Agenda

- 1. Bivariate Relationships
- 2. Correlation

Bivariate Relationships

- Response variable (aka dependent variable): the variable that you are trying to understand
- Explanatory variable (aka independent variable, aka predictor): the variable that you can measure that you think might be related to the response variable
- Graphics: Put response variable on y-axis and explanatory variable on x-axis
 - Two quantitative variables: scatterplot [qplot() or geom_point()]
 - * Overall patterns and deviations from those patterns
 - * Form (e.g. linear, quadratic, etc.), direction (positive or negative), and strength (how much scatter?)
 - * Outliers
 - Quantitative response and a categorical explanatory variable:
 - * Side-by-side box plots [geom_boxplot()]
 - * Multiple density plots [geom_density() with color aesthetic or *facets*]
 - Two categorical variables: mosaic plot [mosaicplot()]:
 - If a third categorical variable exists, use the color option or facets
- Correlation: numerical measure of direction and strength of a *linear* relationship!

```
require(mosaic)
qplot(data = KidsFeet, y = length, x = width)
qplot(data = KidsFeet, y = length, x = sex, geom = "boxplot")
qplot(data = KidsFeet, x = length, color = sex, geom = "density")
qplot(data = KidsFeet, x = length, facets = ~sex, geom = "density")
mosaicplot(domhand ~ sex, data = KidsFeet)
```

Correlation The (Pearson Product-Moment) correlation coefficient [cor()] is a measure of the strength and direction of the *linear* relationship between two numerical variables. It is usually denoted r and is measured on the scale of [-1, 1].

##	#	A tibb	ole: 4	5		
##		set	N	`mean(x)`	`mean(y)`	`cor(x, y)`
##		< chr >	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	11	9	7.500909	0.8164205
##	2	2	11	9	7.500909	0.8162365
##	3	3	11	9	7.500000	0.8162867
##	4	4	11	9	7.500909	0.8165214

```
qplot(data = ds, x = x, y = y) +
geom_smooth(method = "lm", se = 0) +
facet_wrap(~set)
```


Note that correlation only measures the strength of a *linear* relationship. In each of the four very different (Anscombe) data sets shown above, the correlation coefficient is the same (up to three digits)!

Examples Get a feel for the value of the correlation coefficient in different scatterplots.

1. Do a Google Image search for "scatterplot" and describe the form, direction, and strength of three different-looking patterns. Sketch each plot.

(a) :

(b) :