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Chapter 1

A Context for Calculus

Calculus gives us a language to describe how quantities are related to one
another, and it gives us a set of computational and visual tools for explor-
ing those relationships. Usually, we want to understand how quantities are
related in the context of a particular problem—it might be in chemistry,
or public policy, or mathematics itself. In this chapter we take a single
context—an infectious disease spreading through a population—to see how
calculus emerges and how it is used.

1.1 The Spread of Disease

Making a Model

Many human diseases are contagious: you “catch” them from someone who
is already infected. Contagious diseases are of many kinds. Smallpox, polio,
and plague are severe and even fatal, while the common cold and the child- Some properties of

contagious diseaseshood illnesses of measles, mumps, and rubella are usually relatively mild.
Moreover, you can catch a cold over and over again, but you get measles
only once. A disease like measles is said to “confer immunity” on someone
who recovers from it. Some diseases have the potential to affect large seg-
ments of a population; they are called epidemics (from the Greek words epi,
upon + demos, the people.) Epidemiology is the scientific study of these
diseases.

An epidemic is a complicated matter, but the dangers posed by contagion—
and especially by the appearance of new and uncontrollable diseases—compel
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us to learn as much as we can about the nature of epidemics. Mathemat-
ics offers a very special kind of help. First, we can try to draw out of the
situation its essential features and describe them mathematically. This is
calculus as language. We substitute an “ideal” mathematical world for the
real one. This mathematical world is called a model. Second, we can useThe idea of a

mathematical model mathematical insights and methods to analyze the model. This is calculus
as tool. Any conclusion we reach about the model can then be interpreted
to tell us something about the reality.

To give you an idea how this process works, we’ll build a model of an
epidemic. Its basic purpose is to help us understand the way a contagious
disease spreads through a population—to the point where we can even predict
what fraction falls ill, and when. Let’s suppose the disease we want to model
is like measles. In particular,

• it is mild, so anyone who falls ill eventually recovers;

• it confers permanent immunity on every recovered victim.

In addition, we will assume that the affected population is large but fixed in
size and confined to a geographically well-defined region. To have a concrete
image, you can imagine the elementary school population of a big city.

At any time, that population can be divided into three distinct classes:

Susceptible: those who have never had the illness and can catch it;

Infected: those who currently have the illness and are contagious;

Recovered: those who have already had the illness and are immune.

Suppose we let S, I, and R denote the number of people in each ofThe quantities that our
model analyzes these three classes, respectively. Of course, the classes are all mixed together

throughout the population: on a given day, we may find persons who are
susceptible, infected, and recovered in the same family. For the purpose
of organizing our thinking, though, we’ll represent the whole population as
separated into three “compartments” as in the following diagram:
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The goal of our model is to determine what happens to the numbers S,
I, and R over the course of time. Let’s first see what our knowledge and
experience of childhood diseases might lead us to expect. When we say there
is a “measles outbreak,” we mean that there is a relatively sudden increase
in the number of cases, and then a gradual decline. After some weeks or
months, the illness virtually disappears. In other words, the number I is a
variable; its value changes over time. One possible way that I might vary
is shown in the following graph.

-
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time

I

During the course of the epidemic, susceptibles are constantly falling ill.
Thus we would expect the number S to show a steady decline. Unless we
know more about the illness, we cannot decide whether everyone eventually
catches it. In graphical terms, this means we don’t know whether the graph
of S levels off at zero or at a value above zero. Finally, we would expect
more and more people in the recovered group as time passes. The graph of
R should therefore climb from left to right. The graphs of S and R might
take the following forms:
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While these graphs give us an idea about what might happen, they raise
some new questions, too. For example, because there are no scales marked
along the axes, the first graph does not tell us how large I becomes when theSome quantitative

questions that the
graphs raise

infection reaches its peak, nor when that peak occurs. Likewise, the second
and third graphs do not say how rapidly the population either falls ill or
recovers. A good model of the epidemic should give us graphs like these and
it should also answer the quantitative questions we have already raised—
for example: When does the infection hit its peak? How many susceptibles
eventually fall ill?

A Simple Model for Predicting Change

Suppose we know the values of S, I, and R today; can we figure out what
they will be tomorrow, or the next day, or a week or a month from now?
Basically, this is a problem of predicting the future. One way to deal with
it is to get an idea how S, I, and R are changing. To start with a very
simple example, suppose the city’s Board of Health reports that the measles
infection has been spreading at the rate of 470 new cases per day for the
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last several days. If that rate continues to hold steady and we start with
20,000 susceptible children, then we can expect 470 fewer susceptibles with
each passing day. The immediate future would then look like this:

accumulated remaining
days after number of new number of

today infections susceptibles

0
1
2
3

0
470
940

1410

20 000
19 530
19 060
18 590

...
...

...

Of course, these numbers will be correct only if the infection continues
to spread at its present rate of 470 persons per day. If we want to follow S, Knowing rates, we can

predict future valuesI, and R into the future, our example suggests that we should pay attention
to the rates at which these quantities change. To make it easier to refer
to them, let’s denote the three rates by S ′, I ′, and R′. For example, in the
illustration above, S is changing at the rate S ′ = −470 persons per day. We
use a minus sign here because S is decreasing over time. If S ′ stays fixed we
can express the value of S after t days by the following formula:

S = 20000 + S ′ · t = 20000 − 470 t persons.

Check that this gives the values of S found in the table when t = 0, 1, 2, or
3. How many susceptibles does it say are left after 10 days?

Our assumption that S ′ = −470 persons per day amounts to a math-
ematical characterization of the susceptible population—in other words, a The equation

S′ = −470
is a model

model! Of course it is quite simple, but it led to a formula that told us what
value we could expect S to have at any time t.

The model will even take us backwards in time. For example, two days
ago the value of t was −2; according to the model, there were

S = 20000 − 470 ×−2 = 20940

susceptible children then. There is an obvious difference between going back-
wards in time and going forwards: we already know the past. Therefore, by
letting t be negative we can generate values for S that can be checked against
health records. If the model gives good agreement with known values of S
we become more confident in using it to predict future values.
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To predict the value of S using the rate S ′ we clearly need to have a
starting point—a known value of S from which we can measure changes. InPredictions depend on

the initial value, too our case that starting point is S = 20000. This is called the initial value
of S, because it is given to us at the “initial time” t = 0. To construct the
formula S = 20000 − 470 t, we needed to have an initial value as well as a
rate of change for S.

In the following pages we will develop a more complex model for all
three population groups that has the same general design as this simple one.
Specifically, the model will give us information about the rates S ′, I ′, and
R′, and with that information we will be able to predict the values of S, I,
and R at any time t.

The Rate of Recovery

Our first task will be to model the recovery rate R′. We look at the process of
recovering first, because it’s simpler to analyze. An individual caught in the
epidemic first falls ill and then recovers—recovery is just a matter of time. In
particular, someone who catches measles has the infection for about fourteen
days. So if we look at the entire infected population today, we can expect
to find some who have been infected less than one day, some who have been
infected between one and two days, and so on, up to fourteen days. Those in
the last group will recover today. In the absence of any definite information
about the fourteen groups, let’s assume they are the same size. Then 1/14-th
of the infected population will recover today:

today the change in the recovered population =
I persons

14 days
.

There is nothing special about today, though; I has a value at any time.
Thus we can make the same argument about any other day:

every day the change in the recovered population =
I persons

14 days
.

This equation is telling us about R′, the rate at which R is changing. We
can write it more simply in the form

The first piece of the
S-I-R model R′ =

1

14
I persons per day.
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We call this a rate equation. Like any equation, it links different quan-
tities together. In this case, it links R′ to I. The rate equation for R is the
first part of our model of the measles epidemic.

Are you uneasy about our claim that 1/14-th of the infected population recovers every day? You
have good reason to be. After all, during the first few days of the epidemic almost no one has
had measles the full fourteen days, so the recovery rate will be much less than I/14 persons per
day. About a week before the infection disappears altogether there will be no one in the early
stages of the illness. The recovery rate will then be much greater than I/14 persons per day.
Evidently our model is not a perfect mirror of reality!

Don’t be particularly surprised or dismayed by this. Our goal is to gain insight into the
workings of an epidemic and to suggest how we might intervene to reduce its effects. So we start
off with a model which, while imperfect, still captures some of the workings. The simplifications
in the model will be justified if we are led to inferences which help us understand how an epidemic
works and how we can deal with it. If we wish, we can then refine the model, replacing the simple
expressions with others that mirror the reality more fully.

Notice that the rate equation for R′ does indeed give us a tool to predict
future values of R. For suppose today 2100 people are infected and 2500
have already recovered. Can we say how large the recovered population will
be tomorrow or the next day? Since I = 2100,

R′ =
1

14
× 2100 = 150 persons per day .

Thus 150 people will recover in a single day, and twice as many, or 300,
will recover in two. At this rate the recovered population will number 2650
tomorrow and 2800 the next day.

These calculations assume that the rate R′ holds steady at 150 persons
per day for the entire two days. Since R′ = I/14, this is the same as assuming
that I holds steady at 2100 persons. If instead I varies during the two days
we would have to adjust the value of R′ and, ultimately, the future values of
R as well. In fact, I does vary over time. We shall see this when we analyze
how the infection is transmitted. Then, in chapter 2, we’ll see how to make
the adjustments in the values of R′ that will permit us to predict the value
of R in the model with as much accuracy as we wish.

Other diseases. What can we say about the recovery rate for a contagious
disease other than measles? If the period of infection of the new illness is k
days, instead of 14, and if we assume that 1/k of the infected people recover
each day, then the new recovery rate is

R′ =
I persons

k days
=

1

k
I persons per day.
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If we set b = 1/k we can express the recovery rate equation in the form

R′ = bI persons per day.

The constant b is called the recovery coefficient in this context.
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Let’s incorporate our understanding of recovery
into the compartment diagram. For the sake of il-
lustration, we’ll separate the three compartments. As
time passes, people “flow” from the infected compart-
ment to the recovered. We represent this flow by an
arrow from I to R. We label the arrow with the recov-
ery coefficient b to indicate that the flow is governed
by the rate equation R′ = bI.

The Rate of Transmission

Since susceptibles become infected, the compartment diagram above should
also have an arrow that goes from S to I and a rate equation for S ′ to show
how S changes as the infection spreads. While R′ depends only on I, because
recovery involves only waiting for people to leave the infected population, S ′

will depend on both S and I, because transmission involves contact between
susceptible and infected persons.

Here’s a way to model the transmission rate. First, consider a single
susceptible person on a single day. On average, this person will contact only
a small fraction, p, of the infected population. For example, suppose there are
5000 infected children, so I = 5000. We might expect only a couple of them—
let’s say 2—will be in the same classroom with our “average” susceptible. So
the fraction of contacts is p = 2/I = 2/5000 = .0004. The 2 contacts
themselves can be expressed as 2 = (2/I) · I = pI contacts per day per
susceptible.

To find out how many daily contacts the whole susceptible population willContacts are
proportional to both S
and I

have, we can just multiply the average number of contacts per susceptible
person by the number of susceptibles: this is pI · S = pSI.

Not all contacts lead to new infections; only a certain fraction q do.
The more contagious the disease, the larger q is. Since the number of daily
contacts is pSI, we can expect q · pSI new infections per day (i.e., to convert
contacts to infections, multiply by q). This becomes aSI if we define a to be
the product qp.
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Recall, the value of the recovery coefficient b depends only on the illness
involved. It is the same for all populations. By contrast, the value of a de-
pends on the general health of a population and the level of social interaction
between its members. Thus, when two different populations experience the
same illness, the values of a could be different. One strategy for dealing with
an epidemic is to alter the value of a. Quarantine does this, for instance; see
the exercises.

Since each new infection decreases the number of susceptibles, we have
the rate equation for S:

Here is the second
piece of the S-I-R

model
S ′ = −aSI persons per day .

The minus sign here tells us that S is decreasing (since S and I are positive).
We call a the transmission coefficient.

Just as people flow from the infected to the recov-
ered compartment when they recover, they flow from
the susceptible to the infected when they fall ill. To
indicate the second flow let’s add another arrow to
the compartment diagram. Because this flow is due to
the transmission of the illness, we will label the arrow
with the transmission coefficient a. The compartment
diagram now reflects all aspects of our model.
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We haven’t talked about the units in which to measure a and b. They must be chosen so that
any equation in which a or b appears will balance. Thus, in R′ = bI the units on the left are
persons/day; since the units for I are persons, the units for b must be 1/(days). The units in
S′ = −aSI will balance only if a is measured in 1/(person-day).

The reciprocals have more natural interpretations. First of all, 1/b is the number of days a
person needs to recover. Next, note that 1/a is measured in person-days (i.e., persons × days),
which are the natural units in which to measure exposure. Here is why. Suppose you contact
3 infected persons for each of 4 days. That gives you the same exposure to the illness that you
get from 6 infected persons in 2 days—both give 12 “person-days” of exposure. Thus, we can
interpret 1/a as the level of exposure of a typical susceptible person.

Completing the Model

The final rate equation we need—the one for I ′—reflects what is already
clear from the compartment diagram: every loss in I is due to a gain in R,
while every gain in I is due to a loss in S.
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Here is the complete
S-I-R model S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

If you add up these three rates you should get the overall rate of change of
the whole population. The sum is zero. Do you see why?

You should not draw the conclusion that the only use of rate equations is to model an epidemic.
Rate equations have a long history, and they have been put to many uses. Isaac Newton (1642–
1727) introduced them to model the motion of a planet around the sun. He showed that the
same rate equations could model the motion of the moon around the earth and the motion of an
object falling to the ground. Newton created calculus as a tool to analyze these equations. He
did the work while he was still an undergraduate—on an extended vacation, curiously enough,
because a plague epidemic was raging at Cambridge!

Today we use Newton’s rate equations to control the motion of earth satellites and the
spacecraft that have visited the moon and the planets. We use other rate equations to model
radioactive decay, chemical reactions, the growth and decline of populations, the flow of electricity
in a circuit, the change in air pressure with altitude—just to give a few examples. You will have
an opportunity in the following chapters to see how they arise in many different contexts, and
how they can be analyzed using the tools of calculus.

The following diagram summarizes, in a schematic way, the relation be-
tween our model and the reality it seeks to portray.

people fall ill
and eventually

recover

Reality

S ′ = −aSI
I ′ = aSI − bI

R′ = bI

Mathematics

-
�

Modelling
the reality

Interpreting
the mathematics

The diagram calls attention to several facts. First, the model is a part ofThe model is part of
mathematics; it only
approximates reality

mathematics. It is distinct from the reality being modelled. Second, the
model is based on a simplified interpretation of the epidemic. As such, it
will not match the reality exactly; it will be only an approximation. Thus,
we cannot expect the values of S, I, and R that we calculate from the rate
equations to give us the exact sizes of the susceptible, infected, and recov-
ered populations. Third, the connection between reality and mathematics
is a two-way street. We have already travelled one way by constructing
a mathematical object that reflects some aspects of the epidemic. This is
model-building. Presently we will travel the other way. First we need to
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get mathematical answers to mathematical questions; then we will see what
those answers tell us about the epidemic. This is interpretation of the model.
Before we begin the interpretation, we must do some mathematics.

Analyzing the Model

Now that we have a model we shall analyze it as a mathematical object. We
will set aside, at least for the moment, the connection between the math-
ematics and the reality. Thus, for example, you should not be concerned
when our calculations produce a value for S of 44,446.6 persons at a certain
time—a value that will never be attained in reality. In the following analysis
S is just a numerical quantity that varies with t, another numerical quantity.
Using only mathematical tools we must now extract from the rate equations
the information that will tell us just how S and I and R vary with t.

We already took the first steps in that direction when we used the rate
equation R′ = I/14 to predict the value of R two days into the future (see
page 7). We assumed that I remained fixed at 2100 during those two days, so
the rate R′ = 2100/14 = 150 was also fixed. We concluded that if R = 2500
today, it will be 2650 tomorrow and 2800 the next day.

A glance at the full S-I-R model tells us those first steps have to be
modified. The assumption we made—that I remains fixed—is not justified, Rates are continually

changing; this affects
the calculations

because I (like S and R) is continually changing. As we shall see, I actually
increases over those two days. Hence, over the same two days, R′ is not fixed
at 150, but is continually increasing also. That means that R′ becomes larger
than 150 during the first day, so R will be larger than 2650 tomorrow.

The fact that the rates are continually changing complicates the mathe-
matical work we need to do to find S, I, and R. In chapter 2 we will develop
tools and concepts that will overcome this problem. For the present we’ll
assume that the rates S ′, I ′, and R′ stay fixed for the course of an entire day.
This will still allow us to produce reasonable estimates for the values of S, I,
and R. With these estimates we will get our first glimpse of the predictive
power of the S-I-R model. We will also use the estimates as the starting
point for the work in chapter 2 that will give us precise values. Let’s look at
the details of a specific problem.

The Problem. Consider a measles epidemic in a school population of 50,000
children. The recovery coefficient is b = 1/14. For the transmission coeffi-
cient we choose a = .00001, a number within the range used in epidemic
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studies. We suppose that 2100 people are currently infected and 2500 have
already recovered. Since the total population is 50,000, there must be 45,400
susceptibles. Here is a summary of the problem in mathematical terms:

Rate equations:

S ′ = −.00001SI,

I ′ = .00001SI − I/14,

R′ = I/14.

Initial values: when t = 0,

S = 45400, I = 2100, R = 2500.

Tomorrow. From our earlier discussion, R′ = 2100/14 = 150 persons per
day, giving us an estimated value of R = 2650 persons for tomorrow. To
estimate S we use

S ′ = −.00001 SI = −.00001 × 45400 × 2100 = −953.4 persons/day.

Hence we estimate that tomorrow

S = 45400 − 953.4 = 44446.6 persons.

Since S + I + R = 50000 and we have S + R = 47096.6 tomorrow, a final
subtraction gives us I = 2903.4 persons. (Alternatively, we could have used
the rate equation for I ′ to estimate I.)

The fractional values in the estimates for S and I remind us that the
S-I-R model describes the behavior of the epidemic only approximately.

Several days hence. According to the model, we estimate that tomorrow
S = 44446.6, I = 2903.4, and R = 2650. Therefore, from the new I we get
a new approximation for the value of R′ tomorrow; it is

R′ =
1

14
I =

1

14
× 2903.4 = 207.4 persons/day.

Hence, two days from now we estimate that R will have the new value 2650+
207.4 = 2857.4. Now follow this pattern to get new approximations for S ′

and I ′, and then use those to estimate the values of S and I two days from
now.
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The pattern of steps that just carried you from the first day to the second
will work just as well to carry you from the second to the third. Pause now Stop and do

the calculationsand do all these calculations yourself. See exercises 15 and 16 on page 22. If
you round your calculated values of S, I, and R to the nearest tenth, they
should agree with those in the following table.

Estimates for the first three days

t S I R S′ I ′ R′

0
1
2
3

45 400.0
44 446.6
43 156.1
41 435.7

2100.0
2903.4
3986.5
5422.1

2500.0
2650.0
2857.4
3142.1

−953.4
−1290.5
−1720.4

803.4
1083.1
1435.7

150.0
207.4
284.7

Yesterday. We already pointed out, on page 5, that we can use our models
to go backwards in time, too. This is a valuable way to see how well the model
fits reality, because we can compare estimates that the model generates with
health records for the days in the recent past.

To find how S, I, and R change when we go one day into the future we
multiplied the rates S ′, I ′, and R′ by a time step of +1. To find how they
change when we go one day into the past we do the same thing, except that
we must now use a time step of –1. According to the table above, the rates
at time t = 0 (i.e., today) are

S ′ = −953.4, I ′ = 803.4, R′ = 150.0.

Therefore we estimate that, one day ago,

S = 45400 + (−953.4 ×−1) = 45400 + 953.4 = 46353.4,

I = 2100 + (803.4 ×−1) = 2100 − 803.4 = 1296.6,

R = 2500 + (150.0 ×−1) = 2500 − 150.0 = 2350.0.

Just as we would expect with a spreading infection, there are more suscepti-
bles yesterday than today, but fewer infected or recovered. In the exercises
for section 3 you will have an opportunity to continue this process, tracing
the epidemic many days into the past. For example, you will be able to go
back and see when the infection started—that is, find the day when the value
of I was only about 1.
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There and back again. What happens when we start with tomorrow’sGo forward a day
and then back again values and use tomorrow’s rates to go back one day—back to today? We

should get S = 45400, I = 2100, and R = 2500 once again, shouldn’t we?
Tomorrow’s values are

S = 44446.6, I = 2903.4, R = 2650.0,

S ′ = −1290.5, I ′ = 1083.1, R′ = 207.4.

To go backwards one day we must use a time step of −1. The predicted
values are thus

S = 44446.6 + (−1290.6 ×−1) = 45737.2,

I = 2903.4 + (1083.1 ×−1) = 1820.3,

R = 2650.0 + (207.4 ×−1) = 2442.6.

These are not the values that we had at the start, when t = 0. In fact, it’s
worth noting the difference between the original values and those produced
by “going there and back again.”

original there and
value back again difference

S
I
R

45400
2100
2500

45737.1
1820.3
2442.6

337.1
–279.7
–57.4

Do you see why there are differences? We went forward in time using the
rates that were current at t = 0, but when we returned we used the rates
that were current at t = 1. Because these rates were different, we didn’t get
back where we started. These differences do not point to a flaw in the model;
the problem lies with the way we are trying to extract information from the
model. As we have been making estimates, we have assumed that the ratesThe differences

measure how rough an
estimate is

don’t change over the course of a whole day. We already know that’s not
true, so the values that we have been getting are not exact. What this test
adds to our knowledge is a way to measure just how inexact those values
are—as we do in the table above.

In chapter 2 we will solve the problem of rough estimates by recalculating
all the quantities ten times a day, a hundred times a day, or even more. When
we do the computations with shorter and shorter time steps we will be able
to see how the estimates improve. We will even be able to see how to get
values that are mathematically exact!
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Delta notation. This work has given us some insights about the way our
model predicts future values of S, I, and R. The basic idea is very simple:
determine how S, I, and R change. Because these changes play such an
important role in what we do, it is worth having a simple way to refer to
them. Here is the notation that we will use:

∆x stands for a change in the quantity x

The symbol “∆” is the Greek capital letter delta; it corresponds to the Roman
letter “D” and stands for difference.

Delta notation gives us a way to refer to changes of all sorts. For example,
in the table on page 13, between day 1 and day 3 the quantities t and S change
by

∆t = 2 days,

∆S = −3010.9 persons.

We sometimes refer to a change as a step. For instance, in this example we ∆ stands for a change,
a difference, or a stepcan say there is a “t step” of 2 days, and an “S step” of −3010.9 persons. In

the calculations that produced the table on page 13 we “stepped into” the
future, a day at a time. Finally, delta notation gives us a concise and vivid
way to describe the relation between rates and changes. For example, if S
changes at the constant rate S ′, then under a t step of ∆t, the value of S
changes by

∆S = S ′ · ∆t.

Using the computer as a tool. Suppose we wanted to find out what
happens to S, I, and R after a month, or even a year. We need only repeat—
30 times, or 365 times—the three rounds of calculations we used to go three
days into the future. The computations would take time, though. The same
is true if we wanted to do ten or one hundred rounds of calculations per day—
which is the approach we’ll take in chapter 2 to get more accurate values.
To save our time and effort we will soon begin to use a computer to do the
repetitive calculations.

A computer does calculations by following a set of instructions called a
program. Of course, if we had to give a million instructions to make the
computer carry out a million steps, there would be no savings in labor. The
trick is to write a program with just a few instructions that can be repeated
over and over again to do all the calculations we want. The usual way to do
this is to arrange the instructions in a loop. To give you an idea what a loop



DVI file created at 9:26,  22 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

16 CHAPTER 1. A CONTEXT FOR CALCULUS

is, we’ll look at the S-I-R calculations. They form a loop. We can see the
loop by making a flow chart.

The flow chart. We’ll start by writing down the three steps that take
us from one day to the next:

Step I Given the current values of S, I, and R, we get current S ′, I ′, and
R′ by using the rate equations

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

Step II Given the current values of S ′, I ′, and R′, we find the changes ∆S,
∆I, and ∆R over the course of a day by using the equations

∆S persons = S ′
persons

day
× 1 day,

∆I persons = I ′
persons

day
× 1 day,

∆R persons = R′
persons

day
× 1 day.

Step III Given the current values of ∆S, ∆I, and ∆R, we find the new
values of S, I, and R a day later by using the equations

new S = current S + ∆S,

new I = current I + ∆I,

new R = current R + ∆R.

Each step takes three numbers as input, and produces three new numbers
as output. Note that the output of each step is the input of the next, so the
steps flow together. The diagram below, called a flow chart, shows us how

The flow chart
forms a loop

the steps are connected.

values of
S, I, R

values of
S ′, I ′, R′

values of
∆S, ∆I, ∆R

- -

6

I II

III
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The calculations form a loop, because the output of step III is the input
for step I. If we go once around the loop, the output of step III gives us the
values of S, I, and R on the following day. The steps do indeed carry us into
the future.

Each step involves calculating three numbers. If we count each calculation
as a single instruction, then it takes nine instructions to carry the values of
S, I, and R one day into the future. To go a million days into the future, we
need add only one more instruction: “Go around the loop a million times.”
In this way, a computer program with only ten instructions can carry out a
million rounds of calculations!

Later in this chapter (section 3) you will find a real computer program
that lists these instructions (for three days instead of a million, though).
Study the program to see which instructions accomplish which steps. In A computer program

will carry out
the three steps

particular, see how it makes a loop. Then run the program to check that the
computer reproduces the values you already computed by hand. Once you
see how the program works, you can modify it to get further information—for
example, you can find out what happens to S, I, and R thirty days into the
future. You will even be able to plot the graphs of S, I, and R.

Rate equations have always been at the heart of calculus, and they have been analyzed using
mechanical and electronic computers for as long as those tools have been available. Now that
small powerful computers have begun to appear in the classroom, it is possible for beginning
calculus students to explore interesting and complex problems that are modelled by rate equations.
Computers are changing how mathematics is done and how it is learned.

Analysis without a computer. A computer is a powerful tool for exploring
the S-I-R model, but there are many things we can learn about the model
without using a computer. Here is an example.

According to the model, the rate at which the infected population grows
is given by the equation

I ′ = .00001 SI − I/14 persons/day.

In our example, I ′ = 803.4 at the outset. This is a positive number, so I
increases initially. In fact, I will continue to increase as long as I ′ is positive.
If I ′ ever becomes negative, then I decreases. So let’s ask the question: when
is I ′ positive, when is it negative, and when is it zero? By factoring out I in
the last equation we obtain

I ′ = I

(

.00001 S − 1

14

)

persons/day.
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Consequently I ′ = 0 if either

I = 0 or .00001 S − 1

14
= 0.

The first possibility I = 0 has a simple interpretation: there is no infection
within the population. The second possibility is more interesting; it says
that I ′ will be zero when

.00001 S − 1

14
= 0 or S =

100000

14
≈ 7142.9.

If S is greater than 100000/14 and I is positive, then you can check that
the formula

I ′ = I

(

.00001 S − 1

14

)

persons/day

tells us I ′ is positive—so I is increasing. If, on the other hand, S is less

than 100000/14, then I ′ is negative and I is decreasing. So S = 100000/14
represents a threshold. If S falls below the threshold, I decreases. If S
exceeds the threshold, I increases. Finally, I reaches its peak when S equals
the threshold.

The presence of a threshold value for S is purely a mathematical result.
However, it has an interesting interpretation for the epidemic. As long asThe threshold

determines whether
there will be an
epidemic

there are at least 7143 susceptibles, the infection will spread, in the sense
that there will be more people falling ill than recovering each day. As new
people fall ill, the number of susceptibles declines. Finally, when there are
fewer than 7143 susceptibles, the pattern reverses: each day more people will
recover than will fall ill.

If there were fewer than 7143 susceptibles in the population at the out-

set, then the number of infected would only decline with each passing day.
The infection would simply never catch hold. The clear implication is that
the noticeable surge in the number of cases that we associate with an “epi-
demic” disease is due to the presence of a large susceptible population. If
the susceptible population lies below a certain threshold value, a surge just
isn’t possible. This is a valuable insight—and we got it with little effort.
We didn’t need to make lengthy calculations or call on the resources of a
computer; a bit of algebra was enough.
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Exercises

Reading a Graph

The graphs on pages 3 and 4 have no scales marked along their axes, so they
provide mainly qualitative information. The graphs below do have scales, so
you can now answer quantitative questions about them. For example, on day
20 there are about 18,000 susceptible people. Read the graphs to answer the
following questions. (Note: S + I + R is not constant in this example, so
these graphs cannot be solutions to our model..)

time

S

10 20 30 40 50 days

20000

40000

people

-

6

time

I

10 20 30 40 50 days

5000

10000

15000

people

-

6

time

R

20 40 60 80 100 days

20000

40000

people

-

6

1. When does the infection hit its peak? How many people are infected at
that time?
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2. Initially, how many people are susceptible? How many days does it take
for the susceptible population to be cut in half?

3. How many days does it take for the recovered population to reach 25,000?
How many people eventually recover? Where did you look to get this infor-
mation?

4. On what day is the size of the infected population increasing most
rapidly? When is it decreasing most rapidly? How do you know?

5. How many people caught the illness at some time during the first 20
days? (Note that this is not the same as the number of people who are
infected on day 20.) Explain where you found this information.

6. Copy the graph of R as accurately as you can, and then superimpose a
sketch of S on it. Notice the time scales on the original graphs of S and R are
different. Describe what happened to the graph of S when you superimposed
it on the graph of R. Did it get compressed or stretched? Was this change
in the horizontal direction or the vertical?

A Simple Model

These questions concern the rate equation S ′ = −470 persons per day that
we used to model a susceptible population on pages 4–6.

7. Suppose the initial susceptible population was 20,000 on Wednesday. Use
the model to answer the following questions.

a) How many susceptibles will be left ten days later?

b) How many days will it take for the susceptible population to vanish en-
tirely?

c) How many susceptibles were there on the previous Sunday?

d) How many days before Wednesday were there 30,000 susceptibles?

Mark Twain’s Mississippi

The Lower Mississippi River meanders over its flat valley, forming broad
loops called ox-bows. In a flood, the river can jump its banks and cut off
one of these loops, getting shorter in the process. In his book Life on the

Mississippi (1884), Mark Twain suggests, with tongue in cheek, that some
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day the river might even vanish! Here is a passage that shows us some of the
pitfalls in using rates to predict the future and the past.

In the space of one hundred and seventy six years the Lower Missis-

sippi has shortened itself two hundred and forty-two miles. That is

an average of a trifle over a mile and a third per year. Therefore,

any calm person, who is not blind or idiotic, can see that in the Old

Oölitic Silurian Period, just a million years ago next November, the

Lower Mississippi was upwards of one million three hundred thousand

miles long, and stuck out over the Gulf of Mexico like a fishing-pole.

And by the same token any person can see that seven hundred and

forty-two years from now the Lower Mississippi will be only a mile

and three-quarters long, and Cairo [Illinois] and New Orleans will

have joined their streets together and be plodding comfortably along

under a single mayor and a mutual board of aldermen. There is some-

thing fascinating about science. One gets such wholesome returns of

conjecture out of such a trifling investment of fact.

Let L be the length of the Lower Mississippi River. Then L is a variable
quantity we shall analyze.

8. According to Twain’s data, what is the exact rate at which L is changing,
in miles per year? What approximation does he use for this rate? Is this
a reasonable approximation? Is this rate positive or negative? Explain. In
what follows, use Twain’s approximation.

9. Twain wrote his book in 1884. Suppose the Mississippi that Twain wrote
about had been 1100 miles long; how long would it have become in 1990?

10. Twain does not tell us how long the Lower Mississippi was in 1884 when
he wrote the book, but he does say that 742 years later it will be only 13

4

miles long. How long must the river have been when he wrote the book?

11. Suppose t is the number of years since 1884. Write a formula that
describes how much L has changed in t years. Your formula should complete
the equation

the change in L in t years = . . . .
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12. From your answer to question 10, you know how long the river was in
1884. From question 11, you know how much the length has changed t years
after 1884. Now write a formula that describes how long the river is t years
later.

13. Use your formula to find what L was a million years ago. Does your
answer confirm Twain’s assertion that the river was “upwards of 1,300,000
miles long” then?

14. Was the river ever 1,300,000 miles long; will it ever be 13

4
miles long?

(This is called a reality check.) What, if anything, is wrong with the “tri-
fling investment of fact” which led to such “wholesale returns of conjecture”
that Twain has given us?

The Measles Epidemic

We consider once again the specific rate equations

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

discussed in the text on pages 11–14. We saw that at time t = 1,

S = 44446.6, I = 2903.4, R = 2650.0.

15. Calculate the current rates of change S ′, I ′, and R′ when t = 1, and
then use these values to determine S, I, and R one day later.

16. In the previous question you found S, I, and R when t = 2. Using these
values, calculate the rates S ′, I ′, and R′ and then determine the new values
of S, I, and R when t = 3. See the table on page 13.

17. Double the time step. Go back to the starting time t = 0 and to the
initial values

S = 45400, I = 2100, R = 2500.

Recalculate the values of S, I, and R at time t = 2 by using a time step of
∆t = 2. You should perform only a single round of calculations, and use the
rates S ′, I ′, and R′ that are current at time t = 0.
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18. There and back again. In the text we went one day into the future
and then back again to the present. Here you’ll go forward two days from
t = 0 and then back again. There are two ways to do this: with a time step
of ∆t = ±2 (as in the previous question), and with a pair of time steps of
∆t = ±1 .

a) (∆t = ±2). Using the values of S, I, and R at time t = 2 that you just
got in the previous question, calculate the rates S ′, I ′, and R′. Then using
a time step of ∆t = −2, estimate new values of S, I, and R at time t = 0.
How much do these new values differ from the original values 45,400, 2100,
2500?

b) (∆t = ±1). Now make a new start, using the values

S = 43156.1, I = 3986.5, R = 2857.4,

S ′ = −1720.4, I ′ = 1435.7, R′ = 284.7.

that occur when t = 2 if we make estimates with a time step ∆t = 1. (These
values come from the table on page 13) Using two rounds of calculations with
a time step of ∆t = −1, estimate another set of new values for S, I, and R
at time t = 0. How much do these new values differ from the original values
45,400, 2100, 2500?

c) Which process leads to a smaller set of differences: a single round of
calculations with ∆t = ±2, or two rounds of calculations with ∆t = ±1?
Consequently, which process produces better estimates—in the sense in which
we used to measure estimates on page 14?

19. Quarantine. One of the ways to treat an epidemic is to keep the
infected away from the susceptible; this is called quarantine. The intention
is to reduce the chance that the illness will be transmitted to a susceptible
person. Thus, quarantine alters the transmission coefficient.

a) Suppose a quarantine is put into effect that cuts in half the chance that
a susceptible will fall ill. What is the new transmission coefficient?

b) On page 18 it was determined that whenever there were fewer than 7143
susceptibles, the number of infected would decline instead of grow. We called
7143 a threshold level for S. Changing the transmission coefficient, as in part
(a), changes the threshold level for S. What is the new threshold?

c) Suppose we start with S = 45,400. Does quarantine eliminate the epi-
demic, in the sense that the number of infected immediately goes down from
2100, without ever showing an increase in the number of cases?
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d) Since the new transmission coefficient is not small enough to guarantee
that I never goes up, can you find a smaller value that does guarantee I
never goes up? Continue to assume we start with S = 45400.

e) Suppose the initial susceptible population is 45,400. What is the largest

value that the transmission coefficient can have and still guarantee that I
never goes up? What level of quarantine does this represent? That is, do
you have to reduce the chance that a susceptible will fall ill to one-third of
what it was with no quarantine at all, to one-fourth, or what?

Other Diseases

20. Suppose the spread of an illness similar to measles is modelled by the
following rate equations:

S ′ = −.00002 SI,

I ′ = .00002 SI − .08 I,

R′ = .08 I.

Note: the initial values S = 45400, etc. that we used in the text do not apply
here.

a) Roughly how long does someone who catches this illness remain infected?
Explain your reasoning.

b) How large does the susceptible population have to be in order for the
illness to take hold—that is, for the number of cases to increase? Explain
your reasoning.

c) Suppose 100 people in the population are currently ill. According to the
model, how many (of the 100 infected) will recover during the next 24 hours?

d) Suppose 30 new cases appear during the same 24 hours. What does that
tell us about S ′?

e) Using the information in parts (c) and (d), can you determine how large
the current susceptible population is?

21. a) Construct the appropriate S-I-R model for a measles-like illness that
lasts for 4 days. It is also known that a typical susceptible person meets only
about 0.3% of infected population each day, and the infection is transmitted
in only one contact out of six.
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b) How small does the susceptible population have to be for this illness to
fade away without becoming an epidemic?

22. Consider the general S-I-R model for a measles-like illness:

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

a) The threshold level for S—below which the number of infected will only
decline—can be expressed in terms of the transmission coefficient a and the
recovery coefficient b. What is that expression?

b) Consider two illnesses with the same transmission coefficient a; assume
they differ only in the length of time someone stays ill. Which one has the
lower threshold level for S? Explain your reasoning.

What Goes Around Comes Around

Some relatively mild illnesses, like the common cold, return to infect you
again and again. For a while, right after you recover from a cold, you are
immune. But that doesn’t last; after some weeks or months, depending on
the illness, you become susceptible again. This means there is now a flow
from the recovered population to the susceptible. These exercises ask you
to modify the basic S-I-R model to describe an illness where immunity is
temporary.

23. Draw a compartment diagram for such an illness. Besides having all the
ingredients of the diagram on page 9, it should depict a flow from R to S.
Call this immunity loss, and use c to denote the coefficient of immunity
loss.

24. Suppose immunity is lost after about six weeks. Show that you can set
c = 1/42 per day, and explain your reasoning carefully. A suggestion: adapt
the discussion of recovery in the text.

25. Suppose this illness lasts 5 days and it has a transmission coefficient of
.00004 in the population we are considering. Suppose furthermore that the
total population is fixed in size (as was the case in the text). Write down
rate equations for S, I, and R.
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26. We saw in the text that the model for an illness that confers permanent
immunity has a threshold value for S in the sense that when S is above the
threshold, I increases, but when it is below, I decreases. Does this model
have the same feature? If so, what is the threshold value?

27. For a mild illness that confers permanent immunity, the size of the
recovered population can only grow. This question explores what happens
when immunity is only temporary.

a) Will R increase or decrease if

S = 45400, I = 2100, R = 2500?

b) Suppose we shift 20000 susceptibles to the recovered population (so that
S = 25400 and R = 22500), leaving I unchanged. Now, will R increase or
will it decrease?

c) Using a total population of 50,000, give two other sets of values for S, I,
and R that lead to a decreasing R.

d) In fact, the relative sizes of I and R determine whether R will increase
or decrease. Show that

if I > 5

42
R, then R will increase;

if I < 5

42
R, then R will decrease.

Explain your argument clearly. A suggestion: consider the rate equation
for R′.

28. The steady state. Any illness that confers only temporary immunity
can appear to linger in a population forever. You may not always have a
cold, but someone does, and eventually you catch another one. (“What goes
around comes around.”) Individuals gradually move from one compartment
to the next. When they return to where they started, they begin another
cycle.

Each compartment (in the diagram you drew in exercise 23) has an inflow

and an outflow. It is conceivable that the two exactly balance, so that the size

of the compartment doesn’t change (even though its individual occupants
do). When this happens for all three compartments simultaneously, the
illness is said to be in a steady state. In this question you explore the steady
state of the model we are considering. Recall that the total population is
50,000.
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a) What must be true if the inflow and outflow to the I compartment are
to balance?

b) What must be true if the inflow and outflow to the R compartment are
to balance?

c) If neither I nor R is changing, then the model must be at the steady
state. Why?

d) What is the value of S at the steady state?

e) What is the value of R at the steady state? A suggestion: you know
R + I = 50000 − (the steady state value of S). You also have a connection
between I and R at the steady state.

1.2 The Mathematical Ideas

A number of important mathematical ideas have already emerged in our
study of an epidemic. In this section we pause to consider them, because
they have a “universal” character. Our aim is to get a fuller understanding
of what we have done so we can use the ideas in other contexts.

We often draw out of a few particular experiences a lesson that can be put to good use in new
settings. This process is the essence of mathematics, and it has been given a name—abstraction—
which means literally “drawing from.” Of course abstraction is not unique to mathematics; it is
a basic part of the human psyche.

Functions

A function describes how one quantity depends on another. In our study of
a measles epidemic, the relation between the number of susceptibles S and Functions and

their notationthe time t is a function. We write S(t) to denote that S is a function of t.
We can also write I(t) and R(t) because I and R are functions of t, too. We
can even write S ′(t) to indicate that the rate S ′ at which S changes over time
is a function of t. In speaking, we express S(t) as “S of t” and S ′(t) as “S
prime of t.”

You can find functions everywhere. The amount of postage you pay for
a letter is a function of the weight of the letter. The time of sunrise is a
function of what day of the year it is. The crop yield from an acre of land is
a function of the amount of fertilizer used. The position of a car’s gasoline
gauge (measured in centimeters from the left edge of the gauge) is a function
of the amount of gasoline in the fuel tank. On a polygraph (“lie detector”)
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there is a pen that records breathing; its position is a function of the amount
of expansion of the lungs. The volume of a cubical box is a function of the
length of a side. The last is a rather special kind of function because it can
be described by an algebraic formula: if V is the volume of the box and s is
the length of a side, then V (s) = s3.

Most functions are not described by algebraic formulas, however. For
instance, the postage function is given by a set of verbal instructions and the
time of sunrise is given by a table in an almanac. The relation between a gas
gauge and the amount of fuel in the tank is determined simply by making
measurements. There is no algebraic formula that tells us how the number of
susceptibles, S, depends upon t, either. Instead, we find S(t) by carrying out
the steps in the flow chart on page 16 until we reach t days into the future.

In the function S(t) the variable t is called the input and the variableA function has input
and output S is called the output. In the sunrise function, the day of the year is the

input and the time of sunrise is the output. In the function S(t) we think
of S as depending on t, so t is also called the independent variable and S
the dependent variable. The set of values that the input takes is called the
domain of the function. The set of values that the output takes is called
the range.

The idea of a function is one of the central notions of mathematics. It is
worth highlighting:

A function is a rule that specifies how
the value of one variable, the input, determines

the value of a second variable, the output.

Notice that we say rule here, and not formula. This is deliberate. We want
the study of functions to be as broad as possible, to include all the ways one
quantity is likely to be related to another in a scientific question.

Some technical details. It is important not to confuse an expression like
S(t) with a product; S(t) does not mean S × t. On the contrary, the expres-
sion S(1.4), for example, stands for the output of the function S when 1.4
is the input. In the epidemic model we then interpret it as the number of
susceptibles that remain 1.4 days after today.

We have followed the standard practice in science by letting the single
letter S designate both the function—that is, the rule—and the output of
that function. Sometimes, though, we will want to make the distinction. In
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that case we will use two different symbols. For instance, we might write
S = f(t). Then we are still using S to denote the output, but the new
symbol f stands for the function rule.

The symbols we use to denote the input and the output of a function are
just names; if we change them, we don’t change the function. For example,
here are three ways to describe the same function g:

g : multiply the input by 5, then subtract 3

g(x) = 5x − 3

g(u) = 5u − 3 .

It is important to realize that the formulas we just wrote in the last two lines
are merely shorthand for the instructions stated in the first line. If you keep
this in mind, then absurd-looking combinations like g(g(2)) can be decoded
easily by remembering g of anything is just 5 times that thing, minus 3. We
could thus evaluate g(g(2)) from the inside out (which is usually easier) as

g(g(2)) = g(5 · 2 − 3) = g(7) = 5 · 7 − 3 = 32,

or we could evaluate it from the outside in as

g(g(2)) = 5g(2) − 3 = 5(5 · 2 − 3) − 3 = 5 · 7 − 3 = 32,

as before.
Suppose f is some other rule, say f(t) = t2 +4t− 1. Remember that this

is just shorthand for “Take the input (whatever it is), square it, add four
times the input, and subtract 1.” We could then evaluate

f(g(3)) = f(5 · 3 − 3) = f(12) = 122 + 4 · 12 − 1 = 144 + 48 − 1 = 191,

while
g(f(3)) = g(20) = 97.

This process of chaining functions together by using the output of one
function as the input for another turns out to be very important later in this Part of math is simply

learning the languagecourse, and will be taken up again in chapter 3. For now, though, you should
treat it simply as part of the formal language of mathematics, requiring a
knowledge of the rules but no cleverness. It is analogous to learning how to
conjugate verbs in French class—it’s not very exciting for its own sake, but
it allows us to read the interesting stuff later on!
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A particularly important class of functions is composed of the constant
functions which give the same output for every input. If h is the constant
function that always gives back 17, then in formula form we would express
this as h(x) = 17. Constant functions are so simple you might feel you are
missing the point, but that’s all there is to it!

Graphs

A graph describes a function in a visual form. Sometimes—as with a seis-
mograph or a lie detector, for instance—this is the only description we haveA graph is a function

rule given visually of a particular function. The usual arrangement is to put the input variable
on the horizontal axis and the output on the vertical—but it is a good idea
when you are looking at a particular graph to take a moment to check; some-
times, the opposite convention is used! This is often the case in geology and
economics, for instance.
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Sketched above is the graph of a function S(t) that tells how many sus-
ceptibles there are after t days. Given any t0, we “read” the graph to find
S(t0), as follows: from the point t0 on the t-axis, go vertically until you reach
the graph; then go horizontally until you reach the S-axis. The value S0 at
that point is the output S(t0). Here t0 is about 13 and S0 is about 27,000;
thus, the graph says that S(13) ≈ 27000, or about 27,000 susceptibles are
left after 13 days.

Linear Functions

Changes in input and output. Suppose y is a function of x. Then thereIf y depends on x, then
∆y depends on ∆x is some rule that answers the question: What is the value of y for any given

x? Often, however, we start by knowing the value of y for a particular x,
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and the question we really want to ask is: How does y respond to changes

in x? We are still dealing with the same function—just looking at it from a
different point of view. This point of view is important; we use it to analyze
functions (like S(t), I(t), and R(t)) that are defined by rate equations.

The way ∆y depends on ∆x can be simple or it can be complex, depending
on the function involved. The simplest possibility is that ∆y and ∆x are
proportional:

∆y = m · ∆x, for some constant m.

Thus, if ∆x is doubled, so is ∆y; if ∆x is tripled, so is ∆y. A function whose

The defining property
of a linear function

input and output are related in this simple way is called a linear function,
because the graph is a straight line. Let’s take a moment to see why this is
so.

The graph of a linear function. The graph
consists of certain points (x, y) in the x, y-plane.
Our job is to see how those points are arranged.
Fix one of them, and call it (x0, y0). Let (x, y) be
any other point on the graph. Draw the line that
connects this point to (x0, y0), as we have done in
the figure at the right. Now set

∆x = x − x0, ∆y = y − y0.
-
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By definition of a linear function, ∆y = m · ∆x, as the figure shows, so the
slope of this line is ∆y/∆x = m. Recall that m is a constant; thus, if we
pick a new point (x, y), the slope of the connecting line won’t change.

Since (x, y) is an arbitrary point on the graph, what we have shown is
that every point on the graph lies on a line of slope m through the
point (x0, y0). But there is only one such line—and all the points lie on it!
That line must be the graph of the linear function.

A linear function is one that satisfies ∆y = m · ∆x;
its graph is a straight line whose slope is m.

Rates, slopes, and multipliers. The interpretation of m as a slope is
just one possibility; there are two other interpretations that are equally im-
portant. To illustrate them we’ll use Mark Twain’s vivid description of the
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shortening of the Lower Mississippi River (see page 21). This will also give
us the chance to see how a linear function emerges in context.

Twain says “the Lower Mississippi has shortened itself . . . an average of
a trifle over a mile and a third per year.” Suppose we let L denote the length
of the river, in miles, and t the time, in years. Then L depends on t, and
Twain’s statement implies that L is a linear function of t—in the sense in
which we have just defined a linear function. Here is why. According to our
definition, there must be some number m which makes ∆L = m · ∆t. But
notice that Twain’s statement has exactly this form if we translate it into
mathematical language. Convince yourself that it says

Stop and do
the translation

∆L miles = −11

3

miles

year
× ∆t years.

Thus we should take m to be −11

3
miles per year.

The role of m here is to convert one quantity (∆t years) into another
(∆L miles) by multiplication. All linear functions work this way. In the
defining equation ∆y = m · ∆x, multiplication by m converts ∆x into ∆y.
Any change in x produces a change in y that is m times as large. For this
reason we give m its second interpretation as a multiplier.

It is easier to understand why the usual symbol for slope is m—instead of s—when you see that
a slope can be interpreted as a multiplier.

It is important to note that, in our example, m is not simply −11

3
; it

is −11

3
miles per year. In other words, m is the rate at which the river is

getting shorter. All linear functions work this way, too. We can rewrite the
equation ∆y = m · ∆x as a ratio

m =
∆y

∆x
= the rate of change of y with respect to x.

For these reasons we give m its third interpretation as a rate of change.

For a linear function satisfying ∆y = m · ∆x,
the coefficient m is

rate of change, slope, and multiplier.

We already use y′ to denote the rate of change of y, so we can now write
m = y′ when y is a linear function of x. In that case we can also write

∆y = y′ · ∆x.
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This expression should recall a pattern very familiar to you. (If not, change y
to S and x to t!) It is the fundamental formula we have been using to calculate
future values of S, I, and R. We can approach the relation between y and x
the same way. That is, if y0 is an “initial value” of y, when x = x0, then any

value of y can be calculated from

y = y0 + y′ · ∆x or y = y0 + m · ∆x.

Units. Suppose x and y are quantities that are measured in specific units. If x and y have units,
so does mIf y is a linear function of x, with ∆y = m ·∆x, then m must have units too.

Since m is the multiplier that “converts” x into y, the units for m must be
chosen so they will convert x’s units into y’s units. In other words,

units for y = units for m × units for x.

This implies

units for m =
units for y

units for x
.

For example, the multiplier in the Mississippi River problem converts
years to miles, so it must have units of miles per year. The rate equation
R′ = bI in the S-I-R model is a more subtle example. It says that R′ is
a linear function of I. Since R′ is measured in persons per day and I is
measured in persons, we must have

units for b =
units for R′

units for I
=

persons

days

persons

Formulas for linear functions. The expression ∆y = m ·∆x declares that
y is a linear function of x, but it doesn’t quite tell us what y itself looks like

directly in terms of x. In fact, there are several equivalent ways to write the
relation y = f(x) in a formula, depending on what information we are given
about the function.
• The initial-value form. Here is a very common
situation: we know the value of y at an “initial”
point—let’s say y0 = f(x0)—and we know the rate
of change—let’s say it is m. Then the graph is the
straight line of slope m that passes through the point
(x0, y0). The formula for f is
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y = y0 + ∆y = y0 + m · ∆x = y0 + m(x − x0) = f(x).

What you should note particularly about this formula is that it expresses
y in terms of the initial data x0, y0, and m—as well as x. Since that data
consists of a point (x0, y0) and a slope m, the initial-value formula is also
referred to as the point-slope form of the equation of a line. It may be
more familiar to you with that name.
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• The interpolation form. This time we are given
the value of y at two points—let’s say y1 = f(x1)
and y2 = f(x2). The graph is the line that passes
through (x1, y1) and (x2, y2), and its slope is there-
fore

m =
y2 − y1

x2 − x1

.

Now that we know the slope of the graph we can use the point-slope form
(taking (x1, y1) as the “point”, for example) to get the equation. We have

y = y1 + m(x − x1) = y1 +
y2 − y1

x2 − x1

(x − x1) = f(x).

Notice how, once again, y is expressed in terms of the initial data—which
consists of the two points (x1, y1) and (x2, y2).

The process of finding values of a quantity between two given values is
called interpolation. Since our new expression does precisely that, it is
called the interpolation formula. (Of course, it also finds values outside the
given interval.) Since the initial data is a pair of points, the interpolation
formula is also called the two-point formula for the equation of a line.
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• The slope-intercept form. This is a special
case of the initial-value form that occurs when the
initial x0 = 0. Then the point (x0, y0) lies on the
y-axis, and it is frequently written in the alternate
form (0, b). The number b is called the y-intercept.
The equation is

y = mx + b = f(x).

In the past you may have thought of this as the formula for a linear function,
but for us it is only one of several. You will find that we will use the other
forms more often.
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Functions of Several Variables

Language and notation. Many functions depend on more than one vari-
able. For example, sunrise depends on the day of the year but it also depends
on the latitude (position north or south of the equator) of the observer. Like- A function can have

several input variableswise, the crop yield from an acre of land depends on the amount of fertilizer
used, but it also depends on the amount of rainfall, on the composition of
the soil, on the amount of weeding done—to mention just a few of the other
variables that a farmer has to contend with.

The rate equations in the S-I-R model also provide examples of functions
with more than one input variable. The equation

I ′ = .00001 SI − I/14

says that we need to specify both S and I to find I ′. We can say that

F (S, I) = .00001 SI − I/14

is a function whose input is the ordered pair of variables (S, I). In this
case F is given by an algebraic formula. While many other functions of
several variables also have formulas—and they are extremely useful—not all
functions do. The sunrise function, for example, is given by a two-way table
(see page 167) that shows the time of sunrise for different days of the year
and different latitudes.

As a technical matter it is important to note that the input variables S
and I of the function F (S, I) above appear in a particular order, and that
order is part of the definition of the function. For example, F (1, 0) = 0, but
F (0, 1) = −1/14. (Do you see why? Work out the calculations yourself.)

Parameters. Suppose we rewrite the rate equation for I ′, replacing .00001
and 1/14 with the general values a and b:

I ′ = aSI − bI.

This makes it clear that I ′ depends on a and b, too. But note that a and b
are not variables in quite the same way that S and I are. For example, a and
b will vary if we switch from one disease to another or from one population to
another. However, they will stay fixed while we consider a particular disease
in a particular population. By contrast, S and I will always be treated as
variables. We call a quantity like a or b a parameter.
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To emphasize that I ′ depends on the parameters as well as S and I, we
can write I ′ as the output of a new function

I ′ = I ′(S, I, a, b) = aSI − bI

whose input is the set of four variables (S, I, a, b), in that order. The variablesSome functions
depend on parameters S, I, and R must also depend on the parameters, too, and not just on

t. Thus, we should write S(t, a, b), for example, instead of simply S(t).
We implicitly used the fact that S, I, and R depend on a and b when we
discovered there was a threshold for an epidemic (page 18). In exercise 22 of
section 1 (page 25), you made the relation explicit. In that problem you show
I will simply decrease over time (i.e., there will be no “burst” of infection) if

S <
b

a
.

There are even more parameters lurking in the S-I-R problem. To un-
cover them, recall that we needed two pieces of information to estimate S,
I, and R over time:

1) the rate equations;
2) the initial values S0, I0, and R0.

We used S0 = 45400, I0 = 2100, and R0 = 2500 in the text, but if we
had started with other values then S, I, and R would have ended up being
different functions of t. Thus, we should really write

S = S(t, a, b, S0, I0, R0)

to tell a more complete story about the inputs that determine the output
S. Most of the time, though, we do not want to draw attention to the
parameters; we usually write just S(t).

Further possibilities. Steps I, II, and III on page 16 are also functions,
because they have well-defined input and output. They are unlike the other
examples we have discussed up to this point because they have more than
one output variable. You should see, though, that there is nothing more
difficult going on here.

In our study of the S-I-R model it was natural not to separate functions
that have one input variable from those that have several. This is the pattern
we shall follow in the rest of the course. In particular, we will want to deal
with parameters, and we will want to understand how the quantities we are
studying depend on those parameters.



DVI file created at 9:26,  22 January 2008
Copyright 1994, 2008 Five Colleges, Inc.

1.2. THE MATHEMATICAL IDEAS 37

The Beginnings of Calculus

While functions, graphs, and computers are part of the general fabric of
mathematics, we can also abstract from the S-I-R model some important
aspects of the calculus itself. The first of these is the idea of a rate of
change. In this chapter we just assumed the idea was intuitively clear.
However, there are some important questions not yet answered; for example,
how do you deal with a quantity whose rate of change is itself always chang-
ing? These questions, which lead to the fundamental idea of a derivative,
are taken up in chapter 3.

Rate equations—more commonly called differential equations—lie at
the very heart of calculus. We will have much more to say about them,
because many processes in the physical, biological, and social realms can be
modelled by rate equations. In our analysis of the S-I-R model, we used
rate equations to estimate future values by assuming that rates stay fixed
for a whole day at a time. The discussion called “there and back again” How the next three

chapters are connectedon page 14 points up the shortcomings of this assumption. In chapter 2 we
will develop a procedure, called Euler’s method, to address this problem. In
chapter 4 we will return to differential equations in a general way, equipped
with Euler’s method and the concept of the derivative.

Exercises

Functions and Graphs

1. Sketch the graph of each of the following functions. Label each axis, and
mark a scale of units on it. For each line that you draw, indicate

i) its slope;
ii) its y-intercept;
iii) its x-intercept (where it crosses the x-axis).

a) y = −1

2
x + 3 c) 5x + 3y = 12

b) y = (2x − 7)/3

2. Graph the following functions. Put labels and scales on the axes.

a) V = .3Z − 1; b) W = 600 − P 2.

3. Sketch the graph of each of the following functions. Put labels and scales
on the axes. For each graph that you draw, indicate
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i) its y-intercept;
ii) its x-intercept(s).

For part (d) you will need the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

for the roots of the quadratic equation ax2 + bx + c = 0.

a) y = x2

b) y = x2 + 1
c) y = (x + 1)2

d) y = 3x2 + x − 1

The next four questions refer to these functions:

c(x, y) = 17 a constant function

j(z) = z the identity function

r(u) = 1/u the reciprocal function

D(p, q) = p − q the difference function

s(y) = y2 the squaring function

Q(v) =
2v + 1

3v − 6
a rational function

H(x) =











5 if x < 0

x2 + 2 if 0 ≤ x < 6

29 − x if 6 ≤ x

T (x, y) = r(x) + Q(y)

4. Determine the following values:

c(5,−3) j(17) c(a, b) j(u2 + 1)

j(c(3,−5)) s(1.1) r(1/17) Q(0)

Q(2) Q(3/7) D(5,−3) D(−3, 5)

H(1) H(7) H(4) H(H(H(−3)))

r(s(−4)) r(Q(3)) Q(r(3)) T (3, 7)

5. True or false. Give reasons for your answers: if you say true, explain
why; if you say false, give an example that shows why it is false.
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a) For every non-zero number x, r(r(x)) = j(x).

b) If a > 1, then s(a) > 1.

c) If a > b, then s(a) > s(b).

d) For all real numbers a and b, s(a + b) = s(a) + s(b).

e) For all real numbers a, b, and c, D(D(a, b), c)) = D(a, D(b, c)).

6. Find all numbers x for which Q(x) = r(Q(x)).

7. The natural domain of a function f is the largest possible set of real
numbers x for which f(x) is defined. For example, the natural domain of
r(x) = 1/x is the set of all non-zero real numbers.

a) Find the natural domains of Q and H .

b) Find the natural domains of P (z) = Q(r(z)); R(v) = r(Q(v)).

c) What is the natural domain of the function W (t) =

√

1 − t2

t2 − 4
?

Computer Graphing

The purpose of these exercises is to give you some experience using a “graph-
ing package” on a computer. This is a program that will draw the graph of a
function y = f(x) whose formula you know. You must type in the formula,
using the following symbols to represent the basic arithmetic operations:

to indicate type

addition +

subtraction -

multiplication *

division /

an exponent ^

The caret “ ^ ” appears above the “6” on a keyboard (Shift-6).
Here is an example:

to enter: type:

7x5 − 9x2

x3 + 1
(7*x^5 - 9*x^2)/(x^3 + 1)
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The parentheses you see here are important. If you do not include them, the
computer will interpret your entry as

7x5 − 9x2

x3
+ 1 = 7x5 − 9

x
+ 1 6= 7x5 − 9x2

x3 + 1
.

In some graphing packages, you do not need to use * to indicate a multiplica-
tion. If this is true for the package you use, then you can enter the fractional
expression above in the somewhat simpler form

(7x^5 - 9x^2)/(x^3 + 1).

To do the following exercises, follow the specific instructions for the graphing
package you are using.

8. Graph the function f(x) = .6x + 2 on the interval −4 ≤ x ≤ 4.

a) What is the y-intercept of this graph? What is the x-intercept?

b) Read from the graph the value of f(x) when x = −1 and when x = 2.
What is the difference between these y values? What is the difference between
the x values? According to these differences, what is the slope of the graph?
According to the formula, what is the slope?

9. Graph the function f(x) = 1 − 2x2 on the interval −1 ≤ x ≤ 1.

a) What is the y-intercept of this graph? The graph has two x-intercepts;
use algebra to find them.

You can also find an x-intercept using the computer. The idea is to
magnify the graph near the intercept until you can determine as many
decimal places in the x coordinate as you want. For a start, graph the
function on the interval 0 ≤ x ≤ 1. You should be able to see that the graph
on your computer monitor crosses the x-axis somewhere around .7. Regraph
f(x) on the interval .6 ≤ x ≤ .8. You should then be able to determine that
the x-intercept lies between .70 and .71. This means x = .7. . . ; that is, you
know the location of the x-intercept to one decimal place of accuracy.

b) Regraph f(x) on the interval .70 ≤ x ≤ .71 to get two decimal places of
accuracy in the location of the x-intercept. Continue this process until you
have at least 7 places of accuracy. What is the x-intercept?

The circular functions Graphing packages “know” the familiar functions
of trigonometry. Trigonometric functions are qualitatively different from the
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functions in the preceding problems. Those functions are defined by alge-
braic formulas, so they are called algebraic functions. The trigonometric
functions are defined by explicit “recipes,” but not by algebraic formulas;
they are called transcendental functions. For calculus, we usually use the
definition of the trigonometric functions as circular functions. This defini-
tion begins with a unit circle centered at the origin. Given the input number
t, locate a point P on the circle by tracing an arc of length t along the circle
from the point (1, 0). If t is positive, trace the arc counterclockwise; if t is
negative, trace it clockwise. Because the circle has radius 1, the arc of length
t subtends a central angle of radian measure t.

P

x

y
t

(cos t , sin t)

1
(1, 0)

The circular (or trigonometric) functions cos t and sin t are defined as the
coordinates of the point P ,

P = (cos t, sin t).

The other trigonometric functions are defined in terms of the sine and cosine:

tan t = sin t/ cos t, sec t = 1/ cos t,

cot t = cos t/ sin t, csc t = 1/ sin t.

t x

y

(cos t , sin t )

1

cos t

sin t

Notice that when t is a positive acute angle, the circle definition agrees
with the right triangle definitions of the sine and cosine:

sin t =
opposite

hypotenuse
and cos t =

adjacent

hypotenuse
.

However, the circle definitions of the sine and cosine have the important
advantage that they produce functions whose domains are the set of all real
numbers. (What are the domains of the tangent, secant, cotangent and
cosecant functions?)

In calculus, angles are also always measured in radians. To convert be-
tween radians and degrees, notice that the circumference of a unit circle is
2π, so the radian measure of a semi-circular arc is half of this, and thus we
have

π radians = 180 degrees.

As the course progresses, you will see why radians are used rather than Simplicity determines
the choice of radians
for measuring angles

degrees (or mils or any other unit for measuring angles)—it turns out that
the formulas important to calculus take their simplest form when angles are
expressed in radians.
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Graphing packages “know” the trigonometric functions in exactly this
form: circular functions with the input variable given in radians. You
might wonder, though, how a computer or calculator “knows” that sin(1) =
.017452406 . . .. It certainly isn’t drawing a very accurate circle somewhere
and measuring the y coordinate of some point. While the circular function
approach is a useful way to think about the trigonometric functions concep-How do we get

values for the
circular functions?

tually, it isn’t very helpful if we actually want values of the functions. One
of the achievements of calculus, as you will see later in this course, is that it
provides effective methods for computing values of functions like the circular
functions that aren’t given by algebraic formulas.

The following exercises let you review the trigonometric functions and
explore some of the possibilities using computer graphing.

10. Graph the function f(x) = sin(x) on the interval −2 ≤ x ≤ 10.

a) What are the x-intercepts of sin(x) on the interval −2 ≤ x ≤ 10? Deter-
mine them to two decimal places accuracy.

b) What is the largest value of f(x) on the interval −2 ≤ x ≤ 10? Which
value of x makes f(x) largest? Determine x to two decimal places accuracy.

c) Regraph f(x) on the very small interval −.001 ≤ x ≤ .001. Describe
what you see. Can you determine the slope of this graph?

11. Graph the function f(x) = cos(x) on the interval 0 ≤ x ≤ 14. On the
same screen graph the second function g(x) = cos(2x).

a) How far apart are the x-intercepts of f(x)? How far apart are the x-
intercepts of g(x)?

b) The graph of g(x) has a pattern that repeats. How wide is this pattern?
The graph of f(x) also has a repeating pattern; how wide is it?

c) Compare the graphs of f(x) and g(x) to one another. In particular, can
you say that one of them is a stretched or compressed version of the other?
Is the compression (or stretching) in the vertical or the horizontal direction?

d) Construct a new function f(x) whose graph is the same shape as the
graph of g(x) = cos(2x), but make the graph of f(x) twice as tall as the
graph of g(x). [A suggestion: either deduce what f(x) should be, or make a
guess. Then test your choice on the computer. If your choice doesn’t work,
think how you might modify it, and then test your modifications the same
way.]
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12. The aim here is to find a solution to the equation sinx = cos(3x). There
is no purely algebraic procedure to solve this equation. Because the sine and
cosine are not defined by algebraic formulas, this should not be particularly
surprising. (Even for algebraic equations, there are only a few very special
cases for which there are formulas like the quadratic formula. In chapter 5
we will look at a method for solving equations when formulas can’t help us.)

a) Graph the two functions f(x) = sin(x) and g(x) = cos(3x) on the interval
0 ≤ x ≤ 1.

b) Find a solution of the equation sin(x) = cos(3x) that is accurate to six
decimal places.

c) Find another solution of the equation sin(x) = cos(3x), accurate to four
decimal places. Explain how you found it.

13. Use a graphing program to make a sketch of the graph of each of the
following functions. In each case, make clear the domain and the range of
the function, where the graph crosses the axes, and where the function has
a maximum or a minimum.

a) F (w) = (w − 1)(w − 2)(w − 3) b) Q(a) =
1

a2 + 5

c) E(x) = x +
1

x
d) e(x) = x − 1

x

e) g(u) =

√

u − 1

u + 1
f) M(u) =

u2 − 2

u2 + 2

14. Graph on the same screen the following three functions:

f(x) = 2x, g(x) = 3x, h(x) = 10x.

Use the interval −2 ≤ x ≤ 1.2.

a) Which function has the largest value when x = −2?

b) Which is climbing most rapidly when x = 0?

c) Magnify the picture at x = 0 by resetting the size of the interval to
−.0001 ≤ x ≤ .0001. Describe what you see. Estimate the slopes of the
three graphs.
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Proportions, Linear Functions, and Models

15. Go back to the three functions given in problem 1. For each function,
choose an initial value x0 for x, find the corresponding value y0 for y, and
express the function in the form y − y0 = m · (x − x0).

16. You should be able to answer all parts of this problem without ever
finding the equations of the functions involved.

a) Suppose y = f(x) is a linear function with multiplier m = 3. If f(2) =
−5, what is f(2.1)? f(2.0013)? f(1.87)? f(922)?

b) Suppose y = G(x) is a linear function with multiplier m = −2. If
G(−1) = 6, for what value of x is G(x) = 8? G(x) = 0? G(x) = 5?
G(x) = 491?

c) Suppose y = h(x) is a linear function with h(2) = 7 and h(6) = 9. What
is h(2.046)? h(2 + a)?

17. In Massachusetts there is a sales tax of 5%. The tax T , in dollars, is
proportional to the price P of an object, also in dollars. The constant of
proportionality is k = 5% = .05. Write a formula that expresses the sales
tax as a linear function of the price, and use your formula to compute the
tax on a television set that costs $289.00 and a toaster that costs $37.50.

18. Suppose W = 213− 17 Z. How does W change when Z changes from 3
to 7; from 3 to 3.4; from 3 to 3.02? Let ∆Z denote a change in Z and ∆W
the change thereby produced in W . Is ∆W = m ∆Z for some constant m?
If so, what is m?

19. a) In the following table, q is a linear function of p. Fill in the blanks
in the table.

p –3 0 7 13 π

q 7 4 1 0

b) Find a formula to express ∆q as a function of ∆p, and another to express
q as a function of p.

20. Thermometers. There are two scales in common use to measure the
temperature, called Fahrenheit degrees and the Celsius degrees. Let
F and C, respectively, be the temperature on each of these scales. Each of
these quantities is a linear function of the other; the relation between them
in determined by the following table:
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physical measurement C F

freezing point of water 0 32
boiling point of water 100 212

a) Which represents a larger change in temperature, a Celsius degree or a
Fahrenheit degree?

b) How many Fahrenheit degrees does it take to make the temperature go
up one Celsius degree? How many Celsius degrees does it take to make it go
up one Fahrenheit degree?

c) What is the multiplier m in the equation ∆F = m · ∆C? What is the
multiplier µ in the equation ∆C = µ ·∆F ? (The symbol µ is the Greek letter
mu.) What is the relation between µ and m?

d) Express F as a linear function of C. Graph this function. Put scales and
labels on the axes. Indicate clearly the slope of the graph and its vertical
intercept.

e) Express C as a linear function of F and graph this function. How are the
graphs in parts (d) and (e) related? Give a clear and detailed explanation.

f) Is there any temperature that has the same reading on the two temper-
ature scales? What is it? Does the temperature of the air ever reach this
value? Where?

21. The Greenhouse Effect. The concentration of carbon dioxide (CO2)
in the atmosphere is increasing. The concentration is measured in parts per
million (PPM). Records kept at the South Pole show an increase of .8 PPM
per year during the 1960s.

a) At that rate, how many years does it take for the concentration to increase
by 5 PPM; by 15 PPM?

b) At the beginning of 1960 the concentration was about 316 PPM. What
would it be at the beginning of 1970; at the beginning of 1980?

c) Draw a graph that shows CO2 concentration as a function of the time
since 1960. Put scales on the axes and label everything clearly.

d) The actual CO2 concentration at the South Pole was 324 PPM at the
beginning of 1970 and 338 PPM at the beginning of 1980. Plot these values
on your graph, and compare them to your calculated values.

e) Using the actual concentrations in 1970 and 1980, calculate a new rate of
increase in concentration. Using that rate, estimate what the increase in CO2
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concentration was between 1970 and 1990. Estimate the CO2 concentration
at the beginning of 1990.

f) Using the rate of .8 PPM per year that held during the 1960s, determine
how many years before 1960 there would have been no carbon dioxide at all
in the atmosphere.

22. Thermal Expansion. Measurements show that the length of a metal
bar increases in proportion to the increase in temperature. An aluminum
bar that is exactly 100 inches long when the temperature is 40◦F becomes
100.0052 inches long when the temperature increases to 80◦F.

a) How long is the bar when the temperature is 60◦F? 100◦F?

b) What is the multiplier that connects an increase in length ∆L to an
increase in temperature ∆T ?

c) Express ∆L as a linear function of ∆T .

d) How long will the bar be when T = 0◦F?

e) Express L as a linear function of T .

f) What temperature change would make L = 100.01 inches?

g) For a steel bar that is also 100 inches long when the temperature is 40◦

F, the relation between ∆L and ∆T is ∆L = .00067 ∆T . Which expands
more when the temperature is increased; aluminum or steel?

h) How long will this steel bar be when T = 80◦F?

23. Falling Bodies. In the simplest model of the motion of a falling body,
the velocity increases in proportion to the increase in the time that the body
has been falling. If the velocity is given in feet per second, measurements
show the constant of proportionality is approximately 32.

a) A ball is falling at a velocity of 40 feet/sec after 1 second. How fast is it
falling after 3 seconds?

b) Express the change in the ball’s velocity ∆v as a linear function of the
change in time ∆t.

c) Express v as a linear function of t.

The model can be expanded to keep track of the distance that the body has
fallen. If the distance d is measured in feet, the units of d′ are feet per second;
in fact, d′ = v. So the model describing the motion of the body is given by
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the rate equations

d′ = v feet per second;

v′ = 32 feet per second per second.

d) At what rate is the distance increasing after 1 second? After 2 seconds?
After 3 seconds?

e) Is d a linear function of t? Explain your answer.

In many cases, the rate of change of a variable quantity is proportional to
the quantity itself. Consider a human population as an example. If a city of
100,000 is increasing at the rate of 1500 persons per year, we would expect a
similar city of 200,000 to be increasing at the rate of 3000 persons per year.
That is, if P is the population at time t, then the net growth rate P ′ is
proportional to P :

P ′ = k P.

In the case of the two cities, we have

P ′ = 1500 = k P = k × 100000 so k =
1500

100000
= .015.

24. In the equation P ′ = k P , above, explain why the units for k are

persons per year

person
.

The number k is called the per capita growth rate. (“Per capita” means
“per person”—“per head”, literally.)

25. Poland and Afghanistan. In 1985 the per capita growth rate in
Poland was 9 persons per year per thousand persons. (That is, k = 9/1000 =
.009.) In Afghanistan it was 21.6 persons per year per thousand.

a) Let P denote the population of Poland and A the population of Afghanistan.
Write the equations that govern the growth rates of these populations.

b) In 1985 the population of Poland was estimated to be 37.5 million persons,
that of Afghanistan 15 million. What are the net growth rates P ′ and A′

(as distinct from the per capita growth rates)? Comment on the following
assertion: When comparing two countries, the one with the larger per capita
growth rate will have the larger net growth rate.
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c) On the average, how long did it take the population to increase by one
person in Poland in 1985? What was the corresponding time interval in
Afghanistan?

26. a) Bacterial Growth. A colony of bacteria on a culture medium
grows at a rate proportional to the present size of the colony. When the
colony weighed 32 grams it was growing at the rate of 0.79 grams per hour.
Write an equation that links the growth rate to the size of the population.

b) What is ∆P if ∆t = 1 minute? Estimate how long it would take to make
∆P = .5 grams.

27. Radioactivity. In radioactive decay, radium slowly changes into lead.
If one sample of radium is twice the size of a second lump, then the larger
sample will produce twice as much lead as the second in any given time.
In other words, the rate of decay is proportional to the amount of radium
present. Measurements show that 1 gram of radium decays into lead at the
rate of 1/2337 grams per year. Write an equation that links the decay rate
to the size of the radium sample. How does your equation indicate that the
process involves decay rather than growth?

28. Cooling. Suppose a cup of hot coffee is brought into a room at 70◦F.
It will cool off, and it will cool off faster when the temperature difference
between the coffee and the room is greater. The simplest assumption we can
make is that the rate of cooling is proportional to this temperature difference
(this is called Newton’s law of cooling). Let C denote the temperature of the
coffee, in ◦F, and C ′ the rate at which it is cooling, in ◦F per minute. The
new element here is that C ′ is proportional, not to C, but to the difference

between C and the room temperature of 70◦F.

a) Write an equation that relates C ′ and C. It will contain a proportionality
constant k. How did you indicate that the coffee is cooling and not heating

up?

b) When the coffee is at 180◦F it is cooling at the rate of 9◦F per minute.
What is k?

c) At what rate is the coffee cooling when its temperature is 120◦F?

d) Estimate how long it takes the temperature to fall from 180◦F to 120◦F.
Then make a better estimate, and explain why it is better.
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1.3 Using a Program

Computers

A computer changes the way we can use calculus as a tool, and it vastly
enlarges the range of questions that we can tackle. No longer need we back
away from a problem that involves a lot of computations. There are two
aspects to the power of a computer. First, it is fast. It can do a million
additions in the time it takes us to do one. Second, it can be programmed.
By arranging computations into a loop—as we did on page 15—we can con-
struct a program with only a few instructions that will carry out millions of
repetitive calculations.

The purpose of this section is to give you practice using a computer
program that estimates values of S, I, and R in the epidemic model. As you
will see, it carries out the three rounds of calculations you have already done
by hand. It also contains a loop that will allow you to do a hundred, or a
million, rounds of calculations with no extra effort.

The Program SIR

The program on the following page calculates values of S, I, and R. It is a set
of instructions—sometimes called code—that is designed to be read by you
and by a computer. These instructions mirror the operations we performed
by hand to generate the table on page 13. The code here is similar to what Read a program line by

line from the topit would be in most programming languages. The line numbers, however,
are not part of the program; they are there to help us refer to the lines. A
computer reads the code one line at a time, starting at the top. Each line
is a complete instruction which causes the computer to do something. The
purpose of nearly every instruction in this program is to assign a numerical
value to a symbol. Watch for this as we go down the lines of code.

The first line, t = 0, is the instruction “Give t the value 0.” The next Lines 1–5

four lines are similar. Notice, in the fifth line, how ∆t is typed out as deltat.
It is a common practice for the name of a variable to be several letters long.
A few lines later S ′ is typed out as Sprime, for instance. The instruction on
the sixth line is the first that does not assign a value to a symbol. Instead, it Line 6

causes the computer to print the following on the computer monitor screen:

0 45400 2100 2500
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Program: SIR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

t = 0

S = 45400

I = 2100

R = 2500

deltat = 1

PRINT t, S, I, R

FOR k = 1 TO 3

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

PRINT t, S, I, R

NEXT k

}

Step I

Skip over the line that says FOR k = 1 TO 3. It will be easier to under-Line 7

stand after we’ve read the rest of the program.
Look at the first three indented lines. You should recognize them as codedLines 8–10

versions of the rate equations

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

for the measles epidemic. (The program uses * to denote multiplication.)
They are instructions to assign numerical values to the symbols S ′, I ′, and
R′. For instance, Sprime = -.00001 * S * I (line 8) says

Give S ′ the value −.00001 SI;
use the current values of S and I to get −.00001 SI.

Now the computer knows that the current values of S and I are 45400
and 2100, respectively. (Can you see why?) So it calculates the product
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−.00001×45400×2100 = −953.4 and then gives S ′ the value −953.4. There
is an extra step to calculate the product.

Notice that the first three indented lines are bracketed together and la-
belled “Step I,” because they carry out Step I in the flow chart. The next Lines 11–13

three indented lines carry out Step II in the flow chart. They assign values
to three more symbols—namely ∆S, ∆I, and ∆R—using the current values
of S ′, I ′, R′ and ∆t.

The next four indented lines present a puzzle. They don’t make sense if Lines 14–17

we read them as ordinary mathematics. For example, in an expression like
t = t + deltat, we would cancel the t’s and conclude deltat = 0. The
lines do make sense when we read them as computer instructions, however.
As a computer instruction, t = t + deltat says

Make the new value of t equal to the current value of t + ∆t.

(To make this clear, some computer languages express this instruction in the
form let t = t + deltat.) Once again we have an instruction that assigns
a numerical value to a symbol, but this time the symbol (t, in this case)
already has a value before the instruction is carried out. The instruction
gives it a new value. (Here the value of t is changed from 0 to 1.) Likewise,
the instruction S = S + deltaS gives S a new value. What was the old
value, and what is the new?

Compare the three lines of code that produce new values of S, I, and R How a program
computes new valueswith the original equations that we used to define Step III back on page 16:

S = S + deltaS new S = current S + ∆S,

I = I + deltaI new I = current I + ∆I,

R = R + deltaR new R = current R + ∆R.

The words “new” and “current” aren’t needed in the computer code because
they are automatically understood to be there. Why? First of all, a symbol
(like S) always has a current value, but an instruction can give it a new value.
Second, a computer instruction of the form A = B is always understood to
mean “new A = current B.”

Notice that the instructions A = B and B = A mean different things. The second says “new B

= current A.” Thus, in A = B, A is altered to equal B, while in B = A, B is altered to equal A. To
emphasize that the symbol on the left is always the one affected, some programming languages
use a modified equal sign, as in A := B. We sometimes read this as “A gets B”.
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The next line is another PRINT statement, exactly like the one on line 6.Line 18

It causes the current values of t, S, I, and R to be printed on the computer
monitor screen. But this time what appears is

1 44446.6 2903.4 2650

The values were changed by the previous four instructions. It is important
to remember that the computer carries out instructions in the order they are
written. Had the second PRINT statement appeared right after line 13, say,
the old values of t, S, I, and R would have appeared on the monitor screen
a second time.

We will take the last line and line 7 together. They are the instructions forLines 7 and 19:
the loop the loop. Consider the situation when we reach the last line. The variables

t, S, I, and R now have their “day 1” values. To continue, we need an
instruction that will get us back to line 8, because the instructions on lines
8–17 will convert the current (day 1) values of t, S, I, and R into their “day
2” values. That’s what lines 7 and 19 do.

Here is the meaning of the instruction FOR k = 1 TO 3 on line 7:

Give k the value 1, and be prepared later toFOR k = 1 TO 3

give it the value 2 and then the value 3.

The variable k plays the role of a counter, telling us how many times we have
gone around the loop. Notice that k did not appear in our hand calculations.
However, when we said we had done three rounds of calculations, for example,
we were really saying k = 3.

After the computer reads and executes line 7, it carries out all the in-
structions from lines 8 to 18, arriving finally at the last line. The computer
then interprets the instruction NEXT k on the last line as follows:

Give k the next value that the FOR command allows, andNEXT k

move back to the line immediately after the FOR command.

After the computer carries out this instruction, k has the value 2 and the
computer is set to carry out the instruction on line 8. It then executes that
instruction, and continues down the program, line by line, until it reaches
line 19 once again. This sets the value of k to 3 and moves the computer
back to line 8. Once again it continues down the program to line 19. ThisHow the program stops

time there is no allowable value that k can be given, so the program stops.
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The NEXT k command is different from all the others in the program.
It is the only one that directs the computer to go to a different line. That
action causes the program to loop. Because the loop involves all the indented
instructions between the FOR statement and the NEXT statement, it is called
a FOR–NEXT loop. This is just one kind of loop. Computer programs
can contain other sorts that carry out different tasks. In the next chapter we
will see how a DO–WHILE loop is used.

Exercises

The program SIR

The object of these exercises is to verify that the program SIR works the way
the text says it does. Follow the instructions for running a program on the
computer you are using.

1. Run the program to confirm that it reproduces what you have already
calculated by hand (table, page 13).

2. On a copy of the program, mark the instructions that carry out the
following tasks:

a) give the input values of S, I, and R;

b) say that the calculations take us 1 day into the future;

c) carry out step II (see page 16);

d) carry out step III;

e) give us the output values of S, I, and R;

f) take us once around the whole loop;

g) say how many times we go around the loop.

3. Delete all the lines of the program from line 7 onward (or else type in
the first 6 lines). Will this program run? What will it do? Run it and report
what you see. Is this what you expected?

4. Starting with the original SIR program on page 50, delete lines 7 and
19. These are the ones that declare the FOR–NEXT loop. Will this program
run? What will it do? Run it and report what you see. Is this what you
expected?
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5. Using the 17-line program you constructed in the previous question, re-
move the PRINT statement from the last line and insert it between what
appear as lines 13 and 14 on page 50. Will this program run? What will it
do? Run it and report what you see. Is this what you expected?

6. Starting with the original SIR program on page 50, change line 7 so it
reads FOR k = 26 TO 28. Thus, the counter k takes the values 26, 27, and
28. Will this program run? What will it do? Run it and report what you
see. Is this what you expected?

Programs to practice on

In this section there are a number of short programs for you to analyze and
run.

Program 1

A = 2

B = 3

A = B

PRINT A, B

Program 2

A = 2

B = 3

B = A

PRINT A, B

Program 3

A = 2

B = 3

A = A + B

B = A + B

PRINT A, B

7. When Program 1 runs it will print the values of A and B that are current
when the program stops. What values will it print? Type in this program
and run it to verify your answers.

8. What will Program 2 do when it runs? Type in this program and run it
to verify your answers.

9. After each line in Program 3 write the values that A and B have after

that line has been carried out. What values of A and B will it print? Type
in this program and run it to verify your answers.

The next three programs have an element not found in the program SIR.
In each of them, there is a FOR–NEXT loop, and the counter k actually
appears in the statements within the loop.
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Program 4

FOR k = 1 TO 5

A = k ^ 3

PRINT A

NEXT k

Program 5

FOR k = 1 TO 5

A = k ^ 3

NEXT k

PRINT A

Program 6

x = 0

FOR k = 1 TO 5

x = x + k

PRINT k, x

NEXT k

10. What output does Program 4 produce? Type in the code and run the
program to confirm your answer.

11. What is the difference between the code in Program 5 and the code in
Program 4? What is the output of Program 5? Does it differ from the output
of Program 4? If so, why?

12. What output does Program 6 produce? Type in the code and run the
program to confirm your answer.

Program 7

A = 0

B = 0

FOR k = 1 TO 5

A = A + 1

B = A + B

PRINT A, B

NEXT k

Program 8

A = 0

B = 1

FOR k = 1 TO 5

A = A + B

B = A + B

PRINT A, B

NEXT k

Program 9

A = 0

B = 1

FOR k = 1 TO 5

A = A + B

B = A + B

NEXT k

PRINT A, B

13. Program 7 prints five lines of output. What are they? Type in the
program and run it to confirm your answers.

14. What is the output of Program 8? Type in the program and run it to
confirm your answers.

15. Describe exactly how the codes for Programs 8 and 9 differ. How do
the outputs differ?
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Analyzing the measles epidemic

16. Alter the program SIR to have it calculate estimates for S, I, and R
over the first six days. Construct a table that shows those values.

17. Alter the program to have it estimate the values of S, I, and R for the
first thirty days.

a) What are the values of S, I, and R when t = 30?

b) According to these figures, on what day does the infection peak? What
values do you get for S, I, and R?

c) How can you reconcile the value you just got for S with the value we
obtained algebraically on page 18?

18. By adding an appropriate PRINT statement after line 10 you can also
get the program to print values for S ′, I ′, and R′. Do this, and check that
you get the values shown in the table on page 13.

19. According to these estimates, on what day do the largest number new
infections occur? How many are there? Explain where you got your infor-
mation.

20. On what day do you estimate that the largest number of recoveries
occurs? Do you see a connection between this question and 17 (b)?

21. On what day do you estimate the infected population grows most rapidly?
Declines most rapidly? What value does I ′ have on those days?

22. a) Alter the original SIR program so that it will go backward in time,
with time steps of 1 day. Specify the changes you made in the program.
Use this altered program to obtain estimates for the values of S, I, and R
yesterday. Compare your estimates with those in the text (page 13).

b) Estimate the values of S, I, and R three days before today.

23. According to the S-I-R model, when did the infection begin? That is,
how many days before today was the estimated value of I approximately 1?

24. There and back again. Use the SIR program, modified as necessary,
to carry out the calculations described in exercise 18 on page 23. Do your
computer results agree with those you obtained earlier?
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25. In exercises 22–26 at the end of section 2 (pages 46–48) you set up
rate equations to model some other systems. Choose a couple of these and
think of some interesting questions that could be answered using a suitably
modified SIR program. Make the modifications and report your results.

1.4 Chapter Summary

The Main Ideas

• Natural processes like the spread of disease can often be described by
mathematical models. Initially, this involves identifying numerical
quantities and relations between them.

• A relation between quantities often takes the form of a function. A
function can be described in many different ways; graphs, tables, and
formulas are among the most common.

• Linear functions make up a special but important class. If y is a
linear function of x, then ∆y = m · ∆x, for some constant m. The
constant m is a multiplier, slope, and rate of change.

• If y = f(x), then we can consider the rate of change y
′ of y with

respect to x. A mathematical model whose variables are connected by
rate equations can be analyzed to predict how those variables will
change.

• Predicted changes are estimates of the form ∆y = y
′
· ∆x.

• The computations that produce estimates from rate equations can be
put into a loop, and they are readily carried out on a computer.

• A computer increases the scope and complexity of the problems we
can consider.

Expectations

• You should be able to work with functions given in various forms, to
find the output for any given input.
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• You should be able to read a graph. You should also be able to con-
struct the graph of a linear function directly, and the graph of a more
complicated function using a computer graphing package.

• You should be able to determine the natural domain of a function given
by a formula.

• You should be able to express proportional quantities by a linear func-
tion, and interpret the constant of proportionality as a multiplier.

• Given any two of these quantities for a linear function—multiplier,
change in input, change in output—you should be able to determine
the third.

• You should be able to model a situation in which one variable is pro-
portional to its rate of change.

• Given the value of a quantity that depends on time and given its rate of
change, you should be able to estimate values of the quantity at other
times.

• For a set of quantities determined by rate equations and initial condi-
tions, you should be able to estimate how the quantities change.

• Given a set of rate equations, you should be able to determine what
happens when one of the quantities reaches a maximum or minimum,
or remains unchanged over time.

• You should be able to understand how a computer program with a
FOR–NEXT loop works.

Chapter Exercises

A Model of an Orchard

If an apple orchard occupies one acre of land, how many trees should it
contain so as to produce the largest apple crop? This is an example of
an optimization problem. The word optimum means “best possible”—
especially, the best under a given set of conditions. These exercises seek an
optimum by analyzing a simple mathematical model of the orchard. The
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model is the function that describes how the total yield depends on the
number of trees.

An immediate impulse is just to plant a lot of trees, on the principle:
more trees, more apples. But there is a catch: if there are too many trees
in a single acre, they crowd together. Each tree then gets less sunlight and
nutrients, so it produces fewer apples. For example, the relation between the
yield per tree, Y , and the number of trees, N , may be like that shown in the
graph drawn on the left, below.
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When there are only a few trees, they don’t get in each other’s way,
and they produce at the maximum level—say, 750 pounds per tree. Hence
the graph starts off level. At some point, the trees become too crowded to
produce anything ! In between, the yield per tree drops off as shown by the
curved middle part of the graph.

We want to choose N so that the total yield, T , will be as large as possible.
We have T (N) = Y (N)·N , but since we don’t know Y (N) very precisely, it is
difficult to analyze T (N). To help, let’s replace Y (N) by the approximation
shown in the graph on the right. Now carry out an analysis using this graph
to represent Y (N).

1. Find a formula for the straight segment of the new graph of Y (N) on the
interval 40 ≤ N ≤ 180. What is the formula for T (N) on the same interval?

2. What are the formulas for T (N) when 0 ≤ N ≤ 40 and when 180 ≤ N?
Graph T as a function of N . Describe the graph in words.

3. What is the maximum possible total yield T ? For which N is this max-
imum attained?

4. Suppose the endpoints of the sloping segment were P and Q, instead of
40 and 180, respectively. Now what is the formula for T (N)? (Note that P
and Q are parameters here. Different values of P and Q will give different
models for the behavior of the total output.) How many trees would then
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produce the maximum total output? Expect the maximum to depend on the
parameters P and Q.

Rate Equations

Do the following exercises by hand. You may wish to check your answers by
using suitable modifications of the program SIR.

5. Radioactivity. From exercise 25 of section 2 we know a sample of R
grams of radium decays into lead at the rate

R′ =
−1

2337
R grams per year.

Using a step size of 10 years, estimate how much radium remains in a 0.072
gram sample after 40 years.

6. Poland and Afghanistan. If P and A denote the populations of Poland
and Afghanistan, respectively, then their net per capita growth rates imply
the following equations:

P ′ = .009 P persons per year;

A′ = .0216 A persons per year.

(See exercise 23 of section 2.) In 1985, P = 37.5 million, A = 15 million.
Using a step size of 1 year, estimate P and A in 1990.

7. Falling bodies. If d and v denote the distance fallen (in feet) and
the velocity (in feet per second) of a falling body, then the motion can be
described by the following equations:

d′ = v feet per second;

v′ = 32 feet per second per second.

(See exercise 21 of section 2.) Assume that when t = 0, d = 0 feet and v = 10
feet/sec. Using a step size of 1 second, estimate d and v after 3 seconds have
passed.


