Agenda

1. Bivariate Relationships
2. Correlation

Bivariate Relationships

• Response variable (aka dependent variable): the variable that you are trying to understand
• Explanatory variable (aka independent variable, aka predictor): the variable that you can measure that you think might be related to the response variable
• Graphics: Put response variable on y-axis and explanatory variable on x-axis
 - Two quantitative variables: scatterplot \(\text{qplot()} \) or \(\text{geom_point()} \)
 * Overall patterns and deviations from those patterns
 * Form (e.g. linear, quadratic, etc.), direction (positive or negative), and strength (how much scatter?)
 * Outliers
 - Quantitative response and a categorical explanatory variable:
 * Side-by-side box plots \(\text{geom_boxplot()} \)
 * Multiple density plots \(\text{geom_density()} \) with color aesthetic or facets
 - Two categorical variables: mosaic plot \(\text{mosaicplot()} \):
 - If a third categorical variable exists, use the color option or facets
• Correlation: numerical measure of direction and strength of a linear relationship!

```r
require(mosaic)
qplot(data = KidsFeet, y = length, x = width)
qplot(data = KidsFeet, y = length, x = sex, geom = "boxplot")
qplot(data = KidsFeet, x = length, color = sex, geom = "density")
qplot(data = KidsFeet, x = length, facets = "sex, geom = "density")
mosaicplot(domhand ~ sex, data = KidsFeet)
```
Correlation The (Pearson Product-Moment) correlation coefficient cor() is a measure of the strength and direction of the linear relationship between two numerical variables. It is usually denoted r and is measured on the scale of $[-1, 1]$.

```r
## A tibble: 4 5
## set  N `mean(x)` `mean(y)` `cor(x, y)`
## <chr> <int> <dbl> <dbl>     <dbl>
## 1 1  1  11   9    7.500909 0.8164205
## 2 2  2  11   9    7.500909 0.8162365
## 3 3  3  11   9    7.500000 0.8162867
## 4 4  4  11   9    7.500909 0.8165214
```

Note that correlation only measures the strength of a linear relationship. In each of the four very different (Anscombe) data sets shown above, the correlation coefficient is the same (up to three digits)!

Examples Get a feel for the value of the correlation coefficient in different scatterplots.

1. Do a Google Image search for “scatterplot” and describe the form, direction, and strength of three different-looking patterns. Sketch each plot.
 (a) :

 (b) :

 (c) :