sin2(2π/5) + 2 sin2(π/5)) = −.75.]
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21. Evaluate the expression

1

15

∫ 30

0

h(x) dx

using a left endpoint Riemann sum with a step size of ∆x = .3 How can you
use the previous exercise to answer this question?

[Answer: −1. Since h(x) is periodic with period x = 1.5, the interval [0, 30]
contains 20 periods of h. The integral of h over [0, 30] is therefore 20 times
its integral over [0, 1.5].]

22. Compare the values of the detector

2

30

∫ 30

0

sin(2πx) sin
(

2π 7
3
x
)

dx,

you have obtained by antidifferentiation and by numerical integration.

These exercises demonstrate that the exact and computed values of the
power spectrum can be quite different, essentially because the steps in a
Riemann sum can pick out very special values of the integrand.

One way to deal with the problem is to increase the number of steps. The true spectrum
is the limit of the
computed graphs
of the spectrum

How will you know if you have gone far enough? Increase in stages until the
graph of the power spectrum stabilizes—that is, until it no longer changes
when you make a further increase in the number of steps.

Of course, increasing the number of steps increases computer time. This
creates new problems. To deal with them, however, we can switch to more
efficient numerical integration methods. Simpson’s rule (chapter 11.6) is the
most efficient method we have covered. You should try rewriting DETEC-
TOR using Simpson’s rule to see how it improves the performance.



DVI file created at 17:56,  25 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

822 CHAPTER 12. CASE STUDIES

12.4 Fourier Series

In chapter 10.6 we obtained polynomials which were good approximations to
a function over an interval, where “good” meant minimizing the mean squared

separation between the function and the approximating polynomials.
While polynomials are the most obvious approximating functions to use

due to the ease with which they can be evaluated, we have seen that findingDifficulties with
polynomial
approximations

good approximating polynomials leads to several serious technical complica-
tions. The first is that we have to solve systems of equations to determine
the unknown coefficients, a procedure that is very time-consuming, even for
a computer if we are trying to get a polynomial of, say, degree 30. Further, if
we are trying to make the approximation over even a moderately-sized inter-
val, since we are evaluating expressions of the form xn, we get large numbers
very rapidly as x and n get large. This in turn leads to roundoff problems in
the computer routines.

Another aspect of these polynomial approximations that makes them
complicated is that the values of the coefficients change as we change the
degree of the approximating polynomial. Thus if we determine the least
squares fourth-degree approximation and then decide we want the fifth-degree
approximation instead, all the coefficients have to be recalculated. Know-
ing what the coefficient of x3 was in the fourth-degree approximation is no
help at all in knowing what the coefficient of x3 will be in the fifth-degree
approximation.

There are approximating functions of another kind that avoid such diffi-
culties. Moreover, these functions are natural ones to use when we are tryingApproximating

periodic functions to approximate periodic functions. In such cases it is reasonable to take the
simplest periodic functions—sines and cosine—and try to combine them to
approximate more complicated periodic functions. This suggests that we
want to look at functions of the form

φ(x) = a0 + a1 cos x + a2 cos 2x + · · ·+ an cos nx

+ b1 sin x + b2 sin 2x + · · · + bn sin nx

= a0 +

n
∑

k=1

ak cos kx + bk sin kx.

Such a combination is called a trigonometric polynomial of degree n.
Note that any function of this form will in fact be periodic with period 2π.
More generally, if we were interested in approximating a function of period T ,
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we would want to look at trigonometric polynomials of the form Trigonometric
polynomial of degree n

and period Tφ(x) = a0 + a1 cos
2πx

T
+ a2 cos

4πx

T
+ · · · + an cos

2nπx

T

+ b1 sin
2πx

T
+ b2 sin

4πx

T
+ · · ·+ bn sin

2nπx

T

= a0 +

n
∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
.

You should verify that this does indeed have period T .
To find the coefficients ak and bk of the trigonometric polynomial that

best fits a period-2π function f over the interval [c, c+2π], we proceed exactly
as we did in the previous section, using the least squares criterion. That is,
for a given degree n, we want to find coefficients a0, . . . , an and b1, . . . , bn

that minimize the integral
∫ c+2π

c

(f(x) − φ(x))2 dx.

In practice, c is usually either 0 or −π.
The solution turns out to be remarkably compact and easy to state. One Coefficients are

independent of nof the key features of the formulas for the coefficients is that they are inde-
pendent of each other and of the particular value of n being used. Thus, for
example, a3 in the 7-th degree approximation has the same value as a3 in
the 39-th degree approximation. This is a major advantage compared to the
polynomial approximations over intervals that we worked with in chapter 10.

For a function f with period 2π, its least squares nth degree
trigonometric polynomial approximation over a full period is

φn(x) = a0 +
n
∑

k=1

ak cos kx + bk sin kx,

where

a0 =
1

2π

∫ 2π

0

f(x) dx,

ak =
1

π

∫ 2π

0

f(x) · cos kx dx for k = 1, 2, . . . , n,

bk =
1

π

∫ 2π

0

f(x) · sin kx dx for k = 1, 2, . . . , n.
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The infinite series

a0 +

∞
∑

k=1

ak cos kx + bk sin kx

with the prescribed values for ak and bk is called the Fourier series for f ,
and the coefficients ak and bk are called the Fourier coefficients for f . It
turns out that any continuous function equals its Fourier series in the same
sense we used earlier with Taylor series—for any x in the given interval,
f(x) is the limit as n → ∞ of the nth degree approximating trigonometric
polynomials evaluated at x. The derivation is straightforward, but we shall
leave it to the end of this section so we can look at some examples first.

Joseph Fourier (1768–1830) was active in both politics and in mathematics. He was an advocate
of the French Revolution, worked as an engineer in Napoleon’s army, and served as a prefect for
a while. In mathematics he was interested in the mathematics of heat conduction and developed
the series that now bear his name as a tool for investigating problems in this area. His ideas
initially met with considerable resistance, but eventually became a central tool in mathematics.

Although our formulas give the values of ak and bk in terms of integrals
over [0, 2π], periodicity of the integrands implies that integrations over any

interval of width 2π gives the same values. In practice (as in the first example,
immediately below), we often use [−π, π] instead of [0, 2π].

Example 1 Let’s find the approximating trigonometric polynomials for

f(x) =

{

π + x if −π ≤ x ≤ 0,

π − x if 0 ≤ x ≤ π.

Then the graph of f simply consists of two line segments:

The graph of f
is “triangular”

−3 −2 −1 0 1 2 3

1

2

3

x

y

Now make f(x) periodic over the entire x-axis by horizontal translations:
f(x) = f(x−2π). The periodic graph is shown in gray, above. We can obtain
first Fourier coefficient without any calculus at all: a0 = (1/2π) π2 = π/2. It
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is just the area of one triangle divided by 2π. The other coefficients can be
evaluated with integration by parts (chapter 11.3). We have

ak =
1

π

∫ π

−π

f(x) cos kx dx

=
1

π

∫ 0

−π

(π + x) cos kx dx +
1

π

∫ π

0

(π − x) cos kx dx.

The first of these integrals can be evaluated as

∫ 0

−π

(π + x) cos kx dx = (π + x)
sin kx

k

∣

∣

∣

∣

0

−π

−
∫ 0

−π

sin kx

k
dx

= 0 +
cos kx

k2

∣

∣

∣

∣

0

−π

=







2

k2
if k is odd,

0 if k is even.

Similarly we find

∫ π

0

(π − x) cos kx dx = (π − x)
sin kx

k

∣

∣

∣

∣

π

0

+

∫ π

0

sin kx

k
dx

= 0 − cos kx

k2

∣

∣

∣

∣

π

0

=







2

k2
if k is odd,

0 if k is even.

Combining these two integrals we find

ak =







4

πk2
if k is odd,

0 if k is even.

An analogous derivation will show that all the bk are 0; this is left to the
exercises. We can thus write down the Fourier series for f :

The Fourier series for f
f(x) =

π

2
+

4

π

(

cos x

1
+

cos 3x

9
+ · · · + cos (2n + 1)x

(2n + 1)2
+ · · ·

)

.
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Let

φn(x) =
π

2
+

4

π

n
∑

k=0

cos (2k + 1)x

(2k + 1)2
.

Here are the graphs of φ1(x), φ2(x), and φ10(x):

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ1(x)

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ2(x)

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ10(x)

We see that φ10(x) already appears to be a very good approximation to f(x).
If we look at the maximum separation between f(x) and φn(x) over [−π, π]
for different values of n, we get the following:

n 1 2 10 50 100 1000

max
−π≤x≤π

|f(x) − φn(x)| .298 .156 .032 .0064 .0032 .00032

Since φn(x) is periodic, if we graph it over a larger interval, we get anApproximating a
triangular wave-form approximation to a triangular wave-form. Here, for example, is the graph

of φ20(x) over the interval [−π, 5π]:

−2 0 2 4 6 8 10 12 14 16

1

2

3

y

x

Remark 2 In addition to their use in approximating functions, Fourier
series can lead to some interesting, and non-obvious, mathematical results.
For instance in the preceding example, we have f(0) = π . On the other
hand, we should get the same value if we set x = 0 in the Fourier series for
f . This leads to the identity

π =
π

2
+

4

π

(

1

1
+

1

9
+

1

25
+

1

49
+

1

81
+ · · ·

)

.
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With a little rearranging, this can be rewritten as

π2

8
= 1 +

1

9
+

1

25
+

1

49
+

1

81
+ · · ·

—that is, if we add up the reciprocals of the squares of all the odd integers,
we get π2/8!

The formulas given on page 823 for approximating functions with period The general rule
for calculating
Fourier series

2π extend readily to approximating periodic functions of any period T . For
instance, if we wanted to approximate some function f over the interval
[0, T ], we have the following formulas. Check that when T = 2π, these
equations reduce to the earlier ones. Again, there is nothing special about
the interval [0, T ]. If we had wanted to make the approximation over any
other interval of length T—for example, [−T/2, T/2]—we simply change the
limits of integration to be the endpoints of that interval.

For a function f(t) with period T , its least squares nth degree
trigonometric polynomial approximation over a full period is

φn(x) = a0 +
n
∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
,

where

a0 =
1

T

∫ T

0

f(x) dx,

ak =
2

T

∫ T

0

f(x) · cos
2kπx

T
dx for k = 1, 2, . . . , n,

bk =
2

T

∫ T

0

f(x) · sin 2kπx

T
dx for k = 1, 2, . . . , n.

Example 2 Consider the predator–prey model of May that we examined Fourier series for the
periodic solutions of
May’s predator-prey

model

in chapter 7.3. Recall that there were two species, the predator y and the
prey x, interacting according to the model

prey: x′ = .6 x
(

1 − x

10

)

− .5 xy

x + 1
,

predator: y′ = .1 y
(

1 − y

2x

)

.
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We discovered that the populations seemed to move towards periodic cycles,
regardless of the initial conditions (although the phase of the cycles did de-
pend on the starting values). In particular, if we begin with values on this
cycle, our solution should be perfectly periodic with period, it turned out,
T = 38.6 days. So let’s start with x = 7.75 and y = 2.38, values that put
us at the peak of the prey cycle. Now go to the differential equations and
compute the solution numerically, storing the x-values as an array. We can
then use these values to calculate all the integrals needed to find the Fourier
coefficients to approximate the function x(t). Here are the first 13 terms of
the series:

x(t) = 3.7951 + 3.8125 cos
2πx

T
+ .1514 cos

4πx

T
+ .0326 cos

6πx

T

− .0303 cos
8πx

T
− .0609 cos

10πx

T
+ .0308 cos

12πx

T
+ · · ·

+ 1.1724 sin
2πx

T
− .0867 sin

4πx

T
− .3954 sin

6πx

T

+ .0639 sin
8πx

T
− .0142 sin

10πx

T
+ .0129 sin

12πx

T
+ · · · .

Let φ3(t) be the 7-term trigonometric polynomial whose final terms in-
volve cos(6πt/T ) and sin(6πt/T ). Below we graph φ3(t) (dashed line) and
x(t) (solid gray line) together. They are almost indistinguishable; we let
φ3(t) run on a little beyond x(t) so you can see it’s there.

2

4

6

8

20 40 60 80 100 120
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Derivation of the formula for the Fourier coefficients

The logic behind the derivation is the same as that used in the previous
subsection to find the least squares polynomial approximations. Fix n and
let

φ(x) = a0 +
n
∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
,

where now we want to choose values of the ak and bk to minimize the integral
∫ T

0

(f(x) − φ(x))2 dx.

The value of this integral is thus a function of the undetermined coefficients
a0, . . . , an and b1, . . . , bn. To find the coefficients that minimize that value
we calculate the partial derivatives with respect to a0, a1, . . . as before and
set them equal to 0.

Note that
∂

∂am
φ(x) = cos

2mπx

T
and

∂

∂bm
φ(x) = sin

2mπx

T
,

so that

∂

∂am

∫ T

0

(f(x) − φ(x))2 dx =

∫ T

0

2(f(x) − φ(x))

(

− cos
2mπx

T

)

dx

and

∂

∂bm

∫ T

0

(f(x) − φ(x))2 dx =

∫ T

0

2(f(x) − φ(x))

(

− sin
2mπx

T

)

dx.

The condition that all the partial derivatives must be 0 thus leads to the
equations

∫ T

0

2(f(x) − φ(x))(−1) dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− cos
2πx

T

)

dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− cos
4πx

T

)

dx = 0,

...
∫ T

0

2(f(x) − φ(x))

(

− cos
2nπx

T

)

dx = 0,
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and

∫ T

0

2(f(x) − φ(x))

(

− sin
2πx

T

)

dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− sin
4πx

T

)

dx = 0,

...
∫ T

0

2(f(x) − φ(x))

(

− sin
2nπx

T

)

dx = 0.

These equations can be rewritten as

∫ T

0

f(x) dx =

∫ T

0

φ(x) dx,

∫ T

0

f(x) cos
2πx

T
dx =

∫ T

0

φ(x) cos
2πx

T
dx,

∫ T

0

f(x) cos
4πx

T
dx =

∫ T

0

φ(x) cos
4πx

T
dx,

...
∫ T

0

f(x) cos
2nπx

T
dx =

∫ T

0

φ(x) cos
2nπx

T
dx,

and

∫ T

0

f(x) sin
2πx

T
dx =

∫ T

0

φ(x) sin
2πx

T
dx,

∫ T

0

f(x) sin
4πx

T
dx =

∫ T

0

φ(x) sin
4πx

T
dx,

...
∫ T

0

f(x) sin
2nπx

T
dx =

∫ T

0

φ(x) sin
2nπx

T
dx,

The Fourier coefficients ak and bk that we seek appear in φ, and we shall
obtain them by calculating the integrals on the right (the ones involving φ)
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in the equations above. Since

φ(x) = a0 +

n
∑

k=1

ak cos
2kπx

T
+

n
∑

k=1

bk sin
2kπx

T
,

we have (for each m = 0, 1, . . . , n)

φ(x) cos
2mπx

T
= a0 cos

2mπx

T
+

n
∑

k=1

ak cos
2kπx

T
cos

2mπx

T

+
n
∑

k=1

bk sin
2kπx

T
cos

2mπx

T
,

and (for each m = 1, . . . , n)

φ(x) sin
2mπx

T
=

n
∑

k=1

ak cos
2kπx

T
sin

2mπx

T
+

n
∑

k=1

bk sin
2kπx

T
sin

2mπx

T
.

The integrals of the expressions on the left therefore reduce to sums of Integrating products
of sines and cosinesintegrals of various products of sines and cosines. In each sum, only one term

yields a nonzero integral. All the values are given below. The formulas are
left for you to derive in the exercises, using integration formulas from the
exercises in chapter 11.3. For integers k and m, we have

∫ T

0

sin
2kπx

T
cos

2mπx

T
dx = 0 for all k and m;

∫ T

0

sin
2kπx

T
sin

2mπx

T
dx =

{

T/2 if k = m,

0 otherwise;

∫ T

0

cos
2kπx

T
cos

2mπx

T
dx =











T/2 if k = m 6= 0,

T if k = m = 0,

0 otherwise.

For m = 0 we have cos
2mπx

T
= cos 0 = 1, so

∫ T

0

φ(x) cos
2mπx

T
dx =

∫ T

0

a0 dx = a0 · T ;
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it follows that

a0 =
1

T

∫ T

0

φ(x) dx.

For each m = 1, 2, . . . , n, we have, first of all,

∫ T

0

φ(x) cos
2mπx

T
dx =

∫ T

0

am cos2 2mπx

T
dx = am · T/2,

from which it follows that

am =
2

T

∫ T

0

φ(x) cos
2mπx

T
dx.

Second, we have

∫ T

0

φ(x) sin
2mπx

T
dx =

∫ T

0

bm sin2 2mπx

T
dx = bm · T/2,

so

bm =
2

T

∫ T

0

φ(x) sin
2mπx

T
dx.

The derivation is complete.

Exercises

1. Use the formulas on page 716 in chapter 11.3 to derive the following
equalities; k and m are integers.

a)

∫ T

0

sin
2kπx

T
cos

2mπx

T
dx = 0 for all k and m.

b)

∫ T

0

sin
2kπx

T
sin

2mπx

T
dx =

{

T/2 if k = m,

0 otherwise.

c)

∫ T

0

cos
2kπx

T
cos

2mπx

T
dx =











T/2 if k = m 6= 0,

T if k = m = 0,

0 otherwise.

2. Show that in the Fourier series for the triangular function discussed in
the text (example 1, page 824), all the coefficients of the sine terms really
are 0.
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3. Find the Fourier series for the following functions over the interval [−π, π]:

a) f(x) = x. [Ans. 2

∞
∑

k=1

(−1)n−1 sin nx

n
]

b) f(x) = π2 − x2.

c) f(x) =

{

0 if −π ≤ x ≤ 0,

x2 if 0 ≤ x ≤ π.

4. In May’s predator–prey model, find the first seven terms of the Fourier
series for the predator species, y(t). Use T = 38.6 days and the initial
conditions x = 7.75 and y = 2.38, and in example 2 in the text (page 827).
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