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1 Introduction

Plant organs develop at the edge of the growing tip of the plant, called shoot apical meristem.
They appear as microscopic bulges of cells called primordia and later grow and differentiate into
the different organs (leaves, petals, branches etc...). The regular spacial structure often visible in
the grown plant (e.g. pineapple, pinecone, sunflower...) is present at the onset of primordia, at
a microscopic scale. In [10], the two botanists Snow & Snow posited that primordia form around
the apex meristem when and where there is enough space left available by the previously formed
primordia. This contrasts with Hofmeister’s hypothesis (that we studied in [1]) where primordia
are constrained to appear at fixed intervals of time.

Other authors have studied models based on the Snow hypothesis ([6], [5], [8]). We choose to
implement the principle of the Snows with a simple model which enables us to extract important
geometric structures underlying phyllotaxis. The assumptions we make are of a cylindrical meristem
border and of circular primordia that only ”feel” their nearest neighbors. One of the main feature
of this model is that it produces, apart from the usual Fibonacci lattices, periodic configurations:
patterns that look like lattices, each with two sets of parastichies, but are not lattices. Note that we
had also found periodic patterns in the Hofmeister model [1], but they were isolated. Here periodic
configurations come in large families, which are part of a large geometric structure that we call the
skeleton. The skeleton also contains the usual lattices of phyllotaxis. The skeleton might provide
an explanation of the mysterious speed at which plants stabilize in regular patterns with high
parastichy numbers: less precision (and thus less iteration) is needed if the target set of patterns,
previously thought to only consist of lattices, is enlarged to that of periodic configurations with same
parastichy numbers. Our model is highly idealized, but we conjecture that similar skeletons exist
in many other systems (as invariant manifolds) and that the topology of these skeletons organizes
the transitions between the different phyllotactic patterns.

A crucial concept in this paper, intimately tied to that of the skeleton is that of “growth front”:
roughly, the most recent layer of primordia at a given stage of the growth. A growth front determines
the future of a pattern that contains it. Thus deforming growth fronts provides a parameterization
for the skeleton and a handle into the connections between its different “limbs”. We show that
when defined, parastichy numbers can be read off the growth fronts. Growth fronts also provide a
geometric key to transitions between phyllotactic patterns. As a bonus, growth fronts may provide
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an explanation for the frequent presence of Fibonacci number of ray florets in the inflorescence of
certain species of plants [3].

We have deliberately set aside many mathematical proofs and computations in this article, to
make it readable by a larger audience. Subsequent publications will include them.

2 The Snow Model

We represent the region bordering the apex meristem by a cylinder of unit circumference, which
we show unrolled in the pictures of this paper. We also assume that primordia are represented
as disks of same diameter D (this is a parameter in the model). We let the upper edge of the
cylinder move up and place a new primordium where and when there is room for it between the
existing primordia and the upper edge of the cylinder. There may be room for several primordia
simultaneously (this will be the case in whorl configurations, see Figure 2). In this case we choose
to place them one by one, from left to right, starting at the latest primordium. The ability of
this model to produce whorls is its main difference with the Hofmeister model. For mathematical
consistency, we consider a fixed number N of primordia at each step and remove one in the bottom
to keep that number constant. In the graphics we choose not to remove the bottom primordium.
This model is formalized as a discrete dynamical system, see Section 7.
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Figure 1: The Snow map S. The map S acts on arbitrary configuration of points in the cylinder of circumference
1, represented as unrolled here. Given an initial configuration (left), the Snow map places points one by one, where
and when there is enough space. As time passes, the upper edge of the cylinder (representing the edge of the apex)
moves up. We interpret ”enough space” as meaning space enough for a disk of a certain fixed threshold diameter D
to fit under the upper edge. To the left, some initial configuration of points, surrounded by disk of diameter D. To
the right, the configuration resulting from applying the Snow map. The new primordium is white.

2.1 Snow Model and Growth Fronts

The dynamical rule of primordia formation described above has the following simple geometric
consequences on the placement of the new primordium:

1. Tangency to nearest neighbors. The new primordium is tangent to its nearest neighbours.
There generally are 2 nearest neighbors below it, and in rarer cases, there might be 3 or even
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4, but never more.

2. Equidistance to nearest neighbors. The new primordium is equidistant to its nearest neighbors.
This is a consequence of Item 1 and of the fact that primordia are modeled by disks of same
radius

3. Opposedness of nearest neighbors. In the generic case, the new primordium is tangent to only
two anterior primordia. In this case the centers of these two anterior primordia must lay on
opposite sides of a vertical line through the center of the new one. If it were not the case,
there would be a possible location adjacent to the one considered for the new primordium
that would be lower, and the primodium would have appeared there at an anterior time.

After at most N iterates, all primordia in the configuration (of N) will have been formed
following these rules: each one will have two (and in rare cases 3 or 4) “parent” primordia below it
and equidistant to it, one on either side. Moreover, after a while, the new primordium will appear in
such a way that it is higher (or at least at equal height) than any of the existing primordia. we call
the upper layer of such configurations a growth front. The set of line segments joining the centers
of adjacent primordia in a growth front form a piecewise linear graph over the x-axis. We believe
that the notion of growth front is a powerful and flexible tool to organize all phyllotactic patterns.
In particular, will show that the growth front of a phyllotactic lattice (see below) contains all the
information about this lattice. We will call skeleton the set of all configurations of N primordia that
starts from a growth front. The skeleton is topologically identical to the set of all growth fronts,
and constitutes an attractor for the Snow dynamical system. Understanding the topology of the
skeleton will provide clue as to the transitions between the different phyllotactic patterns observed
in nature. We will see more about geometric properties of growth fronts below.

3 Classical Phyllotaxis

3.1 Lattices and Fibonacci Phyllotaxis

One of the most celebrated phenomenon observed in Phyllotaxis is the occurrence of families of
spirals (or helixes in the cylinder model studied here) whose numbers follow the Fibonacci sequence.
In this model and in the Hofmeister model [1], Fibonacci phyllotaxis configurations are special
cylindrical lattices. A cylinder lattice can be obtained by placing primordia one at a time, at
constant angular and height increments (x, y) along the cylinder (see Figure 2). If one were to
use the cylinder as a printing press and rolled it out on a plane, the successive primordia of a
cylindrical lattice would appear as part of a straight line (which, rolled back on the cylinder, is
called the generative helix). There are also other helixes that are usually more visible in lattices:
those going through nearest neighbors. These are called parastichies, and they are the ones that
often come in pairs of Fibonacci numbers in plants.

A simple argument, identical to that in [1] shows that only cylindrical lattices can be invariant
under S. By an invariant configuration, we mean here that the last N primordia of the configuration
can be exactly superimposed with the last N primordia of its successor (or image under S) in the
dynamical process 1. Not all cylindrical lattices are invariant under the Snow transformation
however. Truncate the lattice by taking all the points that are under a certain height. Then add a

1Mathematically speaking, these configurations are fixed points for the dynamical system S∗ obtained from S by
“moding out” the translations.
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Figure 2: Cylindrical Lattice and k-jugate configurations. (a) This cylindrical lattice is not fixed under
the transformation S: it does not satisfy the equidistance rule and thus the new primordium does not continue the
pattern of the lattice. (b) This cylindrical lattice is fixed under S. The increment vector (x, y) is shown in white. (c)
This is a 2-jugate (also called bijugate) configuration obtained by taking two copies of the lattice in (b), scaling them
by 1/2 and placing them at distance 1/2 along the horizontal axis from one another. Both lattices in (a) and (b)
have parastichy numbers 3 and 5. One can follow a parastichy along {0, 3, 6, 9 . . .}. There is a total of 3 parastichies
parallel to this one. Likewise there are 5 parastichies parallel to {0, 5, 10, . . .} (including it). The configuration in (c)
has parastichy numbers 6 and 10, also denoted 2(3,5). It is preserved under two iterations of S.

primordium to that part of the lattice according to the transformation S. If the new primordium
is part of the original lattice, such a lattice is preserved and we call it fixed lattice configuration
of the transformation S. The simple geometric rules of Section 2.1 impose constraints on fixed
lattice configurations. These were worked out in this context (configurations of tangent disks) by
[5]. A thorough analysis appears in [1]. This analysis yields a bifurcation diagram (Figure 3) that
classifies all possible lattices that are fixed under S for all possible values of the parameter D. It
also explains the predominence of the fixed points with number of parastichies that are successors
in the Fibonacci sequence. We emphasize here that, since this analysis was entirely based on the
same three rules spelled out in Section 2.1, the Snow model considered here affords the exact same
bifurcation diagram as that of [1].

3.2 Multijugate Configurations

Other configurations preserved by S (but not by the Hofmeister model) are multijugate or, more
precisely, k-jugate configurations. A k − jugate configuration can be seen as a lattice together
with k of its translates equally spaced along the horizontal axis (see Figure 2, (c)). It is easy
to verify that if the lattice with angular and vertical increment (x, y) is a fixed point of S for
a value D of the parameter, then the k-jugate configuration consisting of k copies of the lattice
with increments (x/k, y/k) is fixed by Sk (k consecutive iterates of S) for the value D/k of the
parameter. Thus the bifurcation diagram for k−jugate configurations consists of k copies of the
fixed point bifurcation diagram, rescaled by a factor of 1/k and set side by side. In nature, one
detects k−jugate configurations when the parastichy numbers have a common divisor. And again,
the k-jugate bifurcation diagram explains why multiples of Fibonacci numbers are predominant
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Figure 3: The fixed point bifurcation diagram of the transformation S. The x-axis is the angular increment and
the y-axis represents the vertical increment between successive points in the corresponding lattice. Hence a point
(x, y) in this plane represents a unique cylindrical lattice. The branches (in black) of the diagram represent the
lattices that are fixed lattice configurations. Going down a branch, one travels through regions where the pairs of
parastichy numbers for the lattices follow Fibonacci-like sequences: (m, n) → (m + n, n). As clearly shown in the
diagram, the predominant branches are those starting with (m, n) = (1, 1), yielding the Fibonacci sequence proper.
These branches converge to the Golden angle and its complement. Note that the parameter D decreases with y.

among k−jugate configurations in plant Phyllotaxis (the sequence (2,6), (6, 10), (10, 16) ... with
k = 2 is particularly common).

4 New Phenomena

4.1 Periodic Configurations

The most striking phenomenon observed with the Snow model presented here is that most configu-
rations converge in finite time to periodic configurations in the skeleton. These configurations have
patterns repeating periodically (up to a rotation of the cylinder). This is best seen through what
we will call here growth fronts. Applying S for a sufficient number of times on any configuration,
primordia will form a barrier between the top and the bottom of the cylinder (the configuration will
”hold water if you pour it on top”). In this case, we define the growth front to be the top layer of
primordia, i.e. the set of primordia that are accessible from the top at a given time. These growth
fronts can be visualized at each iterate of S in a configuration, and each one entirely determines the
future history of the configuration. Figure 4 (a) shows how periodicity can be visualized through
successive growth fronts: the same front reappears periodically, translated by a fixed vector. Math-
ematically, a periodic configuration of period p can be seen as the union of p copies of the same
lattice translated in the plane by different vectors. Such sets are sometimes called multilattices.
Multijugate configurations are special cases of multilattices, all of whose translation vectors are
horizontal. The same way that not all lattices can be generated by S, not all multiple lattices form
part of the skeleton of S. But numerical evidence indicates that most of the skeleton is made of
multiple lattices, i.e periodic configurations.
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Figure 4: (a) Period 15 Configuration (a) This configuration was obtained by iterating the transformation S on
a perturbation of the 3,5 fixed point lattice of Figure 2 b. The periodicity of this configuration is underlined here by
the lighter shading of “growth fronts”. One can see (and prove) that these growth fronts are translates of one another.
The translation vector (shown in white) joins primordium 0 to primordium 15, and, in general, i to i + 15. Note
also that this configuration has 3 undulating parastichies, winding one way, 5 the other way. (b) Asymptotically
periodic orbit, with pentagons Experiments show that the majority of orbits settle into a periodic configuration
as in (a) in finite time. Others do so asymptotically, as in this example. The mechanism seems to always involve
sequences of “pentagons” (shown in white) whose width decreases exponentially. Note that the limit configuration
will have primordia tangent to three below.

4.2 Finite time vs. Asymptotic Convergence to Periodic

Our numerical studies indicate that the majority of configurations settle into some periodic con-
figuration in finite time. Section 7 sheds some light on the predominance of this behavior The
remaining configurations that we have observed show an interesting phenomenon that needs to be
studied further: they also tend to periodic configurations, but apparently in infinite time. The
barrier to locking into a periodic configuration in finite time seems to come from the presence of
”pentagons”: an interspace bordered by five primordia. In each case we have observed, these pen-
tagons are eventually arranged periodically along the configuration, with their width tending to
zero exponentially. In very rare cases we have observed isolated hexagons as well.

5 A Sufficient Condition for Periodicity

In the previous section, we pointed out that pentagons seem to prevent periodicity. In this section,
we will argue that “quadrilateral” interspaces between primordia eventually guarantee periodicity.
To make this statement more precise, note that most primordia are tangent to two “parent” pri-
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mordia below them (more rarely there will be 3 or even 4 such primordia). Assume this is the case
for primordium i. Call L(i) and R(i) the left parent and right parent of i respectively. These two
parent primordia have themselves parents that we can denote by LL(i), RL(i), RR(i), LR(i).

Theorem 1. If each primordia has exactly two parents and if the condition RL(i) = LR(i) is
satisfied for all primordium i, the configuration is periodic

Figure 5: RL=LR implies periodicity. Starting at primordium 0, the left parastichy LP (0) = {0, 3, 6, . . .}
and right parastichy RP (0) = {0, 4, 10 . . .} cross at primordium 15. We claim that the configuration has period
15. The condition RL=LR implies that the quadrilaterals enclosed by adjacent primordia are all parallelograms.
Hence the white vectors in the picture are all the same, and the black vectors are all the same. This means that
the group of three primordia {15, 18, 19} has the same shape as the group {0, 3, 4} (it is a translate of it by the
vector V0,15). Extending this reasoning shows that the growth front culminating at 15 is the translate of the growth
front culminating at 0. Likewise, any growth front in this configuration reappears periodically, with same period and
translation vector as the one singled out here.

We give an idea of the proof, which is illustrated by Figure 5. Note first that RL(i) = LR(i)
implies that the center of primordia i, R(i), L(i) and RL(i) are the vertices of a quadrilateral, which
must be a parallelogram since all primordia have same radius. By following the left ”ancestors”
of a primordium i, one obtains a string of primordia tangent to one another. Call this string the
left parastichy, and denote it by LP (i). This parastichy heads down and left from i. Define the
right parastichy RP (i) similarly. These two parastichies must intersect at another primordium i+k
below 2. We claim the configuration is of period k, that is, translating the configuration by the
vector Vi,i+k which joins the centers of primordia i and i + k does not change the configuration.
We refer to Figure 5 and its caption for a graphical argument of this fact.

2One can discard the case where LP (i) and RP (i) are asymptotically vertical: the space between these two
verticals would have been filled by primordia some of which would have to be part of these parastichies.
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6 Growth Fronts, Parastichy Numbers and Transitions

6.1 Parastichy Numbers and Period

I think this paragraph needs reworking. It could be simple, but it is also fundamental.
Given a periodic configuration which satisfies RL = LR, we saw in the previous section that right

and left parastichies could be defined through each primordia. The relation RL = LR implies that
left parastichies are parallel in a loose sense: the left parastichies through two different primordia
either intersect or coincide. The same is obviously true for right parastichies. Thus, as with
lattices, we can define parastichy numbers (m,n) as the number of distinct left and right parastichies
respectively.

Theorem 2. Let (m,n) be the parastichy numbers of a periodic configuration which satisfies
LR=RL. Then:

1. The period of the configuration is mn.

2. The number of primordia in any growth front of the configuration is m + n.

3. The number of primordia going down as one travels along a growth front from left to right is
m, the number of primordia going up is n

Hence we can read off the parastichy numbers from the the growth front. Note that Item (2)
might be an explanation of why many inflorescence which have Fibonacci phyllotaxis also have a
Fibonacci number of petals or ray florets: it would make sense that petals would stem from a single
growth front of the growing plant. In this case, the number of petals would equal the sum of the
parastichy numbers. This is a Fibonacci number, as it is the sum of two consecutive Fibonacci
numbers. Note that a fixed point lattice of parastichy numbers m,n is periodic of period 1 as well
as mn. Hence Theorem 6.1 applies to fixed point lattices in particular.

We now give the simple geometric ideas for the proof of Theorem 6.1 through an example. In
Figure 5, consider the “necklace” formed by taking the left and right parastichies at 0, LP (0) and
RP (0) in our notation) and cutting them below 15. This necklace includes, going from left to right,
primordia 4, 10, 15 (going down RP (0)) and 12, 9, 6, 3, 0 going up LP (0)). It is not a coincidence
that the number of “down” primordia is equal to 3, the number of left parastichies here: LP (4)
cannot equal LP (0) since 4 is in RP (0) and 15 is the first primordium which is in both LP (0) and
RP (0). Likewise LP (10) 6= LP (0). The same argument explains why the number of up primordia
in the necklace is equal to 5, which is the number of distinct right parastichies.

Consider now the string of the necklace, made of the vectors V0,4, V4,10, V10,15 (going down),
V10,15, V15,12, V12,9, V9,6, V6,0 (going up). Clearly “up” or “down” quality of each of these vectors
reflects the same quality of the primordium at its tip. Consider now the vectors forming the
string of the growth front. We claim that these vectors are the same as those in the necklace:
V4,2 = V15,12, V2,7 = V4,10, . . . etc. and this correspondence is one to one. Here is how we build
this correspondence: take two consecutive primordia i, j in the growth front, suppose that Vi,j is a
down vector, so that j is in RP (i). If both i, j are already in the necklace, we are done (e.g. 0 and
4). If not RP (i) 6= RP (0) but we can translate Vi,j along LP (i) until LP (i) meets RP (0). Because
of LR = RL the translated vector must be in RP (0). In the example, translating V2,7 along LP (2)
gives V4,10.
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6.2 Transitions

Since parastichy numbers can be read off growth fronts, it is not surprising that growth fronts may
also hold the key to transitions between different phyllotactic patterns. Transitions will occur when,
deforming a growth front, one reaches a growth front yielding a triple tangency, that is when a new
primordium rests on 3 older ones instead of the normal 2. This has the effect of changing the length
of the growth front by 1, and thus, from what we saw in the previous section, it also changes one of
the parastichy numbers by 1. The deformation of growth fronts occurs naturally as the parameter
D varies during the growth.

Evidence for this phenomenon actually occurring in nature can be readily gathered on many
pineapples, where often, a parastichy is seen to split in two, thus disturbing the usual parastichy
numbers of 8, 13 by 1. This phenomenon is called dislocation in crystallography and also by the
botanist Zagorska-Marek [11], where the author suggests that dislocations are the key to phyllotactic
transitions.

Note also that, for configurations with pentagons, there is a change of 1 in the number of
primordia in the limit (where pentagons collapse). This is visible in Figure 4, where the growth
fronts have 7 primordia and those of the limiting configuration have 8.

In a more well known phenomenon, note that the transition from m,n to n, m + n in Fibonacci
phyllotaxis in the present model (as well as in our Hofmeister model [1]) occurs at configurations
that are hexagonal lattices. In such lattices, all primordia are tangent to three older primordia
below them. Interestingly, in their study of their Snow models, Douady and Couder [6] find the
transition from 2,3 to 3,3 (whorls) to occur close to the transition 2,3 to 3, 5. In our numerical
studies, we have found many 3,3 periodic orbits near that transition point as well.

6.3 Families of Periodic Configurations

Consider a periodic configuration which satisfies the commutativity condition RL(i) = LR(i). By
definition this configuration is in the skeleton (see Section 2.1). The future of this configuration
is entirely determined by any one of its growth fronts. It is clear that in most cases, any small
distortion of a growth front (while maintaining the tangency relations within its primordia) yields a
configuration that is still commutative, and thus periodic by Theorem 1 (and still in the skeleton).
This perturbation argument shows that the skeleton contains continuous families of periodic orbits
– a fact that is supported by our numerical simulations.

Moreover, growth fronts give us the number of free parameters needed to describe all such
distortions, and hence the dimension of the families of periodic configurations we may obtain around
a given one. Indeed, a growth front is determined by the position of one of its primordia and
the angles between adjacent pairs of primordia in the growth front. If the growth front has L
primordia then there are L angles. Since the last two angles are determined by the other L − 2
(placing L−1 primordia in the front determines the placement of the last), the space of all periodic
configurations around a particular one is of dimension L (L − 2 angles and the 2 coordinates of
one primordium. Note that the dimension of a space is the number of free variables necessary to
describe it). In the example of Figure 5, a growth front has length L = 8 so the space of period
15 configurations around this particular one is of dimension 8. The same argument shows that the
space of periodic configurations surrounding a periodic configuration of parastichy numbers m,n is
of dimension m + n. Note that this dimension drops by 2 if we are only interested in the shape of
the configuration, not its exact location in the cylinder (mathematically, we would be moding out
by translations).
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7 Stability

In this more mathematical section, we show that fixed point lattices are stable, but are not attrac-
tors, as was the case in the Hofmeister model [1]: configurations close to a fixed point lattice will
stay close but will not converge to it. This relatively “bad news” is alleviated by the following: in
the families of Snow models studied by Douady and Couder [6], fixed points lattices are attractors.
The model studied here is an asymptotic limit of Douady and Couder’s models, when a certain
parameter is varied (”hardness of disks”). We plan to perform an asymptotic analysis to prove this
stability rigorously.

We also conjecture that large parts of the skeleton of the map S survives under perturbations
of the map itself, in the guise of invariant manifolds for finite iterates the perturbed map. Namely
the configurations on these perturbed surfaces may not be periodic any more, but they will be close
to our periodic orbits. We conjecture that transitions between different patterns will occur along
these surfaces, hence the importance of studying them.

We now make the set up of our model more precise mathematically (more details will be given
in a future publication). The space on which the map S acts is parameterized by

{(x0, y0), (x1, y1), . . . , (xN−1, yN−1)}

where (xi, yi) are the coordinates of the ith primordium in a configuration of N primordia. The
number N can be arbitrarily large, and in practice we choose it to be larger than the size of the
longest possible growth front possible for the given parameter D. The space is thus the cartesian
product of N cylinders, or, equivalently the product TN × RN of the N -torus by the N -Euclidean
space. The map S is of the form:

S{(x0, y0), (x1, y1), . . . , (xN−1, yN−1)} = {(X0, Y0), (X1, Y1), . . . , (XN−1, YN−1)}

where (Xi, Yi) = (xi−1, yi−1) when i 6= 0 and (X0, Y0) is the position of the new primordium,
the center of the lowest disk an algebraic function of its two neighbors We can show that the
characterisitc polynomial of the differential of the map at a lattice fixed point is λK(1−λm)(1−λn)
where m,n are the nearest neighbors to the new primordium, and K = N −m−n. Since the roots
of this polynomial are either 0 or the mth and nth roots of unity, the fixed point lattices are only
linearly stable3 . This result is not surprising, in light of the fact that the fixed point is surrounded
by periodic orbits in the skeleton: the non zero eigenvalues correspond to eigenspaces tangent to
the skeleton, and the zero eigenvalue accounts for the superattractivity of the skeleton.

We conjecture that at least large parts the skeleton survive when the map S is perturbed slightly.
Mathematically, this should be due to the “normal attraction” of the skeleton.
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