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Agenda

1. Inference for a single proportion

Inference for a Single Proportion Consider the following problem: In a survey of a simple
random sample of 123 people 77 say they prefer Coke over Pepsi. Then a point estimate for the
proportion of people who prefer Coke over Pepsi is p̂ = 77/123 = 0.624.
In order to make inferences about the unknown value of p, the true proportion of those in population
who prefer Coke, we have to construct the sampling distribution of p̂. The center, shape, and spread
of the sampling distribution of the proportion will enable us to put the observed p̂ in context, build
confidence intervals, and conduct hypothesis tests.
There are at least three different ways to approximate the sampling distribution of p̂:

1. Simulation: This is one of the central themes of this course. For example, to test the null
hypothesis that p0 = 0.5, we simulate many random draws from this distribution, and see
where p̂ lies in this simulated distribution.

n <- 123

p_0 <- 1/2

p_hat <- 77/123

library(mosaic)

library(oilabs)

outcomes <- data_frame(soda = c("Coke", "Pepsi"))

sim <- outcomes %>%

rep_sample_n(size = n, replace = TRUE, reps = 10000) %>%

group_by(replicate) %>%

summarize(N = n(), coke = sum(soda == "Coke")) %>%

mutate(coke_pct = coke / N)

qplot(data = sim, x = coke_pct, geom = "density")

It is important to recognize that by drawing more and more samples, we get a more refined
understanding of the sampling distribution, but it remains only an approximation.

The p-value can be obtained using the pdata function, since the sampling distribution comes
from simulated data in our workspace.

2 * pdata(~ coke_pct, q = p_hat, data = sim, lower.tail = FALSE)

## [1] 0.0034

2. Probability Theory: If we assume that each person’s preference is independent, and the that
the true proportion is fixed, then the number of individuals who will say that they prefer
Coke is a random variable that follows a binomial distribution. The binomial distribution is a
well-known discrete probability distribution, but its density function is cumbersome to work
with, and so it is hard to compute binomial probabilities by hand. It is, of course, easy to do
with R.

plotDist("binom", params = list(size = n, prob = p_0))

The p-value can be obtained using the pbinom function, since the sampling distribution follows
a binomial distribution.
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2 * pbinom(p_hat * n, size = n, prob = p_0, lower.tail = FALSE)

## [1] 0.003731446

The binomial distribution depends on two parameters: the sample size n and the proportion
p. We won’t talk much (if at all) about the binomial distribution in this class (to learn more,
take MTH 153 or MTH 246).

3. Normal Approximation: Since the binomial distribution can be cumbersome to work with,
and because under very mild conditions it is approximately normal, statisticians most often
use a normal distribution to approximate the sampling distribution for a single proportion. If
the number of individuals who prefer Coke follows a binomial distribution with parameters n
and p, then it follows from elementary probability theory that the standard deviation of the

proportion who prefer Coke is SEp̂ =
√

p̂(1−p̂)
n . Thus, we can use this formula for the standard

error to estimate the sampling distribution and conduct our hypothesis test.

se_p <- sqrt(p_0 * (1-p_0) / n)

plotDist("norm", params = list(mean = p_0, sd = se_p))

The p-value can be obtained using the pnorm function, since the sampling distribution follows
a normal distribution.

2 * pnorm(p_hat, mean = p_0, sd = se_p, lower.tail = FALSE)

## [1] 0.005187149

For a variety of reasons both historical and practical, the normal approximation is the method
you are mostly likely to see in your future work, and thus it will be the focus of our attention
here.

Note that the p-value is slightly different in each case (since our approximation of the sampling
distribution is different in each case), but it is very close, and in each case we will easily reject the
null hypothesis that p = 0.5 at the 5% level.

What Can Go Wrong? Most of the time, the sampling distribution for a proportion will be
quite normal. In the previous example, the fit was excellent.

qplot(data = sim, x = coke_pct, geom = "density") +

stat_function(fun = dbinom_p, args = c(size = n, prob = p_0), col = "red") +

stat_function(fun = dnorm, args = c(mean = p_0, sd = se_p), col = "purple")
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However, if np < 10 or n(1− p) < 10, then the normal approximation is likely not sufficiently good.
Suppose that we had only sampled 12 people instead of 123.


