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Abstract

Symmetry of Plants

by

Scott G. Hotton

It is fairly well known that Fibonacci numbers appear frequently in plants. This has resulted

in many applications of Mathematics to plant patterns such as spiral phyllotaxis. More recently

improvements in experimental techniques has increased our understanding of plant development.

Also high speed computers have given us a better understanding of the complexities involved in

the developmental process. Furthermore the field of dynamical systems has developed powerful

techniques for understanding complex processes. In this thesis we define and investigate two families

of dynamical systems that model meristematic plant development. We use Hyperbolic geometry to

strengthen the “Fundamental Theorem of Phyllotaxis”. We determine the fixed points of the first

family of dynamical systems and prove their stability. Finally we compare the second family of

dynamical systems to the first and show that we expect the same qualitative behavior from both

models
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Chapter 1

Modeling Plant Development

1.1 Meristematic Plant Development

Phyllotaxis is the study of plant patterns. Despite their diversity similar patterns are

observed in many different types of plants. A common eye catching pattern consists of two sets

of spirals forming a lattice. This can be seen in the stamens and carpels of flowers, the florets of

compound flowers (e.g. the Daisy shown in figure 1.1), the scales of pine cones, cycads, and seed

ferns. This pattern is known as Spiral Phyllotaxis

The tip of a plant shoot is known as the apex. The apex contains meristematic tissue,

i.e. a region containing undifferentiated stem cells. This region is called the apical meristem. The

apical meristem is responsible for the production of plant organs such as leaves, thorns, tendrils,

sepals, petals, etc. Near the boundary of the meristem is a region called the apical ring. Its in this

region that new plant organs are formed. It usually takes a microscope to observe the process. Plant

organs begin when cells in a spot along the apical ring undergo extensive cell divisions resulting in a

bump, called a primordium, on the side of the apical ring (see figure 1.2). The phyllotactic pattern

exhibited by the primordia is preserved as they develop into the various plant organs. Therefore

with a good model of meristematic development we can account for the phyllotactic patterns found
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Figure 1.1: Capitulum of a Daisy displaying Fibonacci numbers

in plants.

This thesis defines and analyzes two closely related families of Dynamical Systems that

model meristematic development. The Dynamical Systems approach goes beyond merely providing

a mathematical framework for describing the patterns observed in plants and can be used to make

testable predictions about the developmental process.

Around the turn of the 18th century the well known Astronomer Johanne Kepler observed

that the Fibonacci numbers are common in plants. And around 1790 Bonnet [7] made this obser-

vation more precise by pointing out that in spiral phyllotaxis the number of spirals going clockwise

and counter-clockwise were frequently two successive Fibonacci numbers. For example the Daisy

shown above has 21 spirals going in one direction and 34 spirals going in the other direction. The

pair of (21,34) is called the phyllotactic numbers of the flower.

One consequence of the Dynamical Systems approach is that the Fibonacci numbers appear

naturally. There is no need to assume the plants are attempting to achieve any number theoretic

goal. Many earlier explanations [8, 9, 37] for the prevalence of the Fibonacci numbers assumed that

certain number theoretic conditions promoted the survival of plants. The prevalence of the Fibonacci
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Figure 1.2: Schematic diagram of Meristematic Development

numbers was then seen as a consequence of Darwinian evolution in which the fittest survive. On the

other hand the Dynamical Systems approach suggests that the prevalence of the Fibonacci numbers

is due to the fact that plants follow the same pathways during their early stages of development.

The pattern established early in development is then preserved in the adult plant. This does not

contradict the theory of evolution of course. Rather it suggests that natural selection is acting

to promote certain types of developmental processes. This view relieves botanists from having to

determine the function that the Fibonacci numbers serve in a mature plant.

The Dynamical Systems approach also shows the existence of behavior (see section 3.5)

that has received little recognition in the field of Phyllotaxis but which has in fact been observed.

Part of the difficulty has been a lack of any mathematical theory for incorporating this observation

into the field of Phyllotaxis. Consequently the Dynamical Systems approach gives an unprecedented

unity to the field of Phyllotaxis.

At the cellular level there are two important processes in plant growth: cell division and

cell expansion. Together these two processes change the shape and size of a plant and its various

organs. There is no simple causal relationship between these two processes. Plant cells manufacture
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many compounds but they expand mainly by taking in water. Plant cell division generally consists

of the duplication of the nucleus and the building of a cell wall to separate the two new nuclei. The

two new cells are usually half the size of the parent cell and together they occupy about the same

region of space as the parent cell had occupied.

A plant shoot is approximately a cylinder so it is convenient to use a cylindrical coordinate

system to indicate position on a shoot. Cell division is classified into three types according to the

orientation of the new cell wall with respect to the three mutually orthogonal directions of the

cylindrical coordinate system. In transverse cell division the new cell wall is roughly orthogonal to

the axis of the shoot, in periclinal cell division the new cell wall is parallel to the surface of the plant,

and in anticlinal cell division the new wall is contained in a plane passing through the axis of the

shoot.

Figure 1.3: The three types of cell division

There are two basic types of development in plants: Embryonic and Meristematic. Embry-

onic development occurs after pollination and results is a seed or spore. After a period of dormancy

a seed begins to absorb water, its cells undergo expansion, and a new plant bursts out. This is
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commonly known as germination. After germination, if all goes well, the seedling has a root growing

down into the ground and a shoot growing up from the ground. The line formed by the root and

shoot form the main axis of the plant.

In this thesis we are mainly interested in Meristematic development. In some species of

plants the meristems are present before germination while in other species the meristems form after

germination. Thus depending on the plant there may or may not be a clear boundary between

Embryonic and Meristematic development. Regardless we can focus on the development which

occurs after germination which is strictly meristematic.

When a stem cell divides it can produce one new stem cell and one new cell which begins

to differentiate. From this process the different types of cells needed by the plant are left behind

in the “wake” of the meristem as the tips grow. Plant organs begin when cells in a spot along the

apical ring undergo extensive periclinal division resulting in a primordium. Primordia tend to form

periodically over time. Within a primordium the cells expand, divide, and differentiate. As the

primordium grows its develops into an entire plant organ. The early stages of primordia formation

are basically the same regardless of what organ that primordium will develop into. The type of

cells that develop is not completely determined until after the formation of the primordium. A

variety of factors both environmental and genetic contribute in determining which type of plant

organ develops.

1.2 Applying Topology to Biology

Despite its long history number theoretic observations in plants have received little atten-

tion from botanists. Part of the problem has been the variability of plant growth. Precise numerical

modeling of the type seen in celestial mechanics has seemed unrealistic in Botany. Biology has been

labeled as a soft science. Modern Biology has managed to overcome this label to a large extent but

there are still branches within Biology that have been unable to shake off this stigma. Unfortunately

many biologists have become alienated from Mathematics as a result.
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Figure 1.4: Photos of primordium (from Endress [12])

However there are ways to make mathematically rigorous assertions without relying on the

repeatability of numerical measurements. Amongst other things the field of Topology in Mathematics

is full of rigorously established theorems on objects sitting in space that make no reference whatsoever

as to the size of the objects or the distance between the points in the object. A famous example

is the Königsberg Bridges problem solved by Euler in the 18th century. The town of Königsberg is

broken into several parts by rivers. The different parts of the town were connected by seven bridges.

Euler showed that it was impossible to take a walk over all seven bridges without crossing some

bridge twice. This fact had little to do with the precise position of the bridges. Each of the bridges

could have been built in different places, but so long as they still connected the same parts of town

to each other no path could cross every bridge without crossing some bridge twice.



7

Figure 1.5: Königsberg Bridges

This is an example of a Topological theorem. The field of Topology has grown immensely

since the days of Euler. Topology has already been successfully applied in many diverse fields such

as heart disease and circuit design. There is even an enzyme, Topoisomerase, that is named after

its function of changing the topology of DNA strands. In particular Topology is an important tool

in Dynamical Systems Theory that we shall make use of.

One could say that Biology has had a reputation as a soft science in part because the

systems studied in Biology are soft. Being soft they are easily deformed by external perturbations.

They are essentially open systems exposed to their environment. Even when they sit in a lab they

are sensitive to varying conditions and like snowflakes one almost never sees two individuals develop

in precisely the same way.

Yet despite the wide variety of shapes and sizes of organisms some order is apparent. Tasks

such as the classification of different types of organisms can be safely performed without insisting that

Taxonomists find traits that have a precise characteristic size of shape for each taxon. In particular

the individuals within a species often have similar topological features. In using the number of legs as
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a distinguishing characteristic between insects and arachnids we are implicitly assuming that there

is enough similarity between their legs that we can ignore the difference between individual legs and

treat them all as different versions of the same basic organ. This assessment is done heuristically. It

is a skill that most people can easily perform. Indeed that is one reason why the number of legs is

a useful taxonomic characteristic.

The study of symmetry is usually seen as the study of objects that remain invariant under

a group of rigid motions. Under ideal conditions such symmetry can be found in plants. For example

flower petals often display 5-fold symmetry. In a symmetrical flower each petal is virtually the same

size so we can rotate the flower one fifth of a turn and it will appear as if has not been rotated at

all such as the Jasmine in figure 1.6

Figure 1.6: A Jasmine blossom on the left and a Geranium blossom on the right

Sometimes however the petals of a flower are not all the same size like the Geranium

blossom in figure 1.6. Those petals pointing away from the axis of the plant are smaller than those

pointing towards the axis. None-the-less each of the petals is morphologically the same. The petals

are roughly scaled copies of one another. A rigid motion of the flower will not map one petal onto

another. But if we scale each petal individually as we rotate then we can map the petals onto each

other. This is a bit more abstract because while we can physically rotate a flower we cannot shrink
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or stretch the petals. So we are forced to only imagine performing this motion. The symmetry in

the flower is still easy enough to see. We can quickly recognize that there are five nearly identical

petals. We wouldn’t want to assert this flower lacks any symmetry simply because the petals are no

longer the same size.

The type of motion that leaves the Geranium flower invariant is called a homeomorphism.

Homeomorphisms have been extensively studied in Topology and much is known about them. So

we can expand the usual notion of symmetry to include the study of objects that remain invariant

under a group of homeomorphisms. With this notion of symmetry we can see that plants are full of

symmetry.

This applies in particular to spiral phyllotaxis. Just as a space lattice is a useful idealization

of crystalline structure so a spiral lattice is a useful idealization of spiral phyllotaxis. While crystals

are rigid structures and plants are soft this simply means that we need to use this more general notion

of symmetry with spiral phyllotaxis. It doesn’t necessarily mean there is a sacrifice in mathematical

rigor.

1.3 Types of Phyllotaxis

To completely study the symmetry of plants we should consider an entire individual plant

including the half that is typically underground. But of course this is much more difficult than merely

studying the half that is exposed to observation. The vast majority of data on plant symmetry

involves those parts of the plant that grows above ground. It is not difficult to see that there is a

vast difference between the half that is above ground and the half that is below. Although growth

in the two halves are coupled and their relative sizes must remain within bounds.

It is fairly well known that the arrangement of plant organs, i.e. phyllotaxis, assumes only

a few basic forms. Unfortunately the effort at classifying phyllotactic forms has resulted in a pro-

liferation of terminology e.g. bipinnate, orthodistichy, spirodistichy, spirodecussation, etc. Despite

the large vocabulary used to describe phyllotaxis there is an underlying topological commonality
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among phyllotactic forms. We shall find a small subset of the terminology to be sufficient.

One of the simplest types of phyllotaxis is called “alternate” or “distichous”. In this type

of phyllotaxis the primordia develop one at a time on opposite sides of the apex. The resulting

structure is approximately planar with the plant organs alternating in direction along the stem. A

closely related type of phyllotaxis is called “spiral”. The primordia still develop one at a time in

the apical ring. Each primordium forms at a fixed angle from the previous primordium. This is

known as the divergence angle. As the plant grows the plant organs tend to form a spiral helix about

the stem. One could say that alternate phyllotaxis is a special case of spiral phyllotaxis where the

divergence angle is 180o.

Figure 1.7: Alternate and Spiral phyllotaxis

The places where the plant organs are attached to the plant are called the “nodes” of the

plant. When primordia formation is periodic the nodes are equally spaced from each other.

When more than one primordia forms at a time the plant is said to form a “whorl”. Whorls

composed of two primordia are called dimerous, whorls with three primordia are called “trimerous”

and so on. The primordia in a whorl are often assumed to be equally space along the apical ring.
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When successive layers of dimerous whorls form at 90o with respect to each other we get what is

known as “opposite” or “decussate” phyllotaxis. We can also have “tricussate” phyllotaxis in which

trimerous whorls form at 60o with respect to each other. In fact there are types of phyllotaxis which

form four, five, etc primordia at a time with the primordia in each successive layer developing exactly

halfway between the primordia in the previous layer.

Occasionally successive layers of whorls do not form exactly halfway between the previous

layers. This is called “multijugate” phyllotaxis. Multijugate phyllotaxis with dimerous whorls is

called “bijugate”, and with trimerous whorls it is called “trijugate” and so on. One could say that

multicussate phyllotaxis is a special case of multijugate phyllotaxis.

Figure 1.8: Decussate, Tricussate Phyllotaxis

Slowing the developmental process down by lowering the temperature caused primordia

that normally would have formed simultaneously in a whorl to form one at a time instead. This

suggests that whorled phyllotaxis and spiral phyllotaxis are closely related. [42, 30]

All of these forms are present in primitive plants and not infrequently many of them are

present in a single species. Sometimes one type of phyllotaxis is exhibited in the juvenile stage of a
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plant while another type is exhibited in the adult stage, e.g. eucalyptus. Environmental factors can

also play a role. Phyllotactic patterns are only loosely related to taxonomy.

1.4 Reductionism and Holism

The invention of the microscope has opened a wonderful view of the world to Biology.

The information that it provides us has explained so many facts that it has become a fundamental

research tool in Biology and in particular Phyllotaxis. The microscopes success stimulated new

directions to research and helped fuel the rise of reductionism in Biology. The cell emerged as

a fundamental biological unit. For many species the individuals are just single cells. For other

organisms like plants and animals the individuals are multi-cellular. Multi-cellular organisms have

been studied by determining what types of cells they were composed of and how the cells interacted

with each other. Eventually even the cells themselves were studied by looking at the molecules that

make up the cells. This lead to the discovery of the genetic material DNA.

The process of development in a multi-cellular organism has been seen as a problem of gene

expression. Different genes are expressed in the various cells that become the different parts of an

organism. All of the cells of an organism are the descendents of a single cell and all of the cells share

the same DNA. The differentiation of cells corresponds to different sets of genes being turned off or

on in the various cell types as the organism develops.

Genetic studies, particularly on Arabidopsis thaliana, have demonstrated the existence of

homeotic genes in plants. Homeotic genes influence which of the other genes are turned off or on in

a cell. A mutation in a homeotic gene can result in a completely different plant organ developing

from a primordium than would normally occur. In particular there is a set of homeotic mutations in

Arabidopsis thaliana that turn all the floral organs into leaves producing, of course, a sterile plant.

In 1790 Goethe proposed that all floral organs are modifications of a basic leaf pattern.

Angiosperms in particular seem to have a knack for modifying their leaves into floral organs. The

Christmas poinsettia is a good example. It attracts pollinators to its tiny flowers by making the
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large subtending leaves bright red or white. These leaves are very similar morphologically to the rest

of the leaves on the plant except for the color. They are not quite as modified from their original leaf

form as other subtending organs like bracts and sepals. Bracts and sepals in turn are less modified

than petals.

Figure 1.9: Bougainvillea flower growing from leaf

Another good example is Bougainvillea shown in figure 1.9. Here we have a triplet of red

leaves. Other Bougainvilleas can have purple or yellow leaves. The colored leaves resemble the green

leaves but emerging from the center of each red leaf is a small flower with five white petals. The

triplet of leaves has the appearance of a single flower with three red petals. It even functions like

a flower attracting pollinators with its symmetrical appearance and bright color. Furthermore the

red leaves help protect the sex organs while at the same time provide a place for pollinators to land

on. It appears that as angiosperms evolve back and forth from animal to wind pollination they can

add on successive layers of subtending organs resulting in a great diversity of flower forms [50].

The question arises as to how genes get turned on or off in plant development. Certain

details of the molecular mechanism have been revealed but what remains to be understood is how
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the cells can know which genes to turn on or off so that it can fit in with the rest of the organism.

This is seen as a problem of understanding how the cells communicate. We tend to think of the cell

walls as fundamental boundaries so that the collective behavior of the cells depends on information

being exchanged across these boundaries. In Botany this question has turned up a plethora of

plant hormones which have a variety of effects on plants. It would seem as though these could act as

signals but no mechanism has emerged to explain plant development and their role in plants remains

controversial.

The problem may be that it is the wrong question to ask. We know that a system of

molecules can engage in collective behavior when the system can exchange energy with its environ-

ment and reach a state far from thermodynamic equilibrium. This is known as a dissipative system.

For example a layer of fluid heated from below will tend to form convection cells. The molecules in

these convection cells don’t so much talk with each other as they respond to the forces they experi-

ence. They don’t negotiate with each other and reach an agreement to form a pattern of convection

cells. The impact of the heat energy creates pressure on the system as a whole which acts as a whole

in response. Individual molecules may buck the induced flow but most molecules will participate in

it to prevent pressure from building up. In this way collective behavior emerges without individual

molecules playing the role of transmitters and receivers of signals that tell them what to do.

Similarly some aspects of the collective behavior of cells in a multi-cellular organism might

be best understood without emphasizing the role of communication between cells. Early in the

Earth’s history there were no multi-cellular organisms, only single-celled organisms. In that time

Natural Selection acted on individual cells and encouraged the evolution of cells that promoted

their own survival. But with multi-cellular organisms Natural Selection acts on collections of cells.

There is no longer the selective pressure for individual cells in an organism to promote their own

survival. In a multi-cellular organism the most highly specialized cells often have very short life

spans in comparison to the life span of the organism. Multi-cellular organisms are always shedding

dead cells. The continued presence of highly specialized cells in the organism is due to the continued
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Figure 1.10: Convection rolls in a layer of fluid

presence of less differentiated cells which reproduce and differentiate in order to replace the dead

cells. So it is reasonable to think that cells could loose some degree of individuality in a multi-cellular

organism and that they could respond in a passive manner to internal stresses and chemical flows

within the plant.

As an analogy consider an electric wire. It is clear that an electric current going into the

wire must match that leaving the wire otherwise an electric charge would build up. Now suppose

that instead of the wire being a thin continuous tube of metal that its is broken up into a bunch of

cylindrical segments stacked next to each other like cells in a filament of algae.

The conductivity of the wire may go down but it will still be the case that the current

going into the wire must equal that coming out. We don’t ask how each segment knows how to

pass this much current. Each segment of the wire is merely a piece of metal. The segments don’t

send or receive specific messages with each other and agree on what the current is going to be. It

is obvious that the same principle that applies to the continuous wire also applies to the segmented

wire. A charge would build up if the in and out currents don’t match. Technically one could say
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Figure 1.11:

that the act of passing an electric current between the segments is a form of communication but this

observation would only serve to obscure the simplicity of the process. Whether the wire is continuous

or segmented has little effect on the current flowing through it. Similarly the demarcation of cell

walls in a plant might not represent a fundamental division in the plant.

Plants are descendents of algae and there are large plant sized single cell algae (e.g. members

of the genus Acetabularia) that undergo a similar type of development as plants. The algae even

produce sexual organelles at the end of their stalks. This type of development occurs at about

the same spatial scale in both plants and algae suggesting a common physical mechanism in the

developmental process (see Goodwin [15]). For example in figure 1.12 we see on the left the pistil

primordia developing in a strawberry blossom. The primordia are approximately 30 µm in diameter

which is several times the size of the individual cells that it is composed of. On the right of figure 1.12

we see a single celled Acetabularia Mediterranea with its developing organelles which have a diameter

of approximately 20 µm. A region of plant or algae membrane undergoes similar physical changes

during development regardless if that region is small relative to the size of a cell or if that region
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contains numerous cells. To focus on how the cells communicate during the process of meristematic

development may lead to a misunderstanding of the physical aspect of the process which occurs at

about the same spatial scale regardless of the size of the cells.

Figure 1.12: Developing tips of a Strawberry blossom (from Sattler [42]) and a single celled algae
(from Harrison, et. al. [20])

Consequently a more holistic viewpoint may be called for. A model of the developmental

process that operates at the scale of the primordia can be developed using Dynamical Systems

theory.

1.5 Applying Dynamical Systems Theory to Phyllotaxis

1.5.1 Hofmeister’s Hypothesis

In 1868 the botanist Hofmeister [22] began observing meristematic development under the

microscope. From his observations he proposed several hypothesis on primordia formation. He

assumed that the apical ring is circularly symmetric, that primordia form periodically over time,
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and that new primordia form in the apical ring where the largest available space has been left by the

previous primordia. These hypothesis constitute one of the earliest attempts to model meristematic

development. Unfortunately the consequences of these hypothesis were not explored in detail until

recently.

A fairly straight forward consequence is that if the period between primordia formation is

small then many primordia will be near the apical ring. Whereas if the period is large then only a few

primordia will be near the apical ring. In particular if the period is very large only one primordium

will be near the apical ring so that the new primordium will form 180o from the previous primordium

just as in alternate phyllotaxis. More generally we expect to see a correlation between the timing

of primordia formation and the location of new primordia. This is indeed observed in meristematic

development. In particular the work of Schwabe [49] has shown a fairly consistent correlation that

is independent of whether the change in timing is genetic or environmental.

In 1992 the physicists Douady and Couder constructed a physical device and performed

computer simulations to study the consequences of Hofmeister’s hypothesis. They made the hypoth-

esis more precise by representing the primordia by a configuration of point particles. Each particle

produced a repulsive potential and the new particle appeared on a circle where the potential achieved

its absolute minimum. Their experiments and simulations indicated that regular spiral patterns are

in fact stable. (see also the systems proposed by Schwabe [47], Koch, Bernasconi and Rothen [31]).

1.5.2 Preview of Thesis Results

In this thesis we define two families of discrete dynamical systems whose iterates model the

evolution of primordia arrangement. The plant surface is represented as a cylinder for the phyllotaxis

of plant stems or as a plane for the phyllotaxis of compound flowers like Daisies. Naturally other

geometries can be used as well. We focus on the cylindrical case in this thesis. The primordia are

represented by particles. One particle is positioned on each member of a sequence of parallel circles

on the cylinder. The angular displacement between the particles represents the divergence angles.
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The state of the system is given by a sequence of divergence angles. At each iteration of the map

the existing particles are shifted down to the next circle to represents the growth of the apex. A

new particle is added to first circle represent the formation of a new primordium. This new particle

chooses the location on the circle which minimizes a repulsive potential energy function generated by

the other particles. This potential function represents an inhibition generated by the older primordia

on the formation of the new primordium.

These families of Dynamical Systems offer a bridge to number theory. Spiral lattices appear

as stable fixed points which explains the convergence to regular spiral patterns in plants from a wide

range of initial conditions. The topology of the bifurcation diagram of the fixed points accounts

for the prevalence of successive Fibonacci numbers in these regular spirals as well as the rarer cases

in which the parastichy numbers are consecutive Generalized Fibonacci numbers (e.g. the Lucas

sequence 1, 3, 4, 7, . . .).

We prove that this diagram is a truncated version of van Iterson’s diagram [53] and that its

topology is fairly simple. The structure of the diagram is succinctly revealed using the geometry of a

flat cylinder. In this case partitioning the space of spiral lattices into regions of constant parastichy

numbers gives a Hyperbolic tessellation.

To each particle we associate a central potential energy function U(d). This is a positive

decreasing function that goes to zero as d increases without bound e.g. U(d) = d−s for s > 1. There

are two main ways to generate a potential energy field on the plane.

X(ζ) = maxk U(||λk − ζ||)

W (ζ) =
∑

k U(||λk − ζ||)

where λk is the position of the particle on the kth circle and ζ is the position of a test particle. These

potential energy fields reflect two extreme cases. With the X potential a test particle only ”feels”

the contribution of the closest particle to it while with the W potential a test particle ”feels” the

contribution of all the particles. The reality is somewhere in between.

However, generically, as the stiffness of the potential U (e.g. s in U(d) = d−s) goes to
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infinity the ratio W (ζ)/X(ζ) goes to 1. The distinction between X and W becomes less significant

as the stiffness is increased. Minimizing X gives rise to the following minimax principle: the incipient

primordia chooses the location on the unit circle where the minimum distance to all primordia is

maximized. This answers a question of Adler [5] as to the connection between his “minimax”

principle (set in the more restrictive context of regular spiral configurations), and the model of

Douady and Couder: the minimax principle of incipient primordia location is a stiff limit of Douady

and Couder’s principle of energy minimization. Hence with the field X the actual form of U is less

relevant and the choice of location for the incipient primordia is geometric.

It is worth noting here that, although Douady and Couder and others have used the ter-

minology of dynamical systems, this conceptual step had not been performed before1. The methods

employed here can be thought of as a synthesis of Douady and Couder’s simulations with Levitov’s

work [34, 35]. He recognized (via a thought experiment involving flux vortices in a superconducting

media) that Hyperbolic tessellations could have a rule to play in Phyllotaxis. In this thesis we have

made use of Hyperbolic tessellations to make rigorous statements about a dynamical model of plant

development.

1A notable exception to this is the work of Kunz (Kunz’ thesis [32] who independently came across a similar
dynamical system and performed a (local) analysis of the linear stability of the fixed points.
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Chapter 2

The Flat Cylinder and its lattices

2.1 Lattices

In the following chapters we will see that the fixed points of the dynamical system form

half spiral lattices while the periodic orbits form regular point sets. We review relevant facts about

lattices here and return to regular point sets later. We begin with a fairly general definition of a

lattice. It is not the most general definition of a lattice but it includes everything we shall need.

Definition 2.1.1. A lattice is a finitely generated subgroup of a Lie group. A lattice in a plane is

called a planar lattice, a lattice in a cylinder is called a cylindrical lattice, and a spiral lattice is a

cylindrical lattice that is isomorphic to Z.

This definition of lattices does include subgroups that are dense in the Lie group even

though we are mainly interested in discrete subgroups. From now on in this thesis the term “cylinder”

will refer to the usual two dimensional cylinder which is topologically S1 × R.

The universal covering space of a cylinder is R2. We can imagine rolling a cylinder across a

plane impressing a lattice in the plane like a printing press. Conversely given a planar lattice we can

cut out a strip with an appropriate width and glue the two edges together to obtain a cylindrical

lattice.
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It is useful to study cylindrical lattices by going to the covering space R2. This is in fact

quite common in the field of Phyllotaxis. It is also useful to endow R2 with the Euclidean metric.

This metric can be projected down to the cylinder. The resulting geometric object is called the flat

cylinder, which we denote by C. The flat cylinder provides an ideal geometry for studying spiral

lattices for two reasons. First because it simplifies the analysis and second because the flat cylinder

is isomorphic to any ruled cylinder such as the right circular cylinder which is a good approximation

of the shape of plant stems.

2.2 Lattices in Rn

In the 19th century the field of Crystallography motivated the study of lattices. This

paralleled the development of Group Theory which became a very useful tool for studying lattices.

Indeed this success was a source of inspiration for Klein’s Erlangen program. This section follows

this approach to geometry. The group of linear maps that preserves the Euclidean metric is O(n).

We outline a classification procedure for lattices using their invariance under the action of O(n).

2.2.1 The Space of Lattices, Ln

The standard lattice in Rn is Zn which is generated by the standard basis of Rn. Given

U ∈ M(n,R) we can construct a new lattice L = UZn where we think of the elements of Zn as

column vectors. The lattice, L, is all of the integer combinations of the columns of U . Any lattice

in Rn with n (not necessarily distinct) generators is the image of Zn under some U ∈ M(n,R). For

L = Zn we can use the identity matrix. We can identify the space Rn× . . .×Rn of n ordered vectors

from Rn with the space of matrices M(n,R). An immediate consequence is

U ∈ GL(n,R) ⇔ UZn is discrete with rank n

The space of lattices in Rn can be obtained from M(n,R) by identifying those ordered

generators that generate the same lattice. The automorphisms of Zn form the group GL(n,Z).
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When U ∈ GL(n,R) the automorphisms of L = UZ form the conjugate group U GL(n,Z)U−1.

Every ordered basis for L has the form UG for some G ∈ GL(n,Z). Since GL(n,Z) is a subgroup

of GL(n,R) the set UGL(n,Z) = {UG : G ∈ GL(n,Z)} is a left coset of GL(n,Z) in GL(n,R).

Denote the space of discrete rank n lattices in Rn by Ln. Consequently we can identify Ln with the

collection of left cosets of GL(n,Z) in GL(n,R).

Ln = GL(n,R)/GL(n,Z)

The orbit space Ln is not a quotient group for n > 1, since GL(n,Z) is not normal in GL(n,R).

Even when U is non-invertible UG generates the same lattice as U . Denote the collection

of sets with the form U GL(n,Z) for any U ∈ M(n,R) by M(n,R)/GL(n,Z). We can extend the

quotient map GL(n,R) → GL(n,R)/GL(n,Z) to a map M(n,R) → M(n,R)/GL(n,Z) using the

equivalence relation U ∼ V ⇔ V ∈ U GL(n,Z). Denote the set of lattices in Rn by L̃n and identify

it with the collection of equivalence classes.

L̃n = M(n,R)/GL(n,Z)

The case n = 1 is trivial, L1 = GL(1,R)/GL(1,Z) = R∗/{±1} ∼= R+. We identify a lattice

in L1 with the element in R+ that generates it. And L̃1 = L1 ∪ {0} since M(1,R)\GL(1,R) = {0}.

We identify L̃1 with the non-negative reals.

2.2.2 The Space of Homothety classes of lattices, Nn

We want to classify lattices geometrically. There are three equivalence relations that we

will consider. They form a fine, coarse, and intermediate stratification of Ln. The first equivalence

relation is “homothety”, we say two lattices are equivalent if one is a scaled copy of the other up to

rotation and reflection.

Definition 2.2.1. L,L′ ∈ Ln are homothetic ⇔ there are k ∈ R∗ and Q ∈ O(n) such that L′ =

kQL. Denote the space of homothety classes of lattices by Nn.



24

If L,L′ are homothetic then an ordered bases which generates L is homothetic to a ordered

bases which generates L′. Conversely given two homothetic n-tuples of vectors the lattices they

generate must be homothetic. To get the homothety classes of lattices we can either identify the

ordered bases which generate the same lattice and then identify those that are homothetic, or we

can identify those ordered bases that are homothetic and then identify those homothety classes that

generate homothetic lattices.

The group of homotheties is O(n)R+ where R+ is short for {kIn | k ∈ R+}. The ordered

basis U, V ∈ GL(n,R) are homothetic if there is T ∈ O(n)R+ such that V = TU . The set {TU |

T ∈ O(n)R+} is a right coset of O(n)R+ in GL(n,R). The space of homothety classes of ordered

basis is the collection of right cosets of O(n)R+ in GL(n,R), denote this collection by Mn. This

equivalence relation can be extended to all of M(n,R) like before, denote this collection by M̃n.

Let U, V ∈ GL(n,R), U, V generate homothetic lattices if there are T ∈ O(n)R+ and

G ∈ GL(n,Z) such that V = TUG. There are two ways to obtain Nn. We can form the left cosets

U GL(n,Z) and act on them by O(n)R+ or we can form the right cosets O(n)R+U and act on them

by GL(n,Z).

Thus to obtain Ñn it is not necessary to determine the space of lattices L̃n. We can obtain

M̃n instead.

2.2.3 Bravais Classes of Lattices

The second equivalence relation is called “holohedry” and it is based on the symmetry of

the lattice. The translational symmetry of any L ∈ Ln is L itself which is always isomorphic to

Zn. Thus the translational symmetries of L gives us no new information about L and are not very

helpful for classifying the members of Ln. We are only interested in the linear isometries of L. (the

other isometries of Rn play a more interesting role with regular point sets).

Definition 2.2.2. The holohedral group of a lattice in Rn is the linear isometries that map the

lattice to itself: HL = O(n)∩Aut(L). The only rescaling of a lattice in Rn to itself is the identity so
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Figure 2.1: Two projections to Ñn

we could alternatively define HL = O(n)R+ ∩Aut(L). The following propositions are easily proved.

Proposition 2.2.1. For any lattice, L ∈ Ln, the set, {±In}, is a subgroup of HL

Proposition 2.2.2. For any lattice, L ∈ Ln, the group HL is finite.

Proposition 2.2.3. If k ∈ R∗ then HkL = HL. If Q ∈ O(n) then HQL = QHLQ−1.

Corollary 2.2.4. If L,L′ ∈ Ln are homothetic then HL,HL′ are conjugate in O(n).

Definition 2.2.3. L,L′ ∈ Ln are of the same holohedry type if HL,HL′ are conjugate in O(n).

Corollary 2.2.5. Holohedry is a coarser equivalence relation on Ln than homothety.

We have joined together homothety classes to make holohedral classes. Unfortunately this

equivalence relation is now too coarse for our geometric classification. We also need to consider how

the holohedral group acts on the lattice. For example the following two lattices have the exact same

holohedral group despite their different geometric appearance.



4 0

0 2


Z2 ⊂




2 2

1 −1


Z2
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This holohedral group is generated by the reflections about the x-axis and y-axis. The smaller lattice

is known as the rectangular type while the bigger lattice is known as the rhombic type or also as

the face-centered rectangular type.

Figure 2.2: The open circles form a rectangular lattice, the open circles joined with the closed circles
form a rhombic lattice

The way the holohedral group acts on these two lattices is different. In particular this is

exhibited by the effect the reflection about the x-axis has on a particular basis. For the smaller

lattice the reflection about the x-axis takes a basis member and replaces it with its negative, while

for the larger lattice it permutes the basis members



1 0

0 −1







4 0

0 2


 =




4 0

0 −2







1 0

0 −1







2 2

1 −1


 =




2 2

−1 1




This is analogous to the way the symmetries of a rectangle are reflections about lines parallel to the

edges of the rectangle while the symmetries of a rhombus are reflections about the diagonals of the

rhombus.

Given two lattices L, L′ and their corresponding holohedral groups HL,HL′ we want the

way the holohedral groups act on their respective lattices to be the same.
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Definition 2.2.4. Let L,L′ ∈ Ln with L′ = TL for some T ∈ GL(n,R), then L,L′ are in the same

bravais class if and only if HL′ = THLT−1

Another way to think of bravais classes uses the integral representations of the holohedral

groups.

Q ∈ HL ⇔ Q ∈ O(n) and U−1QU ∈ GL(n,Z)

Therefore U−1HLU ⊂ GL(n,Z). In other words if we express the isometries of HL in a basis of

the lattice they form a finite subgroup of GL(n,Z). This is known as an integral representation

of the holohedral group. The group HL is the isotropy subgroup in O(n) of a point L ∈ Ln while

U−1HLU is the isotropy subgroup in GL(n,Z) of a point in Mn. The integral representation of a

holohedral group associated to a lattice is not unique, but all of them are conjugate in GL(n,Z).

This is because all of the matrices for a lattice UZn have the form UG for some G ∈ GL(n,Z). In

fact the conjugacy class of an integral representation is an invariant associated to a bravais class.

Proposition 2.2.6. Let L,L′ ∈ Ln, the integral representations of the holohedral groups of L,L′

are conjugate in GL(n,Z) if and only if L,L′ are in the same bravais class

Proof. Let L = UZn, L′ = V Zn, and L′ = TL where T, U, V ∈ GL(n,R). The following proof is an

elegant diagram chasing exercise.

Given that the top, bottom, left, and right sides of the diagram commute then the commu-

tativity of the front of the diagram is logically equivalent to the commutativity of the back of the

diagram. Commutativity of the front diagram is the condition that L,L′ are in the same bravais

class. Commutativity of the back diagram is the statement that the integral representations of the

holohedral groups are conjugate in GL(n,Z).

It is not entirely trivial that we have split apart the holohedral classes to obtain the bravais

classes. The following theorem shows us that this is the case.

Proposition 2.2.7. The bravais classes form a finer equivalence relation on Ln than holohedry
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Figure 2.3: Cubic commutative diagram

Proof. Let U, V ∈ GL(n,R), L = UZn, L′ = V Zn and suppose L,L′ are in the same bravais class so

that U−1HLU, V −1HL′V are conjugate in GL(n,Z). Therefore HL,HL′ are conjugate in GL(n,R)

as well. But any two finite subgroups of O(n) that are conjugate in GL(n,R) must be conjugate in

O(n) [29]. Thus L,L′ must be in the same holohedral class.

Propositions (2.2.6) and (2.2.7) are original work by the author. However the literature on

Crystallography is vast and so no claim to the primacy of these results is made. It is easy to show

that

Proposition 2.2.8. The bravais classes form a coarser equivalence relation on Ln than the homo-

thety classes.

Proof. Follows from Proposition 2.2.3
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2.3 Lattices in R2

To obtain the homothety classes of lattices, N2, it is convenient to treat R2 as the complex

plane C. We consider lattices in C with two generators. The space of ordered pairs of generators

is C2. Once again we shall need to identify those pairs that generate the same lattice. We need

to turn the action of GL(2,Z) on M(2,R) to an action on C2. There is a convenient way to do

this. Let




u1 u2

v1 v2


 ∈ GL(2,R) be an ordered pair of generators for a planar lattice. We map the

column vector ( un vn )T to the complex number zn = un + ivn where n = 1, 2. This is a vector

space isomorphism. The lattice associated to (z1, z2) is all of the integer combinations of z1, z2, i.e

(z1, z2)Z2. Let




a b

c d


 ∈ GL(2,Z), it is a simple computation to see that the following diagram

commutes.



u1 u2

v1 v2







a b

c d







au1 + cu2 bu1 + du2

av1 + cv2 bv1 + dv2




y
y

( z1 z2 )




a b

c d


 ( az1 + cz2 bz1 + dz2 )

Therefore the lattice generated by z ∈ C2 is the same as the lattice generated by zG for any

G ∈ GL(2,Z). The group GL(2,Z) acts on C2 by multiplying vectors on the right. The collection

of group orbits gives the space of lattices L2.

2.3.1 Homothety Classes M2

However we go through M2 rather than L2 to get N2. Rotations of the plane can be

represented by multiplication by members of U(1) and scaling can be represented by multiplication

by members of R+. Now C\{0} = C∗ = U(1)R+. Thus C∗ is a representation of the group of

orientation preserving homotheties of R2. Moding out by the orbits in C2 under the action of C∗

gives us the complex projective space CP1 a.k.a the Riemann sphere.

To obtain M2 we need to consider the action of the full group of homotheties which is

generated by the orientation preserving homotheties along with any orientation reversing homothety.
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The orbit of the orientation reversing homothety (such as reflection about the real axis) acting on

CP1 contains exactly two points, [z, 1] and [z, 1]. We can let points in the upper half plane of C be

representative elements of the homothety classes of ordered basis for discrete lattices. Denote the

upper half plane by H and identify it with M2. Similarly identify H = H ∪ R ∪ {∞} with M̃2

It is fairly well known that H gives us a model for Hyperbolic geometry. The ”lines” in

this geometry are semi-circular arcs of circles centered on the real axis together with lines that are

orthogonal to the real axis. Note that the real axis is not part of the hyperbolic plane. Points

on the real axis are sometimes called the points at infinity of the hyperbolic plane or more briefly

as ideal points. The group of isometries for this model of the hyperbolic plane is generated by

reflection about the imaginary axis and the Möbius transformations
az + c

bz + d
where a, b, c, d ∈ R and

ad−bc = 1. We denote a hyperbolic triangle with vertices z1, z2, z3 by 4(z1, z2, z3) and a hyperbolic

quadrilateral with vertices z1, z2, z3, z4 by ¤(z1, z2, z3, z4).

Let G =




a b

c d


 ∈ GL(2,Z) and denote the corresponding map acting on CP1 by g.

Using homogeneous coordinates on CP1 we get the following commutative diagram.

(z1, z2)
G−−−−→ (az1 + cz2, bz1 + dz2)y

y
[z1/z2, 1]

g−−−−→ [az1+cz2
bz1+dz2

, 1]

Now
az1 + cz2

bz1 + dz2
=

a z1
z2

+ c

b z1
z2

+ d
so g([z, 1]) = [

az + c

bz + d
, 1], or for convenience g(z) =

az + c

bz + d
.

We can think of the maps on CP1 as the Möbius transformations PGL(2,Z). However the group

operation in PGL(2,Z) is unconventional and slightly awkward. Recall that we multiply members of

C2 on the right by members of GL(2,Z) to obtain generators that generate the same lattice whereas

we normally multiply on the left to indicate a transformation. A more conventional diagram looks

like



z1

z2


 G−−−−→




az1 + bz2

cz1 + dz2




y
y

[z1/z2, 1]
g−−−−→ [az1+bz2

cz1+dz2
, 1]
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In short we would usually write g(z) =
az + b

cz + d
. For g(z) =

az + b

cz + d
set gt(z) =

az + c

bz + d
. It

follows that (g1 ◦ g2)t = gt
2 ◦ gt

1 where ◦ denotes the usual composition of Möbius transformations.

Our maps are of the form gt. Let gt
1, g

t
2 be two such maps and apply the map gt

1 to z ∈ C followed

by the map gt
2, i.e.

z 7→ gt
1(z) 7→ gt

2(g
t
1(z)) = (gt

2 ◦ gt
1)(z) = (g1 ◦ g2)t(z)

For convenience we drop the superscript and write g2(g1(z)) = (g1 ◦ g2)(z) so that the second map

is on the right hand side of the composition just as it is for members of GL(2,Z). This is technically

defining a new binary operation on the set PGL(2,Z). However this binary operation merely turns

PGL(2,Z) into an isomorphic copy of itself. Rather than bother with a new notation for the group

we shall simply write g2(g1(z)) = g1g2(z).

The group PSL(2,Z) of Möbius transformations
az + c

bz + d
with ad−bc = 1 leaves H invariant.

The maps in PGL(2,Z)\PSL(2,Z) leave R invariant while swapping the upper and lower half planes.

However z and z correspond to the same homothety class of ordered basis. So to get members of

PGL(2,Z)\PSL(2,Z) to act on H we send the image from a map in PGL(2,Z)\PSL(2,Z) to its

complex conjugate.

Each member of PGL(2,Z)\PSL(2,Z) can be factored into a member of PSL(2,Z) and

the map z 7→ −z. This is then followed by complex conjugation. So essentially we replace z 7→ −z ∈

PGL(2,Z)\PSL(2,Z) with z 7→ −z in the factorization to get the members of PGL(2,Z)\PSL(2,Z)

to act on H. The group PSL(2,Z) is known as the Unimodular group and when we adjoin the

reflection about the imaginary axis we obtain the extended Unimodular group which we denote

by Γ. The extended Unimodular group is a discrete subgroup of hyperbolic isometries. This is

summarized in the commutative diagram.

C2 GL(2,Z)−−−−−→ C2

y
y

CP1 PGL(2,Z)−−−−−−→ CP1

y
y

H Γ−−−−→ H
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2.3.2 N2 as the Fundamental Domain of the Extended Unimodular Group

The fundamental domain of the Extended Unimodular group, Γ provides us with a collec-

tion of representative elements for its orbits in H.

A generalization of the Euclidean algorithm proves that SL(2,Z) is generated by T1 =


1 1

0 1


 , T2 =




1 0

1 1


. These project to t1 : z 7→ z

z + 1
and t2 : z 7→ z + 1

z
which generates

the Modular group, PSL(2,Z) ∼= SL(2,Z)/{±I2}. Adjoining the reflection about the imaginary

axis generates the extended Unimodular group, Γ. Reflection about the imaginary axis is reflection

about a side of the 4(0, 1,∞). Call this map a. Let s : z → 1/(1− z) and let r : z → 1− z. Then

t1 = ra, t2 = rsa so Γ =< a, r, s >.

Since Möbius transformations take any set of 3 points to any other set of 3 points it is

straight forward to determine the isotropy group of the 3 point set {0, 1,∞} in PSL(2,Z). It has

two generators {r, s} which generate a copy of D3. Adjoin the reflection about any side of 4(0, 1,∞)

and we get the extended Unimodular group. In other words the extended Unimodular group has 3

generators {a, r, s} whose geometric meaning is clear. The reflections about the sides of 4(0, 1,∞)

generates a triangular tessellation of the hyperbolic plane.

We can choose the fundamental domain of the Extended Unimodular group to be any one

of six sub-triangles of 4(0, 1,∞), say 4(i, eiπ/3,∞). The orbit of its vertices and edges under the

extended Unimodular group is the set of points in H which have non-trivial isotropy groups. We

can identify 4(i, eiπ/3,∞) with the collection of homothety classes of lattices N2. The action of the

extended Unimodular group on 4(i, eiπ/3,∞) generates a triangular tessellation of H.

2.3.3 Isotropy Groups and the Bravais Stratification

Recall that the isotropy subgroups of a point in M̃2 is an integral representation of the

holohedral group [see section (2.2.2)]. In this case M̃2 = H. The group GL(2,Z) acts on H as Γ.
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Figure 2.4: Tessellation by the fundamental region of the extended Unimodular group

C2 GL(2,Z)−−−−−→ C2

y
y

H Γ−−−−→ H

According to Proposition 2.2.1 {±I2} ⊂ HL for any lattice. Since {±I2} sits in the center of

GL(2,R) the group {±I2} must be in the integral representation of HL. Consequently the isotropy

subgroup of a point z ∈ H is isomorphic to HL/{±I2} where L = zZ2. The conjugacy class in

GL(2,Z) of an integral representation of a holohedral group becomes the conjugacy class in Γ of an

isotropy subgroup of a point in H.

C2 H−1

−−−−→ C2 G−−−−→ C2 H−−−−→ C2

y
y

y
y

H h−1

−−−−→ H g−−−−→ H h−−−−→ H

Thus the points in H have conjugate isotropy subgroups if and only if the lattices associated to

those points are in the same Bravais class. We determine the isotropy subgroups in the fundamental

domain of the extended Unimodular group. The isotropy subgroups on the rest of H are then

obtained by conjugation.
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There are 5 bravais classes of planar lattices. Points in the interior of the fundamental

domain of the extended Unimodular group have trivial isotropy subgroups. This bravais class is

called oblique. Points on the edges of the fundamental domain have the reflection about their

respective edges as their isotropy subgroups. Points on the imaginary axis bounding the fundamental

domain have the isotropy subgroup generated by the reflection z 7→ −z which is isomorphic to Z2.

This bravais class is called rectangular. Points on the unit circle bounding the fundamental domain

have the isotropy subgroup generated by the reflection z 7→ 1/z and points on the line Re(z) = 1/2

bounding the fundamental domain have the isotropy subgroup generated by the reflection z 7→ 1−z.

These are conjugate subgroups isomorphic to Z2 and correspond to the same bravais class. This

class is called rhombic. Lattices corresponding to points on the unit circle bounding the fundamental

domain are called explicitly rhombic while those corresponding to points on the line Re(z) = 1/2 are

called implicitly rhombic. For explicitly rhombic lattices the symmetry permutes two of the smallest

non-zero members of the lattice while for implicitly rhombic lattices the symmetry permutes two

of the second smallest non-zero members of the lattice. The point i has the isotropy subgroup

generated by the reflections z 7→ −z and z 7→ 1/z. This is isomorphic to Z2 ⊕ Z2 and the bravais

class is called square. The point eiπ/3 has the isotropy subgroup generated by the reflections z 7→ 1/z

and z 7→ 1− z. This is isomorphic D3 and the bravais class is called hexagonal.

2.3.4 Canonical Bases and a Tessellation of H by Quadrilaterals

Associated to a lattice is a particular set of bases called the canonical bases. The following

proposition is used to define canonical bases.

Proposition 2.3.1. Let L be a lattice in C and let l1 be one of the smallest non-zero members of

L and let l2 be one of the smallest members of the lattice L outside of the sub-lattice generated by

l1. Then {l1, l2} is a bases for L. For a proof see [6, 52].

Definition 2.3.1. Let l1, l2, and L be defined as in Theorem (2.3.1), then the ordered bases (l1, l2)

and (l2, l1) are called canonical bases
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Given a point z ∈ H we want to determine a canonical basis for a lattice in the equivalence

class represented by z. We begin in H with the fundamental domain of the extended Unimodular

group and its image under reflection about the imaginary axis.

Proposition 2.3.2. The points ±1 are the smallest non-zero members of the lattice (z, 1)Z2 and

±z are the smallest members of (z, 1)Z2 outside of the sub-lattice Z if and only if |z| > 1 and

−1/2 < Re(z) < 1/2.

Proof. ±1 are the smallest non-zero members of the lattice implies that |z| > 1. And ±z are the

smallest members of (z, 1)Z2\Z implies −1/2 < Re(z) < 1/2. Suppose otherwise, then for some

non-zero k ∈ Z we have Re(z − k) ≤ Re(z) while Im(z − k) = Im(z) so that |z − k| ≤ |z| which

contradicts ±z are the smallest members of (z, 1)Z2\Z.

Now suppose |z| > 1 and −1/2 < Re(z) < 1/2 and let ζ ∈ (z, 1)Z2 with |ζ| ≤ |z|. We now

show that |ζ| ≥ 1 so that ±1 are the shortest generators and ±ζ the second shortest. We can write

ζ = az + b for some a, b ∈ Z.

Case a = 0 implies ζ ∈ Z

For the following cases we use the fact |az + b|2 ≤ |z|2 and z = x + iy for real x, y.

(ax + b)2 + (ay)2 ≤ |z|2 ⇔

a2(x2 + y2) + 2abx + b2 ≤ |z|2 ⇔

2abx + b2 ≤ (1− a2)|z|2

Case a = ±1 implies ±2bx + b2 ≤ 0. When b = 0 we have ζ = ±z. When b 6= 0 the fact

that −1/2 < x < 1/2 gives

−|b| < ±2bx ⇔

b2 − |b| < ±2bx + b2 ⇔

b2 − |b| < 0 ⇔

|b| < 1 ⇔
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b = 0

which is a contradiction.

Case |a| > 1. By assumption |z| > 1 and 1 − a2 < 0 so that (1 − a2)|z|2 < 1 − a2. When

b = 0 we have 0 < 1 − a2 which implies a = 0 which is a contradiction. When b 6= 0 the fact that

−1/2 < x < 1/2 gives

−|ab| < ±2abx ⇔

b2 − |ab| < ±2abx + b2 ⇔

b2 − |ab| < 1− a2 ⇔

a2 + b2 < 1 + |ab|

Now suppose ab > 0, then

a2 + b2 < 1 + ab ⇔

a2 − 2ab + b2 < 1− ab < 1 ⇔

(a− b)2 < 1 ⇔

a− b = 0 ⇔

a = b

So |ζ| = |a||z + 1| Now suppose ab < 0, then

a2 + b2 < 1− ab ⇔

a2 + 2ab + b2 < 1 + ab < 1 ⇔

(a + b)2 < 1 ⇔

a + b = 0 ⇔

a = −b

So |ζ| = |a||z − 1|. Since −1/2 < x < 1/2 we have Re(z + 1) > Re(z) and Re(z − 1) < Re(z) while

Im(z + 1) = Im(z) = Im(z − 1) so that |z + 1| > |z| and |z − 1| > |z|. Since |a| > 1 we get |ζ| > |z|
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which is a contradiction.

Therefore ζ ∈ {±z} ∪ Z. The smallest non-zero members of {±z} ∪ Z are ±1 and the

smallest members of {±z} are ±z.

The reflection about the unit circle, z 7→ 1/z, is a member of the extended Unimodular

group that comes from the matrix




0 1

1 0


 which just permutes the two members of an ordered

bases for a lattice. Therefore the lattices associated to corresponding points on each side of the unit

circle have the same canonical bases. This gives the following corollary

Corollary 2.3.3. If |z| > 1 and −1/2 < Re(z) < 1/2 or if |z| < 1 and −1/2 < Re(1/z) < 1/2 then

(z, 1) is a canonical basis for the lattice (z, 1)Z2.

The intersection of the set {z : |z| > 1 and −1/2 < Re(z) < 1/2} ∪ {z : |z| < 1 and

−1/2 < Re(z) < 1/2} with H forms a hyperbolic quadrilateral. Its vertices are 0, eiπ/3,∞, and

ei2π/3. It contains four copies of the fundamental region of the extended Unimodular group that

are obtained by reflecting the fundamental region about the imaginary axis and the unit circle.

The action of the extended Unimodular group on this quadrilateral generates a tessellation of the

hyperbolic plane by quadrilaterals.

This tessellation is closely related to the Farey tessellation which is generated by the action

of PSL(2,Z) on the imaginary axis, see figure (2.3.2). The Farey tessellation is a tessellation by

ideal triangles of which 4(0, 1,∞) is an example. The Farey tessellation gets its name from its

relationship to the Farey tree. The endpoints of each edge of a triangle are rational numbers that

are connected in the Farey tree. The Farey sum of these two rational numbers is the third vertex of

a triangle having the first two rational numbers as vertices.

The imaginary axis is a diagonal of the quadrilateral with ideal vertices 0,∞. The image

of this quadrilateral by a member of the extended Unimodular group has ideal vertices that are

rational numbers and that are connected in the Farey tree. The edges in the Farey tessellation are

the diagonals of the quadrilaterals. The lattices associated to points on these diagonals are in the

rectangular bravais class.
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Figure 2.5: Tessellation by quadrilaterals

We are also interested in the other diagonal of the quadrilaterals. The lattices associated

to points on these diagonals are in the rhombic bravais class, in particular they are the explicitly

rhombic lattices.

The members of PSL(2,Z): a : z → −z, b : z → 2− z, and c : z → z/(2z − 1) map

4(0, 1,∞) to its adjacent triangles in the Farey tessellation. These members of PSL(2,Z) are

induced by the members of SL(2,Z):



1 0

0 −1


 ,




1 −2

0 −1


 ,




1 0

2 −1




We can factor these matrices



1 −2

0 −1


 =




1 1

0 1







1 1

0 1







1 0

0 −1







1 0

−2 −1


 =




1 0

1 1







1 0

1 1







1 0

0 −1




The group generated by the squares of t1 and t2 (see section 2.3.2) is known as the Level 2 Congruence

Subgroup of PSL(2,Z). If we adjoin the map a to the Level 2 Congruence Subgroup we get the

same group as generated by {a, b, c} whose geometric meaning is clear. This is the extended level
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2 Congruence subgroup. Geometrically the extended Level 2 Congruence subgroup is generated by

reflecting about the sides of 4(0, 1,∞). While the extended Modular group is generated by the

symmetries of the 4(0, 1,∞) along with a reflection about any of the triangle’s sides.

We can construct a Cayley graph for the extended level 2 Congruence subgroup. We start

with the point eiπ/3 and act on it with the three generators a, b, c of the extended level 2 Congruence

subgroup. We connect the images of eiπ/3 to eiπ/3 with hyperbolic lines. These hyperbolic lines

are the diagonals of quadrilaterals and points on them correspond to the explicitly rhombic lattices.

The union of all these diagonals is the Cayley graph of the extended level 2 Congruence subgroup.

In chapter 3 we will see that the Cayley graph of the extended level 2 Congruence subgroup

is closely related to the bifurcation diagram for the dynamical system.

Figure 2.6: Cayley graph of the extended level 2 congruence subgroup.

2.4 Spiral lattices in C

We begin with some definitions.
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Definition 2.4.1. The space C is the set of points z ∈ C whose real part is between −1/2 and 1/2

with the lines Re(z) = −1/2 and Re(z) = 1/2 identified. The space C′ is the set of points z ∈ H

whose real part is between −1/2 and 1/2 with the lines Re(z) = −1/2 and Re(z) = 1/2 identified.

The space ∂C′ is the set of points z ∈ R between −1/2 and 1/2 with the points −1/2 and 1/2

identified.

The spaces C and C′ are topologically cylinders and ∂C′ is topologically a circle. A conve-

nient metric to use on C is obtained by projecting down the Euclidean metric on C.

Definition 2.4.2. Let z = x + iy ∈ C and j ∈ Z. We define the following functions. ∆j : C → Z

takes z to the nearest integer to jx. This is known as the jth encyclic number after Bravais [8]. The

function δj : C → ∂C′ takes z to the fractional part of jx i.e. δj(z) = jx − ∆j(z). The function

λj : C→ C takes z to δj(z) + ijy. We will drop the argument z when convenient.

The function λ1 : C → C is a homomorphism with kernel Z. Therefore for any z ∈ H the

image of a lattice L = (z, 1)Z2 is a lattice in C with a single generator λ1(z) i.e. a spiral lattice. The

spiral lattice associated to z is denoted by Λ(z) or simply Λ. We can write Λ = λ1(L). Conversely

let z ∈ C be the generator of a spiral lattice, then since z = λ1(z) the spiral lattice is the image of

the planar lattice (z, 1)Z2 under λ1.

Clearly Λ(z) = Λ(−z) and if z, w both have positive imaginary part then Λ(z) = Λ(w) if

and only if z − w is an integer. Hence the space of spiral lattices can be identified with points in H

with real part between 0 and 1.

Definition 2.4.3. The space H∗ is the set of points in z ∈ H whose real part is between 0 and 1

with the lines Re(z) = 0 and Re(z) = 1 identified.

It is convenient to project the hyperbolic metric down to H∗. In particular any polygon in

H whose real part is contained in an interval of width less than 1 is projected down to an isometric

polygon in H∗.
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Definition 2.4.4. Let (m,n) be coprime and choose integers Dm, Dn such that

0 ≤ Dm < m, 0 ≤ Dn < n, andDnm−Dmn = 1.

This choice for Dm, Dn is unique. Note that although there is only one subscript they both depend

on m,n. Define the maps

g+
mn(z) =

Dmz −Dn

mz − n

g−mn(z) =
(m−Dm)z − (n−Dn)

mz − n

These maps take the quadrilateral with ideal vertices 0,∞ to a quadrilateral with ideal vertices

Dm/m,Dn/n and 1−Dm/m, 1−Dn/n respectively.

Definition 2.4.5. The quadrilateral with ideal vertices {0,∞} is called a fundamental quadrilateral

its image under g+
mn called a positive (m, n) quadrilateral and it is denoted by ¤+

mn. The map g−mn(z)

takes the fundamental quadrilateral to a quadrilateral with vertices (m−Dm)/m, (n−Dn)/n. This

is called a negative (m,n)-quadrilateral and is denoted by ¤−mn. It is the image of the positive

(m,n)-quadrilateral under the map z 7→ 1−z. The union of the positive and negative quadrilaterals

is denoted by ¤±mn.

By our choice of Dm, Dn we know these quadrilaterals lie in H∗.

Proposition 2.4.1. z ∈ (m,n)-quadrilateral ⇔ (λn(z), λm(z)) is a canonical basis for the lattice

associated to z.

Proof. Let w be in the fundamental quadrilateral with z = g+
mn(w). The lift of the map g+

mn is

−Dm −m

Dn n


. The pre-image of (z, 1) under this automorphism is (nz −Dn,mz −Dm). Hence

these points become the canonical basis for the lattice under the automorphism. We apply the

homothety ζ 7→ ζ/(mz − Dm) to the canonical basis. To get (
nz −Dn

mz −Dm
, 1) This is homothetic to

the basis (w, 1) so
nz −Dn

mz −Dm
= w =

nz −∆n(z)
mz −∆m(z)

(since |Re(w)| < 1/2) and

(nz −Dn)(mz −∆m) = (nz −∆n)(mz −Dm)

(1− (∆nm−∆mn))z = ∆mDn −∆nDm
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The functions ∆m(z),∆n(z) are piecewise constant so the equality must hold for more than one

value of z ∈ ¤+
mn. Therefore

1 = ∆nm−∆mn

0 = ∆mDn −∆nDm

which together implies ∆m = Dm and ∆n = Dn so that (λn, λm) = (nz − Dn,mz − Dm) is the

canonical basis.

The proof for the negative quadrilaterals is essentially the same replacing Dm with m−Dm

and Dn with n−Dn.

Conversely suppose (λn(z)λm(z)) is a canonical basis and z is in an (j, k)-quadrilateral.

From above the pair (λk(z), λj(z)) is canonical basis. Then either (λj(z) = λn(z)) and (λk(z) =

λm(z)) or (λj(z) = λm(z)) and (λk(z) = λn(z)). So the (j, k)-quadrilateral is an (m,n)-quadrilateral.

2.4.1 The Three Types of Quadrilaterals

It is useful to classify the quadrilaterals according to their shape. The issue that will be

important is whether the vertical lines passing through the ideal vertices of a quadrilateral also pass

through the quadrilateral. Recall that a hyperbolic line has two ideal points that constitute its

boundary in H. Two edges of the quadrilateral meet at an ideal vertex. If the ideal points at the

other end of these two lines is on the same side of the ideal vertex then the vertical line passing

through the vertex will not pass through the quadrilateral, otherwise it will. The two ideal points

associated to the ideal vertex Dm/m of ¤+
mn are

2Dn + Dm

2n + m
,
2Dn −Dm

2n−m
. These points are on the

same side of Dm/m when

(
Dm

m
− 2Dn + Dm

2n + m
)(

Dm

m
− 2Dn −Dm

2n−m
) =

2
mn2(2m− n

> 0

For the other vertex we get

(
Dn

n
− 2Dm + Dn

2m + n
)(

Dn

n
− 2Dm −Dn

2m− n
) =

2
nm2(2m− n
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At most one ideal vertex can have its associated ideal points on opposite sides itself or else the top

edges of the quadrilateral would never meet. Therefore the product (2m− n)(2n−m) is positive if

both pairs of ideal points associated to the two ideal vertices of the quadrilateral are on the same

side of their respective vertices. Otherwise one of the vertices is in between its associated pair of

ideal points. Since the negative quadrilaterals are isometric to the positive quadrilaterals the formula

applies to them as well.

Definition 2.4.6. If m > 2 or n > 2 then ¤±mn is a regular quadrilateral if and only if (2m−n)(2n−

m) > 0 else it is an irregular quadrilateral. The fundamental quadrilateral, the (1, 1)-quadrilateral,

and the (1, 2) quadrilaterals are the exceptional quadrilaterals (see figure (2.10) at the end of the

chapter.

Definition 2.4.7. We say that a quadrilateral is below a second quadrilateral when the ideal vertices

of the first quadrilateral are between the ideal vertices of the second quadrilateral

Proposition 2.4.2. The two adjacent quadrilaterals below either a regular or an irregular quadri-

lateral is a pair of regular and irregular quadrilaterals

Proof. Since the ideal vertices of the quadrilaterals follow the Farey tree the two adjacent quadrilater-

als beneath an (m,n)-quadrilateral are the (m,m+n)-quadrilateral and the (m+n, n)-quadrilateral.

Computation gives

(2(m + n)−m)(2m− (m + n)) = (m + 2n)(m− n) (2.1)

(2(m + n)− n)(2n− (m + n)) = (2m + n)(n−m) (2.2)

and these must have opposite signs. Therefore one is regular and one is irregular

Hexagons

It is not always the case that the smallest and second smallest non-zero members of a

planar lattice form a bases. The second smallest non-zero member of a lattice can be the smallest
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non-zero member added to itself. For z in the fundamental quadrilateral this occurs when |z| > 2

or |z| < 1/2. These two circles truncate the quadrilateral to produce a hyperbolic hexagon.

Figure 2.7: Fundamental Hexagon

The vertices of this hexagon are

A =
1
2

+ i

√
15
2

B = −1
2

+ i

√
15
2

(2.3)

C =
1
2

+ i

√
3

2
D = −1

2
+ i

√
3

2
(2.4)

E =
1
8

+ i

√
15
8

F = −1
8

+ i

√
15
8

(2.5)

Definition 2.4.8. The hexagon with the vertices given in equation (2.4.2) is called the fundamental

hexagon. The images of the fundamental hexagon under the maps gmn(z) give the (m,n)-hexagons.

The vertices of these hexagons are

gmn(A) =
(2Dnn−Dmn−Dnm + 8Dmm) + i

√
15

2(n2 −mn + 4m2)
(2.6)

gmn(B) =
(2Dnn + Dmn + Dnm + 8Dmm) + i

√
15

2(n2 + mn + 4m2)
(2.7)

gmn(C) =
(2Dnn−Dmn−Dnm + 2Dmm) + i

√
3

2(n2 −mn + m2)
(2.8)

gmn(D) =
(2Dnn + Dmn + Dnm + 2Dmm) + i

√
3

2(n2 + mn + m2)
(2.9)

gmn(E) =
(2Dmm−Dnm−Dmn + 8Dnn) + i

√
15

2(m2 −mn + 4n2)
(2.10)
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gmn(F ) =
(2Dmm + Dnm + Dmn + 8Dnn) + i

√
15

2(m2 + mn + 4n2)
. (2.11)

We say a hexagon is regular, irregular, or exceptional according to the type of quadrilateral containing

it.

Proposition 2.4.3. If z is in a (m,n)-hexagon then neither member of the canonical basis (λn(z), λm(z))

has more than twice the length of the other.

Proof. Let w be in the fundamental hexagon with z = g+
mn(w). The proposition follows from

Proposition (2.4.1) and the fact that the basis (w, 1) is homothetic to the basis (λn(z), λm(z))

Figure 2.8: (m,n)-Hexagon

Regular regions

We can use the hexagons to define regions that will be important in understanding the

dynamical systems of this thesis. By Equation (2.2) when m < n the regular quadrilateral adjacent

and below the (m,n)-quadrilateral is the (n,m + n)-quadrilateral. The pair (m,n) generates a

sequence of pairs of successive generalized Fibonacci numbers (m, n), (n,m+n), (m+n,m+2n), . . ..

Each of these pairs corresponds to a regular quadrilateral adjacent and below the quadrilateral

corresponding to the previous pair.
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Figure 2.9: Regular Regions

Definition 2.4.9. Let m < n and let the regular (m,n)-quadrilateral be adjacent and under an

irregular quadrilateral. The union of the hexagons corresponding to the sequence of pairs of suc-

cessive generalized Fibonacci sequence (m,n), (n,m + n), (m + n,m + 2n), . . . is called the regular

region which we denote by Rmn.

The vertices of the quadrilaterals containing the hexagons making up a regular region form

a sequence of a rational approximations for a noble number. The part of the boundary of a regular

region lying on the real axis is this noble number.

2.4.2 The Fundamental Theorem of Phyllotaxis

We begin this section with a definition.

Definition 2.4.10. The cosets of the group generated by λm in in the group Λ are called the m-

parastichies. There are m m-parastichies. When λn, λm are two of the smallest non-zero members

of Λ and neither one of λn, λm is twice the length of the other then we say the lattice has parastichy

numbers (m,n)

This definition is motivated by the fact that when λn, λm are two of the smallest non-zero

members of Λ and neither one of λn, λm is twice the length of the other then the m-parastichies

and the n-parastichies of a spiral lattice are readily visible. In particular the parastichy numbers
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are observed in spiral phyllotaxis.

In 1988 Jean [25] proved what is known as the “Fundamental Theorem of Phyllotaxis”.

Briefly stated this theorem relates the divergence angle of a spiral lattice to its parastichy numbers.

In particular it implies that for coprime m,n with Dmn − Dnm = ±1 where 0 ≤ Dm < m and

0 ≤ Dn < n the divergence angle must be between Dm/m and Dn/n. These are the ideal vertices of

a (m,n)-quadrilateral. Using the hexagons we obtain a new version of the “Fundamental Theorem

of Phyllotaxis”. This version gives both a narrower interval for the divergence angle a well as giving

bounds on the parameter y.

Theorem 1. (m,n) are the parastichy numbers of a spiral lattice Λ(z) if and only if z is in a

(m,n)-hexagon.

Proof. By Proposition (2.4.3) z is in a (m,n)-hexagon if and only if (λn(z), λm(z)) is a canonical

basis and neither member has twice the length of the other.

From this theorem we can place bounds on the real and imaginary parts of z when the

lattice associated to z has parastichy numbers (m,n).

Corollary 2.4.4. If Λ(z) has parastichy numbers (m, n) then the imaginary part of z is less than

max{Im(g+
mn(A)), Im(g+

mn(C)), Im(g+
mn(E))} and greater than min{Im(g+

mn(B)), Im(g+
mn(D)), Im(g+

mn(F ))}

and the real part of z is less than max{Re((g+
mn(A)), Re(g+

mn(C)), Re(g+
mn(E))} and greater than

min{Re((g+
mn(A)), Re(g+

mn(C)), Re(g+
mn(E))}
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Figure 2.10: The Regular and Irregular Quadrilaterals.
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Chapter 3

The First Family of Dynamical

Systems

3.1 Definition of P : T∞ → T∞

We represent the apex of plant with the flat cylinder C′. The interior of C′ stands for the

region where primordia have already formed and the boundary ∂C′ stands for the apical ring where

new primordia form. The primordia themselves are represented as particles in C′. We assume one

new primordium is produced periodically in time on the apex. As time progresses the apex grows

leaving the previously formed primordia behind. This is represented by translating the particles

upward (so in a sense the shoot is pointing upside down in the model). We let y denote the distance

the points are translated by. This is a parameter of the system and it stands for the relative growth

rate of the plant, i.e the rate of growth of plant tissue relative to the rate of primordia production.

In order to avoid changing the dimension of the state space over time we use an infinite

dimensional system which means that there are an infinite number of particles in our system. This

allows us to add new particles one at a time without altering the total. Of course actual plants only

have a finite number of primordia. Later we will consider finite dimensional systems. We denote
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the location of the jth particle by rj . This particle lies on a circle which is parallel to ∂C′ and at

distance jy above it.

The angle between the jth particle and the (j − 1)th particle is denoted by dj which

represents the divergence angle between primordia. Given a value for the parameter y > 0 we

associate a particular configuration in the cylinder C′ to the sequence of divergence angles {dj | j ∈

N}. Let θj be the angular position of rj . Specifically we choose θ0 = 0 and θj =
∑j−1

k=0 dj mod 1.

The starting configuration is {rj = θj + ijy | j ∈ N}. Then we translate this up by distance y so

that the particles lie at {rj + iy = θj + i(j + 1)y | j ∈ N}.

Denote the space of sequences of angles by T∞. This is our state space and the sequence

of angles {dj} ∈ T∞ represents the state of the developing apex. We want to use the following

assumption derived from experimental evidence: The primordia produce a repulsive potential that

causes the new primordium to form in the apical ring where that potential is lowest (recall Section

1.5.1). This is implemented as follows. We let each particle in the configuration produce a potential

that dies off as a power of the distance from the particle. This is known as an homogeneous central

potential. At any point ζ ∈ C′\{rj + iy} we can define

Xp({dj}, ζ) = sup
j∈N

{|rj + iy − ζ|−p} p > 1

Since the configuration is a discrete set for any ζ ∈ C′ there is some m ∈ N such that |rm+iy−ζ|−p =

Xp({dj}, ζ). The point rm + iy is the location of a particle in the configuration that’s closest to

ζ. This point need not be unique. Essentially the point ζ only “feels” the repulsion of its nearest

neighbor(s). The Voronoi cell of a particle at rj + iy is the set of all points in C′ that are closer to

rj + iy than to any other particle in the configuration. The value that the potential Xp takes on

at any point ζ of C′ is determined by which Voronoi cell ζ lies in. In the case where ζ lies on the

boundary of a Voronoi cell we have a choice of more than one particle which controls the value of

Xp, but of course the value of Xp is still uniquely determined.

We are particularly interested in the potential on the apical ring. Let φ ∈ ∂C′, when

Xp({dj}, φ) has a unique absolute minimum on ∂C′ denote it by φ∗ (there is always at least one
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absolute minima). The divergence angle is then 0 − φ∗ = −φ∗. Our dynamical system is given by

the map P : T∞ → T∞ defined as

P0({dj}) = −φ∗

Pj({dj}) = dj−1 j ∈ Z+

The map P is not defined on all of T∞ because not every configuration leads to a unique absolute

minimum on ∂C′. One could make a choice between absolute minima when the situation arises.

However no choice will make the map continuous. For that reason we refer to the points where the

map is undefined as points of discontinuity.

3.2 Fixed Points of P

We now look at the fixed points of P . The condition P ({dj}) = {dj} gives dj = −φ∗ j ∈

N. In other words the divergence angles are all the same. The corresponding configuration {rj} is a

half lattice Λ′ and after translating the configuration up and adding the new particle the resulting

configuration is just a copy of Λ′ rotated by −φ∗. To iterate again we rotate the configuration back

so that θ0 = 0. Thus a necessary (but not sufficient) condition for a configuration to correspond to

a fixed point of P is that it be a half spiral lattice. When −φ∗ = δ1 then the half spiral lattice will

be a fixed point. To find the fixed points we focus on the space of spiral lattices H∗ and make use of

the notation from chapter 2. In particular the parameter y of the dynamical system, P , corresponds

to the imaginary part of a point z ∈ H∗ and rj = λj(z).

The Voronoi cells of Λ + iy are convex polygons whose edges are the orthogonal bisectors

of points in Λ + iy. For z in a fundamental quadrilateral or in a (1, 1)-quadrilateral there is a single

Voronoi cell that intersects ∂C′ and the intersection is all of ∂C′. The value of Xp has a single

maximum at 0 which is the closest point of ∂C′ to the particle at iy which generates the Voronoi

cell. And Xp has a single minimum at 1/2 which is the furthest point of ∂C′ to iy. Points on the

set of implicitly rhombic lattices in the fundamental quadrilateral are fixed points of P . For z in the
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remaining quadrilaterals the intersection of a convex polygon with ∂C′ is an arc and the collection of

Voronoi cells intersects ∂C′ in a finite collection of arcs. On each arc the value of Xp increases going

inward from the end points and achieves a unique local maximum in the arc at the point closest to

the particle generating the Voronoi cell. The local minima are therefore the end points of the arcs.

Proposition 3.2.1. Let m be the largest integer such that the Voronoi cell of λm + iy intersects

∂C′. A tie for the absolute minimum of Xp on ∂C′ can only occur at the end points of the arc where

the Voronoi cell of λm intersects ∂C′.

Proof. If the Voronoi cell of λk + iy intersects ∂C′ then for j ≤ k the Voronoi cell of λj + iy must

intersect ∂C′. This follows from the translational symmetry of the collection of Voronoi cells and

the fact that λj + iy is closer to ∂C′ than λk + iy when j < k. The Voronoi cells that intersect

∂C′ form a contiguous collection of Voronoi cells, let the last one be generated by the particle at

λm + iy. The absolute minima of Xp on ∂C′ must must be an end point of the arc where this Voronoi

cell intersects ∂C′. A tie for the absolute minimum can only occur with the two end points of this

arc.

We assume for the rest of Section (3.2) that m is the largest integer such that the Voronoi

cell of λm intersects ∂C′. Let λn + iy be the starting location of a particle within Λ+ iy such that the

shared boundary of the Voronoi cells for λm + iy, λn + iy contains φ∗. For calculational purposes it

is convenient to work with the untranslated lattice. We think of Xp as being generated by particles

at the points {λj | j ∈ Z+}. Let ϕn denote the intersection of the orthogonal bisector of λm, λn with

∂C′. When ϕn = 0 then the half lattice configuration, Λ′, corresponds to a fixed point of P . We are

also interested in the other end point of the arc where the Voronoi cell of λm intersects ∂C′. When

(m,n) = (2, 1) this is 1 − ϕ1 and for m > n with (m,n) 6= (2, 1) this is on the shared boundary of

the Voronoi cells for λm−n and λm. Denote this point by ϕm−n. If a tie for the absolute minimum

of Xp occurs it is between the two intersection points, either ϕ1 and 1− ϕ1 or ϕn and ϕm−n.

ϕn is the intersection point of the orthogonal bisector of λm, λn with ∂C′ and ϕm−n is the

intersection point of the orthogonal bisector of λm, λm−n with ∂C′. Writing this out we have the
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pair of equations

ϕn =
| λm |2 − | λn |2

2(δm − δn)

ϕm−n =
| λm |2 − | λm−n |2

2(δm − δm−n)

We can substitute δm−n = δm − δn to obtain

ϕn =
| λm |2 − | λn |2

2δm−n
(3.1)

ϕm−n =
| λm |2 − | λm−n |2

2δn
(3.2)

Proposition 3.2.2. The configuration corresponding to a fixed point of P is an explicitly rhombic

lattice

Proof. If ϕn = 0 then | λm |=| λn | and therefore the lattice Λ must be of the explicitly rhombic

type within a (m,n)-quadrilateral.

So the set of fixed points of P is a subset of the set of explicitly rhombic lattices (see Figure

2.6 at the end of Section (2.3)).

3.2.1 The Discontinuities of P in H∗

We now determine the points of discontinuity of the map P in the space of lattices H∗.

Proposition 3.2.3. The points of discontinuity in the (2, 1)-quadrilaterals lie on the intersection

of the line x = 1/2 with the (2, 1)-quadrilateral.

Proof. In the case (m,n) = (2, 1) we get a tie when ϕ1 and 1 − ϕ1 are equidistant to λ2. This

happens when λ1 is on the opposite side of C′ from λ2, i.e. when the divergence angle is 1/2

When m > n and (m,n) 6= (2, 1) a discontinuity occurs when ϕn, ϕm−n tie for being the

absolute minimum of Xp on ∂C′. This happens when ϕn, ϕm−n are equidistant from λm. This

condition leads to the following lemma.

Lemma 3.2.4. If ϕn, ϕm−n are equidistant from λm then the projection of λm on ∂C′ is exactly

halfway between ϕn and ϕm−n.
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Proof.

| λm − ϕn |2 = | λm − ϕm−n |2⇔

(δm − ϕn)2 + m2y2 = (δm − ϕm−n)2 + m2y2 ⇔

δ2
m − 2δmϕn + ϕ2

n = δ2
m − 2δmϕm−n + ϕ2

m−n ⇔

ϕ2
n − ϕ2

m−n = 2δm(ϕn − ϕm−n) ⇔

ϕn + ϕm−n = 2δm (3.3)

Consequently the projection of λm onto ∂C′ lies exactly halfway in between ϕn and ϕm−n.

We can use this lemma to determine points of discontinuity. This is done in the following

proposition.

Proposition 3.2.5. For each m,n with m > n and (m,n) 6= (2, 1) the map P is discontinuous in

H∗ at the intersection of the (m,n)-quadrilaterals with the cubic curves:

(3mn(m− n)x− 3mn(∆m −∆n)± (m + n)) y2 =

(mx−∆m)(nx−∆n)((m− n)x− (∆m −∆n)) (3.4)

Proof. Equation (3.3) determines an algebraic curve in H∗ as follows. When we are in a (m,n)-

quadrilateral we can use Equations (3.1) and (3.2) to get

ϕn + ϕm−n =
| λm |2 − | λn |2

2δm−n
+
| λm |2 − | λm−n |2

2δn
⇔

ϕn + ϕm−n =
(δn + δm−n) | λm |2 −δn | λn |2 −δm−n | λm−n |2

2δnδm−n

Using δm = δn + δm−n we get

ϕn + ϕm−n =
δm | λm |2 −δn | λn |2 −δm−n | λm−n |2

2δnδm−n

which we can then substitute into Equation (3.3) to obtain the equation

δm | λm |2 −δn | λn |2 −δm−n | λm−n |2
2δnδm−n

= 2δm
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Multiplying the denominator times both sides gives

δm | λm |2 −δn | λn |2 −δm−n | λm−n |2= 4δmδnδm−n

Writing the moduli of the λ’s in terms of their real and imaginary parts gives

δm(δ2
m + m2y2)− δn(δ2

n + n2y2)− δm−n(δ2
m−n + (m− n)2y2) = 4δmδnδm−n ⇔

(δmm2 − δnn2 − δm−n(m− n)2) y2 = 4δmδnδm−n − δ3
m + δ3

n + δ3
m−n ⇔

(δmm2 − δnn2 − δm−n(m− n)2) y2 = 4δmδn(δm − δn)− δ3
m + δ3

n + (δm − δn)3 ⇔

(2δmmn− δmn2 + δnm2 − 2δnmn) y2 = δmδnδm−n

Now recall from section 2.4 that δm = mx−∆m, δn = nx−∆n and δm−n = (m−n)x− (∆m−∆n)

which we can substitute in

(2(mx−∆m)mn− (mx−∆m)n2 + (nx−∆n)m2 − 2(nx−∆n)mn) y2 =

(mx−∆m)(nx−∆n)((m− n)x− (∆m −∆n)) ⇔

(3mn(m− n)x− 3mn(∆m −∆n) + (m + n)(∆mn−∆nm)) y2 =

(mx−∆m)(nx−∆n)((m− n)x− (∆m −∆n))

Therefore we have a tie with ϕn and ϕm−n if and only if x + iy sits in a (m,n)-quadrilateral and

satisfies the above equation Recall from the proof of Proposition (2.4.1) that either ∆m = Dm and

∆n = Dn or ∆m = m−Dm and ∆n = n−Dn according to whether we are in positive or negative

(m,n)-quadrilateral. Therefore ∆mn−∆nm = ±1 and we get Equation (3.4).

A brute force computer generated plot of the points of discontinuity in H∗ is shown in

Figure 3.1.

3.2.2 Bifurcation Diagram for P

A half spiral lattice corresponds to a fixed point of P when ϕn is zero and is further from λm

than ϕm−n is. We know from Proposition (3.2.2) that ϕn = 0 when the lattice is explicitly rhombic.



56

Figure 3.1: The Curves of Discontinuity for the Map P

We want to determine where on the set of explicitly rhombic lattices there are discontinuities in the

map P .

Proposition 3.2.6. If the diagonal of explicitly rhombic lattices in a (m,n)-quadrilateral intersects

the curve of discontinuity in the (m,n)-quadrilateral it must be at the point

x + iy =
m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)
+ i

√
3

2(m2 − n2)

Proof. We are interested in the intersection of the curve where λm and λn are equal distant to 0 (i.e.

the diagonal of explicitly rhombic lattices) with the curve where ϕn and ϕm−n are equidistant to λm

(i.e. Equation (3.4)). At the intersection point of these two curves ϕ = 0 and ϕm−n are equidistant

to λm. So the curve where 0 and ϕm−n are equidistant to λm must also pass through this point.

Therefore to find this intersection point we intersect the curve where 0 and ϕm−n are equidistant to

λm with the diagonal of explicitly rhombic lattices.

The set of points where 0 and ϕm−n are equal distant to λm is given by the equality

| λm − ϕm−n |2 = | λm − 0 |2⇔

(δm − ϕm−n)2 + m2y2 = δ2
m + m2y2 ⇔

−2δmϕm−n + ϕ2
m−n = 0 ⇔

ϕm−n = 2δm

Now substitute in Equation (3.2)

| λm |2 − | λm−n |2
2δn

= 2δm ⇔
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| λm |2 − | λm−n |2 = 4δmδn ⇔

δ2
m − (δm − δn)2 + (m2 − (m− n)2)y2 = 4δmδn ⇔

2δmδn − δ2
n + (2mn− n2)y2 = 4δmδn

Adding δ2
n − 2δmδn to both sides

n(2m− n)y2 = δ2
n + 2δmδn ⇔

n(2m− n)y2 = δn(2δm + δn)

Now we substitute δm = mx−∆m and δn = nx−∆n

n(2m− n)y2 = (nx−∆n)((2m + n)x− (2∆m + ∆n)) ⇔
2m− n

2m + n
y2 = (x− ∆n

n
)(x− 2∆m + ∆n

2m + n
) (3.5)

This is the equation for a hyperbola. We want to find the intersection of this hyperbola with the

diagonal of explicitly rhombic lattices. From Section (2.4) we know that this is the image of the

corresponding diagonal of the fundamental quadrilateral under either g+
mn or g−mn. The diagonal

of explicitly rhombic lattices in the fundamental quadrilateral is the unit circle which has equation

0 = y2 + (x − 1)(x + 1). Applying g+
mn to the ideal vertices gives

Dm −Dn

m− n
and

Dm + Dn

m + n
while

applying g−mn to the ideal vertices gives
(m−Dm)− (n−Dn)

m− n
and

(m−Dm) + (n−Dn)
m + n

. Recall

the proof of Proposition (2.4.1) once again. In a positive (m,n)-quadrilateral ∆m = Dm and

∆n = Dn. In a negative (m, n)-quadrilateral ∆m = m−Dm and ∆n = n−Dn so we can write the

equation for the diagonal of explicitly rhombic lattices in a positive or negative (m,n)-quadrilateral

as

0 = y2 + (x− ∆m −∆n

m− n
)(x− ∆m + ∆n

m + n
)

We can rewrite these two equations

0 = −(2m− n)y2 + (2m + n)(x− ∆n

n
)(x− 2∆m + ∆n

2m + n
)

0 = (2m− n)y2 + (2m− n)(x− ∆m −∆n

m− n
)(x− ∆m + ∆n

m + n
)
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Adding these two equations together gives

0 = (2m + n)(x− ∆n

n
)(x− 2∆m + ∆n

2m + n
) + (2m− n)(x− ∆m −∆n

m− n
)(x− ∆m + ∆n

m + n
) ⇔

0 = 4mx2 − 2∆mn + 2∆nm + 2∆nn

n
x +

∆n

n
(2∆m + ∆n)

−(2m− n)
2∆mm− 2∆nn

m2 − n2
x + (2m− n)

∆2
m −∆2

n

m2 − n2

Multiplying through by n(m2 − n2) gives

0 = 4mn(m2 − n2)x2 − (m2 − n2)(2∆mn + 2∆nm + 2∆nn)x + ∆n(2∆m + ∆n)(m2 − n2)

−n(2m− n)(2∆mm− 2∆nn)x + n(2m− n)(∆2
m −∆2

n) ⇔

0 = 4mn(m2 − n2)x2 − (2∆mm2n + 2∆nm3 + 2∆nm2n− 2∆mn3 − 2∆nm2n− 2∆nn3)x

+(2∆2
mmn− 2∆2

nmn−∆2
mn2 + ∆2

nn2)− (4∆mm2n− 4∆nmn2 − 2∆mmn2 + 2∆nn3)x

+(2∆m∆nm2 − 2∆m∆nn2 + ∆2
nm2 −∆2

nn2) ⇔

0 = 4mn(m2 − n2)x2 − (6∆mm2n− 2∆mmn2 − 2∆mn3 + 2∆nm3 + 2∆nm2n− 6∆nmn2)x

+(2∆2
mmn−∆2

mn2 + 2∆m∆nm2 − 2∆m∆nn2 + ∆2
nm2 − 2∆2

nmn)

0 = 4mn(m2 − n2)x2 − (2(m2 − n2)(∆mn + ∆nm) + 2mn(2∆mm−∆mn− 2∆nn + ∆nm))x

+(∆mn + ∆nm)(2∆mm−∆mn− 2∆nn + ∆nm) ⇔

0 = (2mnx− (∆mn + ∆nm)) (2(m2 − n2)x− (2∆mm−∆mn− 2∆nn + ∆nm))

Substituting

x =
∆mn + ∆nm

2mn

into either Equation (3.5) or (3.6) gives an imaginary value for y. Substituting

x =
m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)

into either Equation (3.5) or (3.6) gives

y2 =
3(∆mn−∆nm)2

4(m2 − n2)2

We know ∆mn−∆nm = ±1 so

y =
√

3
2(m2 − n2)
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This can be substituted back into Equation (3.4) to verify that it is indeed a point of discontinuity

of P .

These points of discontinuity were derived by Douady [11] using a disk packing argument.

These points are a good approximation of the discontinuity seen in numerical simulations. However

Douady left open the possibility that other points of discontinuity could exist. For example he

conjectured Lemma (3.2.1). Now we want to see if this intersection point actually lies in the (m,n)-

quadrilateral.

Proposition 3.2.7. The point

x + iy =
m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)
+ i

√
3

2(m2 − n2)

lies in a (m,n)-quadrilateral if and only if the quadrilateral is irregular.

Proof. The vertices g±mn(C), g±mn(D) of the (m,n)-quadrilateral are the end points of the diagonal

of explicitly rhombic lattices in the (m,n)-quadrilateral. From Equations (2.8) and (2.9) the real

parts of these vertices are

Re(gmn(C)) =
2∆nn−∆mn−∆nm + 2∆mm

2(n2 −mn + m2)

Re(gmn(D)) =
2∆nn + ∆mn + ∆nm + 2∆mm

2(n2 + mn + m2)

The point

x + iy =
m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)
+ i

√
3

2(m2 − n2)

will lie in the (m, n) quadrilateral if and only if if the real part of this point is between the real

parts of the vertices g±mn(C), g±mn(D). This happens when Re(g±mn(C)) − x and Re(g±mn(D)) − x

have opposite signs so we compute these quantities.

Re(g±mn(C))− x =
2∆nn−∆mn−∆nm + 2∆mm

2(n2 −mn + m2)
− m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)
⇔

Re(g±mn(C))− x =

(2∆nn−∆mn−∆nm + 2∆mm)(m2 − n2)− (m(2∆m + ∆n)− n(2∆n + ∆m))(n2 −mn + m2)
2(n2 −mn + m2)(m2 − n2)
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Expanding the numerator of this we get

2∆nm2n−∆mm2n−∆nm3 + 2∆mm3

−2∆nn3 + ∆mn3 + ∆nmn2 − 2∆mmn2

−2∆mmn2 −∆nmn2 + 2∆nn3 + ∆mn3

+2∆mm2n + ∆nm2n− 2∆nmn2 −∆mmn2

−2∆mm3 −∆nm3 + 2∆nm2n + ∆mm2n

= +2∆mm2n− 5∆mmn2 + 2∆mn3 − 2∆nm3 + 5∆nm2 − 2∆nmn2

= −∆mn(2m− n)(2n−m) + ∆nm(2m− n)(2n−m)

= −(2m− n)(2n−m)(∆mn−∆nm)

For Re(g±mn(D))− x we get

Re(g±mn(D))− x =
2∆nn + ∆mn + ∆nm + 2∆mm

2(n2 + mn + m2)
− m(2∆m + ∆n)− n(2∆n + ∆m)

2(m2 − n2)
⇔

Re(g±mn(D))− x =

(2∆nn + ∆mn + ∆nm + 2∆mm)(m2 − n2)− (m(2∆m + ∆n)− n(2∆n + ∆m)(n2 + mn + m2)
2(n2 + mn + m2)(m2 − n2)

Expanding the numerator again we get

2∆nm2n + ∆mm2n + ∆nm3 + 2∆mm3

−2∆nn3 −∆mn3 −∆nmn2 − 2∆mmn2

−2∆mmn2 −∆nmn2 + 2∆nn3 + ∆mn3

−2∆mm2n−∆nm2n + 2∆nmn2 + ∆mmn2

−2∆mm3 −∆nm3 + 2∆nm2n + ∆mm2n

= −3∆mmn2 + 3∆nm2n

= −3mn(∆mn−∆nm)

The quantities Re(g±mn(C)) − x and Re(g±mn(D)) − x have opposite signs when their product is
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negative.

(Re(gmn(C))− x)(Re(gmn(D))− x) =
3mn(2m− n)(2n−m)(∆mn−∆nm)2

4(n2 −mn + m2)(n2 + mn + m2)(m2 − n2)2

The factors n2 −mn + m2 is a positive definite quadratic forms in m,n so it is positive when m,n

are not zero. The factors that are squared are all positive and since m, n are positive both mn and

n2 + mn + m2 are positive. So the whole product is negative if and only if (2m − n)(2n − m) is

negative which means that the (m,n)-quadrilateral is irregular.

From this proposition we can conclude that 0 is the absolute minimum of Xp on ∂C′ for

either all points or none of the points on the diagonal of explicitly rhombic lattices in a regular or

(1, 1)-quadrilateral. On the other hand in a irregular quadrilateral 0 is the absolute minimum of Xp

on ∂C′ for part of the diagonal but it is not clear at this point which part. We now resolve these

ambiguities.

Theorem 2. The diagonal of explicitly rhombic lattices of regular quadrilaterals and the (1, 1)-

quadrilateral are fixed points of P . That portion of the diagonal of explicitly rhombic lattices of

irregular quadrilaterals below the intersection point with Equation (3.4) are also fixed points.

Proof. We want to check when ϕn is closer to λm than ϕm−n. The point of discontinuity on the

diagonal is at the intersection point of Equations (3.4) and (3.5). As we move along the diagonal

away from the intersection point ϕn = 0 and so either ϕn = 0 gets closer or further away from λm

than ϕm−n. So we determine on which side of the intersection point we have 0 closer to λm than

ϕm−n. Writing this conditions out we have

| λm − 0 |2 > | λm − ϕm−n |2⇔

δ2
m + m2y2 > (δm − ϕm−n)2 + m2y2 ⇔

δ2
m > δ2

m − 2δmϕm−n + ϕ2
m−n ⇔

2δmϕm−n > ϕ2
m−n
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Now when ϕm−n > 0 we get

2δm > ϕm−n

We can substitute in Equation (3.2) to get

2δm >
| λm |2 − | λm−n |2

2δn

Since ϕm−n and δn are on opposite sides of 0 we get

4δmδn < | λm |2 − | λm−n |2

Since ϕm−n and δn are on opposite sides we get the same result when ϕm−n < 0 as when ϕm−n > 0.

Expanding this result gives

4δmδn < δ2
m + m2y2 − δ2

m−n − (m− n)2y2 ⇔

4δmδn < δ2
m − (δm − δn)2 + (m2 − (m− n)2)y2 ⇔

4δmδn < 2δmδn − δ2
n + (2mn− n2)y2

Adding δ2
n − 2δmδn to both sides

δ2
n + 2δmδn < n(2m− n)y2 ⇔

δn(2δm + δn) < n(2m− n)y2

Now we substitute δm = mx−∆m and δn = nx−∆n in

(nx−∆n)((2m + n)x− (2∆m + ∆n)) < n(2m− n)y2

(x− ∆n

n
)(x− 2∆m + ∆n

2m + n
) <

2m− n

2m + n
y2 (3.6)

Also recall from section 2.4.1 that the Equation for the bottom edge of a (m,n)-quadrilateral is

0 = y2 + (x− ∆n

n
)(x− 2∆m + ∆n

2m + n
) (3.7)

Inequality (3.6) is the region between two branches of a hyperbola which intersects ∂C′ in the

same points as the circle in Equation (3.6). For a regular quadrilateral or a (1, 1)-quadrilateral the
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projection of the diagonal of rhombic lattices is between these two points. Consequently ϕ∗ = 0 is an

absolute minimum. For an irregular quadrilateral only the bottom end point of the diagonal lies in

this region. Therefore ϕn = 0 is an absolute minimum for lattices corresponding to points between

the intersection of Equation (3.4) with the diagonal and the bottom end point of the diagonal.

Figure 3.2: The Local Extrema of Xp and the (m,n)-Hexagons

We are now prepared to describe the bifurcation diagram in H∗. In Figure (2) we see the

(m,n)-hexagons in the “left half” of H∗. The shaded regions of the diagram correspond to lattices

such that the potential function Xp is positive at 0. The lattices such that Xp has a local minimum

at 0 lie on the boundary of the shaded regions. From Theorem (2) we know that the points on the

diagonals of the regular hexagons are fixed points. The union of these diagonals forms a continuous

curve inside a regular region. Above each regular region is either an irregular quadrilateral or a

(2, 1)-quadrilateral. In the irregular quadrilateral we know from Theorem (2) that the points on the

lower portion of the diagonal are fixed points. These join up with the curve of fixed points in the

regular regions to form an entire branch of fixed points of P . For a (2, 1)-quadrilateral the points

of discontinuity lie on the edge of the quadrilateral (see proposition (3.2.3)). This intersects the
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diagonal at the top vertex of the quadrilateral. This diagonal joins the curve of fixed points in the

regular region below the (2, 1)-quadrilateral to form another branch of fixed points of P . This is

shown in Figure (2) for the “left half” of H∗.

Figure 3.3: The Bifurcation Diagram of P

Recall from the beginning of this chapter that the edge of implicitly rhombic lattices in the

fundamental quadrilateral are fixed points. There are no points of discontinuity in the fundamental

quadrilateral because there is only one local minimum for Xp on ∂C′. The edge of implicitly rhombic

lattices in the fundamental quadrilateral are fixed points. These join up with the diagonal of explic-

itly rhombic fixed points in the (1, 1)-quadrilateral. This in turn meets the point of discontinuity at

the top vertex of the (2, 1)-quadrilaterals. This superficially resembles a pitchfork bifurcation but

in fact it is just three branches of fixed points that share an endpoint at a point of discontinuity.

In conclusion we have a branch of fixed points corresponding to each regular region and one more

branch of fixed points contained in the line x = 1/2.

3.3 Spectral Stability of the Fixed Points

The spiral configurations are well known in plants and they emerge naturally from the

dynamical system. Plant development in nature is somewhat exposed to the environment so we also

need to show that the fixed points of the dynamical system are stable. This is done in the following
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theorem.

Theorem 3. The fixed points of P are spectrally stable

Proof. Let λm, λn ∈ C′ with m > n be the starting location of a pair of particles within Λ + iy

such that the boundaries of their Voronoi cells contain φ∗. So φ∗ is the intersection point of the

orthogonal bisector of λm + iy, λn + iy with ∂C′.

For j > 0 the partial derivatives are
∂Pj

∂dk
=

∂dj−1

∂dk
which is 1 when k = j − 1 and 0

otherwise. For
∂P0

∂dk
we have to consider how φ∗ varies with dk.

Recall that λm = δm+imy, λn = δn+iny. The intersection point of the orthogonal bisector

of λm + iy, λn + iy with ∂C′ is

φ∗ =
| λm + iy |2 − | λn + iy |2

2(δm − δn)

To compute
∂φ∗

∂dj
it is convenient to rewrite this as

φ∗ =
δ2
m + (m + 1)2y2 − δ2

n − (n + 1)2y2

2(δm − δn)

=
δ2
m − δ2

n

2(δm − δn)
+

((m + 1)2 − (n + 1)2)y2

2(δm − δn)

=
1
2
(δm + δn) +

(m− n)(m + n + 2)y2

2(δm − δn)

=
1
2
(
m−1∑

k=0

dk +
n−1∑

k=0

dk) +
(m− n)(m + n + 2)y2

2
∑m−1

k=n dk

There are three cases for
∂φ∗

∂dj
according to whether j < n, n ≤ j < m, or m ≤ j. When j < n we

have
∂φ∗

∂dj
=

1
2
(1 + 1) = 1 and therefore

∂P0

∂dj
= −1. This also follows from the fact that when we

change dj for j < n we rotate λm, λn by equal amounts so that φ∗ is rotated by the same amount.

When m ≤ j the
∂P0

∂dj
= −∂φ∗

∂dj
= 0. This also follows from the fact that changing dj for j ≥ m has

no effect on the location of λm, λn.

When n ≤ j < m

∂φ∗

∂dj
=

1
2
(1)− (m− n)(m + n + 2)y2

2
(∑m−1

k=n dk

)2

=
1
2
− (m− n)(m + n + 2)y2

2(δm − δn)2
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This value is the same for any j satisfying inequality n ≤ j < m so we denote this value by a. As

we rotate λm with respect to λn φ∗ will follow so a is positive and it is less than 1/2 since m > n.

In other words rotating λm with respect to λn rotates φ∗ less than half the amount.

So the differential of the map P is a matrix of the form:




−1 . . . . . . −1 −a . . . −a 0 . . . 0

1 0 . . . . . . . . . . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . . . . . . . . . 0

0 0 1 0 . . . . . . . . . . . . . . . 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 1 0




where the first −a term occurs at column n− 1 and the last −a term appears at column m− 1.

The first m− 1 columns of the matrix representing the linearized map determine the non-

zero members of its spectrum. This upper m − 1 × m − 1 block of the matrix has the form of

a rational canonical matrix with the entries reflected about the non-main diagonal. This type of

reflection does not change the characteristic polynomial of the matrix. The characteristic Equation

is

σm−1 + σm−2 + . . . σm−n + aσm−n−1 + aσm−n−2 + . . . + a = 0 (3.8)

Note that since all the coefficients are positive none of the roots of the polynomial can be positive

real numbers. We want to show that the roots of the characteristic polynomial have modulus less

than 1. We do this in two steps. First by showing that the modulus of the roots are not greater

than 1 and then by showing that the modulus of the roots are not equal to 1. First multiply both
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sides of Equation (3) by σ − 1 to get

σm + (a− 1)σm−n − a = 0

which we can rewrite as

σm − a = (1− a)σm−n

The set S1 = {σm − a :| σ |= s} where s is a positive real number is a circle of radius sm about the

point −a and the set S2 = {(1 − a)σm−n :| σ |= s} is a circle of radius (1 − a)sm−n about 0. The

intersection of these two circles is a necessary (but not sufficient) condition for a root with modulus

s to exist.

We want to show that when s > 1 all the points on the circle S1 have larger modulus than

the points on the circle S2. From this we can conclude there are no roots with modulus greater than

1. The point on the circle S1 with the smallest modulus is sm − a while all the points on the circle

S2 have modulus (1− a)sm−n. So we want to show

sm − a > (1− a)sm−n

sm + (a− 1)sm−n − a > 0

(sm−1 + sm−2 + . . . sm−n + asm−n−1 + asm−n−2 + . . . + a)(s− 1) > 0

The first factor is positive when s > 0 and the second is positive when s > 1. Thus when s > 1

the product is indeed positive. Therefore the two circles don’t intersect and there are no roots with

modulus greater than 1.

Now suppose s = 1, then the point on the circle S1 with the smallest modulus is 1−a while

all the points on the circle S2 have modulus 1−a. Thus the two circles intersect at exactly one point

1 − a. We have to check now if this intersection point actually yields a root for the characteristic

polynomial. So we look for some σ such that

σm − a = 1− a = (1− a)σm−n

σm = 1 and σm−n = 1
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When m, m − n are coprime (or equivalently when m,n are coprime) σ = 1 is the only solution.

When the configuration is a half lattice m,n are coprime. But we already know that there are no

positive real roots for the characteristic polynomial. Therefore all the roots of the polynomial have

modulus less than 1 and the spectrum of the fixed points lies in the unit disk of C. The fixed points

are spectrally stable.

3.4 Periodic Points of P

We consider periodic orbits of P . A periodic orbit is a sequence {dj} that returns to itself

after a certain number (say η) of iterations of the map. The condition P (η)({dj}) = {dj} gives

dj = dj+η. In other words the sequence of divergence angles are themselves periodic with period η.

The corresponding configuration {rj} is half of a regular point set in a cylinder.

Several periodic orbits have been found numerically. The following examples used the am-

bient metric of C∗ for the cylinder. In phyllotaxis this is known as the centric representation. The

points of the configuration lie on concentric circles about the origin with radii increasing exponen-

tially. The unit circle in C represents the apex. The radii of the circles are powers of the radius of

the first circle beyond the unit circle. This radius is a parameter of the system which we denote by

R.

When R = 7/6 the period 4 orbit {257.211o, 170.505o, 76.601o, 170.505o, 257.211o, . . .} was

observed. When R = 5/4 the period 6 orbit, {213.825o,80.546o,131.704o,91.665o,192.991o,253.733o,

213.825o,. . .} was observed. One of the more interesting periodic orbits was observed at R = 1.066.

This is the period 8 orbit whose angles are roughly {130o,89o,89o,130o,89o,89o,130o,315o,130o,. . .}.

This orbit matches up fairly well with the one which has been observed by Tucker [51] in the

development of magnolia carpels. This orbit is {134o,94o,83o,138o,92o,86o,136o, 310o,134o,. . .}.

The ability of this dynamical system to explain both the prevalence of the Fibonacci num-

bers as well as this less well known type of phyllotaxis suggests that the door has been opened to a

greater unification of phyllotactic forms.
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Chapter 4

The Second Family of Dynamical

Systems

4.1 Definition of the Potential

The Dynamical System defined in Chapter 3 assumed that the repulsive potential generated

by a primordia only exerted an influence around that primordium. Another possibility is that all of

the primordia exert an influence so that the repulsion experienced is a sum of the repulsion generated

by all of the primordia. This leads us to define

Wp({dj}, ζ) =
∑

j∈N
|rj + iy − ζ|−p p > 1

for ζ ∈ C′. As before we are interested in the potential on the apical ring ∂C ′. We parameterize

∂C′ with φ. When Wp({dj}, φ) has a unique absolute minimum on ∂C′ denote it by φ∗. The map

P : T∞ → T∞ is defined as before

P0({dj} = −φ∗

Pj({dj} = dj−1 j ∈ Z+
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Like before the map P is not not defined on all of T∞ because not every configuration leads to a

unique absolute minimum on ∂C′.

4.2 Equivalence of Bifurcation Diagrams

Once again we seek the fixed points of P . The condition P ({dj}) = {dj} gives dj =

−φ∗ j ∈ N like before and the configurations fixed by P are half spiral lattices Λ′ ∈ C′. After

translating the configuration up and adding the new particle the resulting configuration is just a

copy of Λ′ rotated by −φ∗. To iterate again we rotate the configuration back so that θ0 = 0. As in

Chapter 3 we focus on the space of spiral lattices H∗ and make use of the notation from chapter 2.

The parameter y of the dynamical system, P , corresponds to the imaginary part of a point z ∈ H∗

and rj = λj(z). As in Chapter 3 it is convenient to work with the untranslated lattice. We think of

Wp as being generated by particles at the points {λj | j ∈ Z+}. We are now interested having the

absolute minimum at 0.

The potential is smooth on ∂C′. A necessary (but not sufficient) condition for 0 to be an

absolute minimum is that it be a zero of ∂Wp

∂φ . Thus we compute the partial derivative.

∂

∂φ
|λj − φ|−p =

∂

∂φ
(|λj − φ|2)−p/2

= p(δj − φ)|λj − φ|−p−2

Differentiating the series term by term gives

∂Wp

∂φ
= p

∞∑

j=0

(dj − φ)|λj − φ|−p−2 (4.1)

∂Wp

∂φ

∣∣∣∣
φ=0

= p

∞∑

j=0

δj |λj |−p−2 (4.2)

The zero set of this function contains the set of fixed points for the map P .

Definition 4.2.1. We denote the zero set of
∂Wp

∂φ

∣∣∣∣
φ=0

by Z0.

The ultimate goal is to show show that the bifurcation diagram for this map is Topologically

the same as that obtained with the potential Xp and that the branches go through regular regions
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just as with Xp, i.e. that the two bifurcation diagrams are essentially equivalent. The following

theorem brings us closer to this result by showing that Z0 does just that. What remains to be done

is to estimate the variation in curves of discontinuity for the map defined with Wp from the curves

of discontinuity for the map defined with Xp. Computer simulations indicate this variation is small

and that the curves of discontinuity continue to lie in the irregular quadrilaterals. Therefore that

part of Z0 that lies in the regular regions would indeed be fixed points.

Theorem 4. For each m,n defining a regular region, Rmn, and for p ≥ 23 the intersection of Z0

with Rmn and a horizontal line consists of a single point

This theorem is like one proved by Kunz [33]. This result goes beyond it in three ways.

First Kunz only establishes the existence of a value for K0 (he uses K where we use p) such for

K > K0 his theorem holds. While we have established a specific value, i.e. 23, such that Theorem

(4) holds for all p > 23. Second Theorem (4) holds for all regular regions while Kunz’s theorem is

only established for some of the regular regions (he uses the term regular branches and doesn’t make

use of Hyperbolic tessellations). And third he does not establish the uniqueness of his branches

leaving the topology of the diagram in question.

This theorem will be proved through a sequence of lemmas. We begin by defining a tubular-

like neighborhood about the bifurcation diagram for the Xp potential. There are two main steps in

the proof. First we show that Z0 lies inside of this tubular-like neighborhood and that there must

be at least one branch inside the intersection of this tubular-like neighborhood with each regular

region. Second we show that there is at most one branch inside the intersection of this neighborhood

with a regular region.

4.2.1 Hyperbolic Tubular-like Neighborhood of the Xp Bifurcation Dia-

gram

It is fairly easy to define a tubular neighborhood around the set of explicitly rhombic

lattices in H. Let ε be some small positive number and set α = 1 + ε. Take the intersection of the
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fundamental quadrilateral with the (Euclidean) circle about the origin with radius α. Reflect this arc

about the unit circle to obtain a second arc in the fundamental quadrilateral with radius 1/α. These

arcs are segments of hyperbolic lines. The union of these two lines are invariant under the isotropy

group of the fundamental quadrilateral. We now act on these hyperbolic lines with the extended

Level 2 congruence subgroup to produce lines surrounding the set of explicitly rhombic lattices in H.

The set of points in each quadrilateral between these lines forms a tubular like neighborhood around

the line of explicitly rhombic lattices. Note that while these lines are parallel in the hyperbolic

plane the width between them is not fixed. This is of course a characteristic feature of hyperbolic

geometry. Denote this tubular like neighborhood by Tε.

Recall that the canonical bases for lattices associated to the points z in the fundamental

quadrilateral is made up of ±1 and ±z. For z between the two arcs in the fundamental quadrilateral

the ratio between the lengths of 1 and z is between 1/α and α. When z is outside of this region the

ratio of the lengths is outside the interval [1/α, α]. It remains the case that for the lattices associated

to points in Tε the ratio between the lengths of the members of the canonical bases is in the interval

[1/α, α] regardless of which quadrilateral we are in. While for lattices associated to points outside

of Tε the ratio of the lengths of the members of a canonical bases is outside of the interval [1/α, α].

This tubular like neighborhood contains the Cayley graph of the extended Level 2 congru-

ence subgroup but we only want a neighborhood of the branches of the fixed points of the dynamical

system defined using the potential Xp. To get a neighborhood of the branches in the regular regions

we begin by taking the intersection of Tε with the union of the regular regions. However the branches

pass through the triple points and any neighborhood of a triple point must intersect an irregular

quadrilateral. Consequently we want to include some part of Tε in the irregular quadrilaterals.

Let G be the intersection point of the circle with radius alpha about the origin with the

line x = 1/2. Explicitly G =
1 + i

√
4α2 − 1
2

. The image of G under the map z 7→ 1/z is G/α2. We

can draw an Euclidean line through the origin, G/α2 and G. The segment of this line inside the

fundamental quadrilateral bounds a wedge of Tε.
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Figure 4.1: Fundamental wedge

Definition 4.2.2. The region in the fundamental quadrilateral bounded by the Euclidean line

segment connecting G to G/α2, the hyperbolic line segment connecting G/α2 to (1 +
√

3)/2, and

the line segment connecting (1 +
√

3)/2 to G is called the fundamental wedge. The image of this

wedge under the map gmn(z) is called a (m,n)-wedge

Note that the image of the Euclidean line passing through the origin and G under the

Möbius transformation gmn(z) is a circle containing the ideal vertices of the (m,n)-quadrilateral.

These wedges are contained in Tε. To obtain the neighborhood of the branches in the regular regions

we want to include the (m,n)-wedges from the irregular quadrilaterals. Note that since the imaginary

part of gmn(C) is always larger than the imaginary part of gmn(D) these wedges only contain the

top vertices of the irregular quadrilaterals.

Definition 4.2.3. The set Σε is the intersection of Tε with the union of the regular regions joined

with the (m,n)-wedges of the irregular quadrilaterals.
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Figure 4.2: (m,n)-wedge

4.2.2 Regular quadrilaterals

For sufficient stiffness the branches must lie in Σε

We begin by showing that we can compare
∂Wp(z, φ)

∂φ

∣∣∣∣
φ=0

with
∂Xp(z, φ)

∂φ

∣∣∣∣
φ=0

outside of

Σε.

Lemma 4.2.1. Given α ∈ (1, 2] and p such that p > 2 +
√

3 and 32(α + 1) < αp then for z in a

regular (m,n)-hexagon and z /∈ Σε, the functions
∂Wp(z, φ)

∂φ

∣∣∣∣
φ=0

and
∂Xp(z, φ)

∂φ

∣∣∣∣
φ=0

have the same

sign.

Proof. For some m ∈ N depending on z = x + iy ∈ H∗

Xp({δj}, φ) = sup
j∈N

{|λj − φ|−p} = |λm − φ|−p

∂Xp

∂φ

∣∣∣∣
φ=0

= pδm|λm|−p−2

The quantity m is unique in the interior of a half of a quadrilateral. The zero set of
∂Xp

∂φ

∣∣∣∣
φ=0

= p

is δm = 0 ⇔ mx ∈ Z ⇔ x ∈ 1
mZ. This line is only contained in a (m, n)-quadrilateral when it is

irregular. So ∂Xp

∂φ

∣∣∣
φ=0

is not zero outside of Σε.
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Since δm(z) 6= 0 for z in a regular quadrilateral we can compute the ratio of the two

potentials.

∂Wp

∂φ

∣∣∣
φ=0

∂Xp

∂φ

∣∣∣
φ=0

=
p

∑∞
j=0 δj |λj |−p−2

pδm|λm|−p−2
=

∞∑

j=0

∣∣∣∣
λj

λm

∣∣∣∣
−p−2

δj

δm
= 1 +

∞∑

j=0 j 6=m

∣∣∣∣
λj

λm

∣∣∣∣
−p−2

δj

δm

∂Wp

∂φ

∣∣∣
φ=0

∂Xp

∂φ

∣∣∣
φ=0

− 1 =
|λm|
δm

∞∑

j=0 j 6=m

∣∣∣∣
λj

λm

∣∣∣∣
−p−1

δj

|λj |

We want to show that for a given ε there is a N such that for p > N the functions ∂Wp

∂φ

∣∣∣
φ=0

and

∂Xp

∂φ

∣∣∣
φ=0

have the same sign in a (m,n)-hexagon outside of the ε tubular neighborhood. We will

proceed through a series of lemmas. Define

Sp =

∂Wp

∂φ

∣∣∣
φ=0

∂Xp

∂φ

∣∣∣
φ=0

− 1

When |Sp| < 1 the functions ∂Wp

∂φ

∣∣∣
φ=0

and ∂Xp

∂φ

∣∣∣
φ=0

must have the same sign.

|Sp| ≤
∣∣∣∣
λm

δm

∣∣∣∣
∞∑

j=0 j 6=m

∣∣∣∣
λj

λm

∣∣∣∣
−p−1 ∣∣∣∣

δj

λj

∣∣∣∣ ≤
∣∣∣∣
λm

δm

∣∣∣∣
∞∑

j=0 j 6=m

∣∣∣∣
λj

λm

∣∣∣∣
−p−1

since
∣∣∣ δj

λj

∣∣∣ ≤ 1. The sum
∑∞

j=0 j 6=m

∣∣∣ λj

λm

∣∣∣
−p−1

is like taking the Wp+1 potential on a half lattice

obtained from Λ′ by scaling by a factor of |λm|−1.

We use a density argument to bound
∑∞

j=0 j 6=m

∣∣∣ λj

λm

∣∣∣
−p−1

. We count the points of Λ′/|λm|

by applying the density argument to the planar lattice L/|λm|. This will be an over count of the

points in Λ′/|λm|.

Lemma 4.2.2. Given α ∈ (1, 2] and p > 2 +
√

3 then for any z in a regular (m,n)-hexagon and

z /∈ Σε we have
∞∑

j=0 j 6=m

∣∣∣∣
λj

λm

∣∣∣∣
−p−1

<
8(α + 1)

αp

Proof. Define the annulus

Ak = {z ∈ C | (k − 1)α ≤ |z| < kα}

where α is defined in Section (4.2.1). We seek an upper bound on the number of points in L/λm∩Ak.

All of the points of L/|λm— are at least distance 1 apart. So L/|λm— can be covered by disjoint
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open disks of radius 1/2 centered on the lattice points. The union of the disks covering the points

in L/|λm| ∩Ak is contained in the annulus

Bk = {z ∈ C | (k − 1)α− 1
2

< |z| ≤ kα +
1
2
}

This has area

m(Bk) = π(kα +
1
2
)2 − π((k − 1)α− 1

2
)2 = πα(α + 1)(2k − 1)

We can divide this in half since Λ′/|λm| is contained in H we only look at the area of Bk ∩H. This

still over counts the points of Λ′/|λm|. The area of a disk is π/4 so there is at most 2α(α+1)(2k−1)

disks in Bk and therefore at most that many lattice points in Ak.

The norm on the lattice points of Ak is bounded from below by (k − 1)α so the potential

any of then generates is bounded from above by (k − 1)−p−1α−p−1. The total potential generated

by the lattice points of Ak is bounded from above by

2α(α + 1)(2k − 1)
αp+1(k − 1)p+1

=
2(α + 1)(2k − 1)

αp(k − 1)p+1

Now we sum over all of the annuli. Note that by the definition of α the set Λ′/λm∩A1 only contains

λm/λm. Since were summing over j 6= m the annulus A1 contributes nothing.

∞∑

k=2

2(α + 1)(2k − 1)
αp(k − 1)p+1

=
2(α + 1)

αp

∞∑

k=2

2k − 1
(k − 1)p+1

=
2(α + 1)

αp

∞∑

k=1

2k + 1
kp+1

≤ 2(α + 1)
αp

3p2 − 1
p2 − p

When p > 2 +
√

3 the fraction
3p2 − 1
p2 − p

< 4. So we have

∞∑

k=2

2(α + 1)(2k − 1)
αp(k − 1)p+1

≤ 8
α + 1
αp

Using this result we have

|Sp| ≤ 8
α + 1
αp

∣∣∣∣
λm

δm

∣∣∣∣

Now we seek bounds on
∣∣∣λm

δm

∣∣∣.
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Figure 4.3: (m,n)-Hexagon

Lemma 4.2.3. For z in a (m,n)-hexagon
∣∣∣∣
λm(z)
δm(z)

∣∣∣∣ < 4

Proof. We can rewrite the ratio
∣∣∣∣
λm

δm

∣∣∣∣
2

=
δ2
m + m2y2

δ2
m

= 1 +
(

my

δm

)2

Let z be a point in the m side of a (m,n)-hexagon.

The slope of a (Euclidean) line through the ideal vertex Dm/m and the point z is

y − 0
x−Dm/m

m

m
=

my

mx−Dm
=

my

δm

Where we have used the fact that we are in a (m,n)-quadrilateral in the denominator. Thus
∣∣∣λm

δm

∣∣∣
2

is an increasing function of the slope of this line. As the slope increases the last point of intersection

of the line with the hexagon is gmn(A). So evaluating the slope of the line connecting Dm/m with

gmn(A) will give us an upper bound on
∣∣∣λm

δm

∣∣∣. Using Equation (2.6) we compute the slope.
√

15
2(n2−mn+4m2) − 0

2Dnn−Dmn−Dnm+8Dmm
2(n2−mn+4m2) − Dm

m

=
√

15m

m(2Dnn−Dmn−Dnm + 8Dmm)− 2Dm(n2 −mn + 4m2))

=
√

15m

2n + m
(4.3)

where we use the fact that Dnm −Dmn = 1 to simplify the denominator. Thus
∣∣∣∣
my

δm

∣∣∣∣ < 15. This

gives
∣∣∣∣
λm(A)
δm(A)

∣∣∣∣
2

= 1 +
15m2

(2n + m)2
≤ 16. Therefore

∣∣∣∣
λm

δm

∣∣∣∣ ≤ 4



78

Using the result of Lemma (4.2.3) we can complete the proof of Lemma (4.2.1). We know

that

|Sp| ≤ 8
α + 1
αp

4 = 32
α + 1
αp

The right hand side is less than 1 if 32(α + 1) < αp.

Consequently
∂Wp(z, φ)

∂φ

∣∣∣∣
φ=0

and
∂Xp(z, φ)

∂φ

∣∣∣∣
φ=0

have the same sign for z in a regular

(m,n)-hexagon and z /∈ Σε.

We know that for z in a regular (m,n)-hexagon and outside of Σε the function
∂Xp(z, φ)

∂φ

∣∣∣∣
φ=0

is never zero and so therefore
∂Wp(z, φ)

∂φ

∣∣∣∣
φ=0

is never zero on these regions. Now we want to show

that no branches go through the wedges of Σε.

Lemma 4.2.4. Given α ∈ (1, 2] and p such that p > 2 +
√

3 and 16(α2 + 1) < αp−2 then for z in a

(m + n,m)-wedge, the functions
∂Wp(z, φ)

∂φ

∣∣∣∣
φ=0

and
∂Xp(z, φ)

∂φ

∣∣∣∣
φ=0

have the same sign.

Proof. Recall from equation (4.2) that

∂Wp

∂φ

∣∣∣∣
φ=0

= p

∞∑

j=0

δj |λj |−p−2

Let

A = 1 +
δm

δm+n

∣∣∣∣
λm

λm+n

∣∣∣∣
−p−2

+
δn

δm+n

∣∣∣∣
λn

λm+n

∣∣∣∣
−p−2

.

We rewrite the sum as

∂Wp

∂φ

∣∣∣∣
φ=0

= pδm+n|λm+n|−p−2


A +

∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2




We want to show that A > 1. Since |λm| < |λn| we know that
∣∣∣∣

λm

λm+n

∣∣∣∣
−p−2

>

∣∣∣∣
λn

λm+n

∣∣∣∣
−p−2

.

Since the wedge is in an irregular quadrilateral its projection onto ∂H∗ is outside the interval

[Dm+n/(m + n), Dm/m] the m and m + n parastichies are not opposed so that δm and δm+n must

have the same sign. The actual bound on α to assure this still needs to be determined. Since the
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(m + n, m)-wedge is on the side of a regular region the m and n parastichies are opposed. Because

δm+n = δm + δn we know that |δm| > |δn| and that
δm

δm+n
>

δn

δm+n
. Therefore

δm

δm+n

∣∣∣∣
λm

λm+n

∣∣∣∣
−p−2

+
δn

δm+n

∣∣∣∣
λn

λm+n

∣∣∣∣
−p−2

> 0

and A > 1. Now we want to bound the absolute value of the sum

∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2

When this bound is below 1 we know that
∂Wp

∂φ

∣∣∣∣
φ=0

has the same sign as pδm+n|λm+n|−p−2 which

has the same sign as pδm|λm|−p−2 =
∂Xp

∂φ

∣∣∣∣
φ=0

since δm and δm+n have the same sign.

∣∣∣∣∣∣

∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2

∣∣∣∣∣∣
=

∣∣∣∣
λm+n

δm+n

∣∣∣∣
∞∑

j 6=m,n,m+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−1 ∣∣∣∣

δj

λj

∣∣∣∣

≤
∣∣∣∣
λm+n

δm+n

∣∣∣∣
∞∑

j 6=m,n,m+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−1

As with Lemma (4.2.3) we bound the factors of the above expression separately.

Lemma 4.2.5. Given α ∈ (1, 2] and p > 2 +
√

3 then for z in a (m + n,m)- wedge with |λm(z)| <

|λm+n(z)| we have
∞∑

j 6=m,n,m+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−1

≤ 8(α2 + 1)
αp−1

Proof. We use a density argument as in Lemma (4.2.2). We over count the points of Λ′/|λm+n| by

working with L/|λm+n|. We define the annuli Ak like before:

Ak = {z ∈ C | (k − 1)α ≤ |z| < kα}

We seek an upper bound on the number of points in L/|λm+n| ∩ Ak. All the points of the lattice

L/|λm+n| are at least distance
∣∣∣∣

λm

λm+n

∣∣∣∣ =
1
α

apart. We can cover the points of L/|λm+n| ∩Ak with

disks of radius 1/(2α). The union of these disks is contained in

Bk = {z ∈ C | (k − 1)α− 1
2α

≤ |z| < kα +
1
2α
}

This is slightly smaller than the Bk in Lemma (4.2.2) and it has area

m(Bk) = π(kα +
1
2α

)2 − π((k − 1)α− 1
2α

)2 = π(α2 + 1)(2k − 1)
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We divide this in half because we only want to count those points in H. The area of a disk is π/(4α2)

so there is at most 2α2(α2 +1)(2k− 1) lattice points in Ak. The potential generated individually by

these lattice points is no more than (k− 1)−p−1α−p−1 and the potential generated by the all lattice

points in Ak is

2(α2 + 1)(2k − 1)
αp−1(k − 1)p+1

We claim that when α <
√

2 the only points of L/|λm+n| in A1 are λn/|λm+n|, λm/|λm+n|,

and λm+n/|λm+n|. The point in L/|λm+n with smallest modulus is λm+n/|λm+n|, the point with the

second smallest modulus is λm/|λm+n|, and the point with the third smallest modulus is λn/|λm+n|.

The point λn/|λm+n| is the difference between λm/|λm+n| and λm+n/|λm+n so the point of L/|λm+n|

with the fourth smallest modulus is the sum of λm/|λm+n| and λm+n/|λm+n. This lattice is homo-

thetic to a lattice corresponding to a point of the fundamental wedge. Two points of this lattice with

smallest modulus are 1 and a z in the fundamental wedge. Their sum 1 + z achieves the smallest

modulus over all z in the fundamental wedge when z = G/α2.

When α <
√

2 we have |1 + G/α2| > α. To see this we compute |1 + G/α2|.

|1 + G/α2| > α ⇔

|α2 + G| > α3 ⇔

|α2 + G|2 > α6 ⇔

|α2 +
1
2

+ i
1
2

√
4α2 − 1|2 > α6 ⇔

(α2 +
1
2
)2 +

1
4
(4α2 − 1) > α6 ⇔

α4 + α2 +
1
4

+ α2 − 1
4

> α6 ⇔

α4 + 2α2 > α6 ⇔

−α6 + α4 + 2α2 > 0 ⇔

(α2 + 1)(2− α2) > 0 ⇔

α <
√

2
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So now we sum over all the annuli except A1, this over counts the points even more than

in Lemma (4.2.2).

∞∑

k=2

2(α2 + 1)(2k − 1)
αp−1(k − 1)p+1

=
2(α2 + 1)

αp−1

∞∑

k=2

(2k − 1)
(k − 1)p+1

=
2(α2 + 1)

αp−1

3p2 − 1
p2 − p

When p > 2 +
√

3 the fraction
3p2 − 1
p2 − p

< 4 so

∞∑

j 6=m,n,m+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−1

≤ 8(α2 + 1)
αp−1

Lemma 4.2.6. For z in a (m + n,m)-wedge
∣∣∣∣
λm+n(z)
δm+n(z)

∣∣∣∣ < 2α

Proof. Like before
∣∣∣∣
λm+n(z)
δm+n(z)

∣∣∣∣
2

= 1 +
(

(m + n)y
δm+n

)2

The point of the wedge that makes the largest slope (in absolute value) with Dm+n/(m + n) is

gm+n,m(G). See Figure 4.2 We compute gm+n,m(G).

gm+n,m(G) =
Dm+n

(
1+i

√
4α2

2α2

)
−Dm

(m + n)
(

1+i
√

4α2

2α2

)
−m

=
4α2(α2Dmm + Dm+n(m + n))− 2α2(Dm+nm + Dm(m + n)) + i2α2

√
4α2 − 1

4α2(α2m2 − (m + n)m + (m + n)2)

The slope this point makes with the point Dm+n/(m + n) is

−
√

4α2 − 1(m + n)
2α2m + (m + n)

This is bounded in absolute value by
√

4α2 − 1. Therefore

∣∣∣∣
λm+n

δm+n

∣∣∣∣
2

< 1 + (4α2 − 1)
∣∣∣∣
λm+n

δm+n

∣∣∣∣ < 2α
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We can now conclude from Lemmas (4.2.5) and (4.2.6) that
∣∣∣∣∣∣

∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2

∣∣∣∣∣∣
<

16(α2 + 1)
αp−2

Thus A +
∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2

> 1 − 16(α2 + 1)
αp−2

. Given α we can find N such that for

p > N the factor A +
∞∑

j 6=m,n,m+n

δj

δm+n

∣∣∣∣
λj

λm+n

∣∣∣∣
−p−2

is bounded away from zero. This concludes the

proof of Lemma (4.2.4).

From Lemmas (4.2.1) and (4.2.4) we can conclude that
∂Wp

∂φ

∣∣∣∣
φ=0

is not zero outside of Σε.

Furthermore the function
∂Xp

∂φ

∣∣∣∣
φ=0

has opposite signs in the two halves of a quadrilateral so that

∂Wp

∂φ

∣∣∣∣
φ=0

must have opposite signs in the two halves of a quadrilateral outside of Σε. Therefore

∂Wp

∂φ

∣∣∣∣
φ=0

must be zero somewhere inside of Σε.

Uniqueness of Z0 in Σε

We look at how
∂Wp

∂φ

∣∣∣∣
φ=0

varies as we change x keeping y constant. If this is a monotonic

function it can only have one zero so that Wp can have only one extremal point in the intersection

of a horizontal line with a regular region. This leads to the following lemma.

Lemma 4.2.7. Given α ∈ (1, 2] and p > 14 + 256(α + 1)/αp then for z ∈ Σε the function

∂

∂x

∂Wp

∂φ

∣∣∣∣
φ=0

is negative

Proof. Begin by computing the derivative. We take the derivative of both sides of the equation (4.2)

∂

∂x

∂Wp

∂φ

∣∣∣∣
φ=0

=
∂

∂x
p

∞∑

j=0

δj |λj |−p−2

= p

∞∑

j=0

((
∂

∂x
δj)|λj |−p−2 + δj(

∂

∂x
|λj |−p−2))

Using the facts

∂δj

∂x
= j,

∂

∂x
|λj |−p−2 = −j(p + 2)δj |λj |−p−4,
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we get

∂

∂x

∂Wp

∂φ

∣∣∣∣
φ=0

= p

∞∑

j=0

j|λj |−p−4(j2y2 − (p + 1)δ2
j )

We want this to be negative or equivalently we want the following inequality to hold.

m∑

j=0

j|λj |−p−4((p + 1)δ2
j − j2y2) >

∞∑

j=m+1

j|λj |−p−4(j2y2 − (p + 1)δ2
j )

Where λm is the smallest nonzero point of the half lattice Λ′. Each of the factors in the terms of

the sum on the left hand side is always positive except possibly for ((p + 1)δ2
j − j2y2). We want to

determine p so that each term of the left hand side is positive. This happens when

p >
j2y2

δ2
j

− 1

for j ∈ {0, . . . , m}. The ratio
jy

δj
is the slope of λj . Now we already have a bound on this slope for

the case j = m from equation (4.3). Also recall from section (3.2.1) that for j < m the point λj

is closer to ∂C′ than λm. However λm is the point of Λ′ with the smallest modulus. Therefore the

slopes are even smaller when j < m. Consequently

√
15 >

jy

δj
j ∈ {0, . . . ,m}

So when p > 14 every term on the left hand side of the inequality is positive. Now since every term

on the left hand side of the inequality is positive the inequality holds if only a single term on the

left hand side is larger than the right hand side. We can consider the mth term. We want

m|λm|−p−4((p + 1)δ2
m −m2y2) >

∞∑

j=m+1

j|λj |−p−4(j2y2 − (p + 1)δ2
j )

Define T 2
j (z) =

j2y2

δ2
j (z)

. We can rewrite this inequality as

m|λm|−p−4(p + 1− T 2
m)δ2

m >

∞∑

j=m+1

j|λj |−p−4(T 2
j − (p + 1))δ2

j

Now using

δ2
j

|λj |2 =
1

1 + j2y2

δ2
j

=
1

1 + T 2
j

,
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we can further rewrite Inequality (4.4).

m|λm|−p−2(p + 1− T 2
m)

1
1 + T 2

m

>

∞∑

j=m+1

j|λj |−p−2(δ2
j − (p + 1))

1
1 + T 2

j

m|λm|−p−2(p + 1− T 2
m)

1
1 + T 2

m

>

∞∑

j=m+1

j|λj |−p−2
δ2
j

1 + T 2
j

− (p + 1)
∞∑

j=m+1

j

1 + T 2
j

|λj |−p−2

The sum
∞∑

j=m+1

j

1 + T 2
j

|λj |−p−2 is positive and so the Inequality (4.4) holds when

m|λm|−p−2(p + 1− T 2
m)

1
1 + T 2

m

>

∞∑

j=m+1

j|λj |−p−2
δ2
j

1 + T 2
j

This estimate is exceedingly rough. By obtaining a better estimate at this point in the proof of

Theorem (4) there is a good chance of strengthening the result. However we continue on with this

estimate and divide through by m|λm|−p−2 which gives

p + 1− T 2
m

1 + T 2
m

>
1
m

∞∑

j=m+1

j

∣∣∣∣
λj

λm

∣∣∣∣
−p−2 δ2

j

1 + T 2
j

And since
δ2
j

1 + T 2
j

< 1 it suffices to show that

p + 1− T 2
m

1 + T 2
m

>
1
m

∞∑

j=m+1

j

∣∣∣∣
λj

λm

∣∣∣∣
−p−2

We want to find an upper bound on the right hand side. We can rewrite this as

1
m

∞∑

j=m+1

j

∣∣∣∣
λj

λm

∣∣∣∣
−p−2

=
1
m

∞∑

j=m+1

j

∣∣∣∣
λj

λm

∣∣∣∣
−1 ∣∣∣∣

λj

λm

∣∣∣∣
−p−2

We seek an h > 0 such that
∣∣∣∣
λm

λj

∣∣∣∣ <
j

m
h because with this h the above inequality holds when

p + 1− T 2
m

1 + T 2
m

> h−1
∞∑

j=m+1

∣∣∣∣
λj

λm

∣∣∣∣
−p−1

(4.4)

Let hj = Im

(
λj

|λm|
)

where, as before, λm is the smallest nonzero member of Λ′. We want to focus

on hm.

h2
m =

m2y2

δ2 + m2y2
=

(
my
δm

)2

1 +
(

my
δm

)2
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So hm is an increasing function of the slope
(

my
δm

)2

. We can obtain a lower bound on hm when we

have a lower bound on the slope. This is equal to the slope of a line through the point Dm/m and

z in regular (m,n)-hexagon. This slope is smallest when z = gmn(D) at which point it is
√

3m

2n + m

Therefore

(
my

δm

)2

≥ 3m2

(2n + m)2

h2
m ≥

3m2

(2n+m)2

1 + 3m2

(2n+m)2

=
3
4

m2

n2 + mn + m2

This has no lower bound if we let n grow without bound. However we are in a regular quadrilateral

so there is a limit to the value of n for a given m. The (m, n)-quadrilateral is regular when (2n −

m)(2m− n) > 0 (see Definition 2.4.6). This is equivalent to
1
2
m < n < 2m. So, for a given m, the

largest n can be is 2m− 1. Substituting this into the right hand side gives

h2
m ≥ 3

4
m2

(7m2 − 5m + 1)

This function has two critical points 0, 2/5. The value 0 gives a local minimum and 2/5 gives a local

maximum. Thus the function is decreasing for m > 2/5. Therefore it achieves it largest value over

the set of positive integers when m = 1. Substituting this in gives

hm ≥ 1
2

Since hj =
j

m
hm we get

∣∣∣∣
λj

λm

∣∣∣∣ > Im

(
λj

|λm|
)

= hj >
1
2

j

m

So our h is 1/2. Substituting into equation (4.4) gives

p + 1− T 2
m

1 + T 2
m

> 2
∞∑

j=m+1

∣∣∣∣
λj

λm

∣∣∣∣
−p−1

This sum is less than the sum in Lemma (4.2.2). Therefore it is enough to establish that

p + 1− T 2
m

1 + T 2
m

> 16
α + 1
αp

⇔

αp(p + 1− T 2
m) > 16(α + 1)(1 + T 2

m)
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By choosing the largest possible value for Tm we make the the left hand side of the inequality as

small as possible and the right hand side as large as possible. From Lemma (4.2.3) we have T 2
m < 15.

Substituting in gives

αp(p− 14) > 16(α + 1)(16) ⇔

p > 14 + 256
α + 1
αp

To prove Theorem (4) we want Lemmas (4.2.1), (4.2.4), and (4.2.7) to hold simultaneously.

That is we need:

32(α + 1) < αp

16(α2 + 1) < αp−2

p > 14 + 256
α + 1
αp

Since α ≤ 2 we have

32
α + 1
αp

≥ 16
α + 1
αp−1

> 16
α + 1/α

αp−1

= 16
α2 + 1
αp−2

and so Lemma (4.2.4) holds for α and p such that Lemma (4.2.1) holds. Now suppose 32(α+1) < αp,

then 256
α + 1
αp

< 8 and Lemma (4.2.7) holds when p > 14+8 = 22. When p > 22 and α = 2 all three

conditions are satisfied. We seek the smallest α such that for p > 23 we can have 32(α + 1) < α23

or equivalently when

α23 − 32α− 32 > 0

This inequality holds for α larger than the largest real root of the polynomial. There is at most one

real root larger than the largest critical point. The critical points are roots of 23α22 − 32 = 0. So

there is one positive critical point, i.e. (32/23)(1/22). This is approximately 1.015. The polynomial
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is negative at α = 1.015, it has a root at approximately α = 1.21, and it is positive when α > 1.21.

In the proof of Lemma (4.2.5) we require α <
√

2. Therefore when 0.41 > ε > 0.21 and p ≥ 23

Theorem (4) holds.
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