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Abstract: The calculation of divergence angles

between primordia in a plant apex depends on the

point used as the center of the apex. In mathemat-

ically ideal phyllotactic patterns the center is well

defined but there has not been a precise definition

for the center of naturally occurring phyllotactic pat-

terns. A few techniques have been proposed for esti-

mating the location of the center but without a pre-

cise definition for the center the accuracy of these

methods cannot be known. This paper provides a

precise definition that can be used as the center of a

phyllotactic pattern and a numerical method which

can accurately find it. These tools will make it easier

to compare theory against experiment in phyllotaxis.

1. Introduction

It is well known that plant organs tend to form
regular patterns and that the study of these pat-
terns is called phyllotaxis. Most plant organs
develop from meristematic tissue in plant apices
called the shoot apical meristem (SAM). Exten-
sive cell divisions along the boundary of the meris-
tems produce primordia which develop into var-
ious plant organs. The pattern exhibited by the
collection of primordia is preserved as they de-
velop.

Phyllotactic patterns do not form all at once
but rather in a sequential order. To understand
how a particular pattern arises we need to un-
derstand its ontogeny. This calls for a dynamical
model of meristematic development. To compare
a dynamical model with a developing apex we
want to observe each primordium form. Primor-
dia are tiny and can only be precisely observed
under a microscope. The instrument of choice
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is the scanning electron microscope (SEM). Op-
tical microscopes lack the depth of field needed
to get well focused images. Unfortunately the
act of observing an SAM under an SEM disturbs
its growth. To get around this difficulty tech-
niques based on making molds of a shoot apex
as it grows have been developed (see (Williams
& Green 1988), (Hernandez et al., 1991), (Hill,
2001), (Dumais & Kwiatkowska, 2002)).

Spiral phyllotaxis is characterized by the pres-
ence of two sets of distinctive spiral rows of botan-
ical units. The spirals are called parastichies.
One set of parastichies coils in the opposite di-
rection from the other. The pair of numbers that
enumerate how many parastichies are in each set
are called the parastichy numbers. The paras-
tichy numbers are often successive Fibonacci num-
bers.

Another important quantity characterizing a
phyllotactic pattern is the divergence angle, i.e.

the angle between primordia that form consecu-
tively. This angle often varies only slightly about
some particular value as the plant develops. In
distichous phyllotaxis the divergence angle is about
180o while in spiral phyllotaxis it is usually about
137.5o. The Bravais brothers (Bravais & Bra-
vais, 1837) showed that the parastichy numbers
of a spiral lattice with a divergence angle close
to 137.5o are consecutive Fibonacci numbers.

Hofmeister (Hofmeister, 1868) performed one
of the first microscopic studies of shoot apices.
From his observations he proposed a set of hy-
pothesis for SAM ontogeny. Dynamical models
(Atela et al., 2002), (Douady & Couder, 1996)
based on Hofmeister’s hypothesis lead to disti-
chous patterns and to spiral lattices with a di-
vergence angle of about 137.5o. So there is nice
congruence between theory and fact.



It is often convenient to assume the apex is
circularly symmetric. While this is a useful ap-
proximation real plant apices often deviate no-
ticeably from perfect circular symmetry. There
are an endless variety of shapes that plant apices
can assume e.g. ellipsoidal, polygonal, or hour-
glass shaped. Furthermore the parastichies are
not always strictly spiral shaped. Sometimes
they can undulate. Also real phyllotactic pat-
terns exhibit dislocations and the parastichy num-
bers can sometimes be off by one or two from a
Fibonacci number especially when the parastichy
numbers are large. So a more detailed analysis
of plant patterns is necessary to connect theory
with fact.

This paper is about finding a good point on
an apical surface to calculate divergence angles
from. Not surprisingly it turns out that the prob-
lem of finding this point in a naturally occurring
phyllotactic pattern depends on how we define
it. This is discussed in section 2. To deal with
real phyllotatic patterns we need some way of
defining the center that is general enough to deal
with the diversity of phyllotatic patterns. In sec-
tion 3 we introduce the concept of the “minimal
variation center”. It provides an objective and
reasonable way to deal with this diversity. Sec-
tions 4 and 5 provide an algorithm for finding the
minimal variation center and illustrate its usage
with some examples.

Plants generate primordia in a precise fashion
producing the crystalline like phyllotactic pat-
terns we see in many specimens. Even when the
pattern we see in a particular plant is not as
perfect as we would like we should not assume
that primordia formation is not as precisely de-
termined by the plant as it is in more ideal spec-
imens. To learn how plants use positional in-
formation in more general situations we need to
measure the positions of primordia as precisely
as possible.

To obtain positional data on morphological
forms certain features are usually selected to mark
their location. For example in members of the
Asteraceae family disk floret primordia often dis-
play a five-pointed star shaped invagination when
the petals begin to form. The center of this
star can be used as a marker for the position of

the floret primordia. More often young primor-
dia tend to have fairly smooth surfaces and lack
distinctive features that can be use as markers.
This has made it difficult to measure primordia
position precisely. We can choose a point on the
surface of a young primordium which appears
to be the furthest above the surrounding meris-
tem surface to be a marker for the primordium’s
position. In many cases young primordia are
approximately hemispherical. In these cases we
can choose a point which is about equidistant to
the perceived boundary of the primordium to be
the marker. Since primordia are not all exactly
the same shape the various methods for choos-
ing a marker are not entirely consistent with
one another. Currently we cannot be confident
that measurements of primordia location have
the same degree of precision as the process which
generated them. In section 6 we show how the
minimal variation center can also be used to re-
duce the impact uncertainties in primordia posi-
tion have on the computation of divergence an-
gles. Section 7 will illustrate this with four ex-
amples.

It is easier to obtain precise measurements
of primordia location when the apices are fairly
flat like those from the Asteraceae family. The
flowering shoots in this family are often referred
to as capitula. In these capitula an observer can
work from a single micrograph which one tries to
take as parallel to the surface as possible. Most
apices, though, are dome shaped and the pri-
mordia form a three dimensional configuration.
There are fairly accurate methods for obtaining
three dimensional data from plant apices (see
(Williams, 1975) and (Dumais & Kwiatkowska,
2002)) but they are not widely used. This paper
will focus mainly on how to analyze apices that
are approximately flat.

While the center of a two dimensional pat-
tern is a point the center of a three dimensional
pattern is a curve. In a circularly symmetric
apex this curve is a straight line and even with-
out circular symmetry the center can still be a
straight line. Section 8 will discuss how to find
this line. There are instances, however, where a
plant shoot does not grow in a straight manner
(for examples see (Sattler, 1973)). These cases
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are much more complicated and will have to be
dealt with in a further paper.

2. Previous Methods for Finding the Cen-

ter

Let’s consider some methods that have been em-
ployed in the past to find the center of phyllotac-
tic patterns. This is not a review of all possible
methods that have been used. Rather we are
only choosing some of the simpler methods to
highlight the limitation of ad hoc approaches.
This should help clarify the need for the more
systematic approach presented in the following
sections. We shall apply the methods of this sec-
tion to two configurations. The first configura-
tion will be a mathematically ideal pattern while
the second configuration will be a randomly per-
turbed version of the first one.

We’ll begin by describing the form of an equi-
angular spiral lattice. This is a discrete set of
points sitting on an equiangular spiral (see figure
1). Mathematically the center is easy to define
for this pattern. We simply follow the spiral in-
ward and (in the limit) it will take us there. The
divergence angle is the angle between consecu-
tive lattice points along the spiral. This angle
is computed from the center of the spiral and
it is the same between any two consecutive lat-
tice points. We will denote the divergence angle
by δ. The plastochron ratio is the ratio of the
distances between the center and two consecu-
tive lattice points. This is also the same for any
pair of consecutive lattice points in an equiangu-
lar spiral lattice. We will denote the plastochron
ratio by a.

Given the position of three consecutive points
in an equiangular spiral lattice we can derive
the plastochron ratio, divergence angle, and the
center of the spiral lattice using the properties
of similar triangles (see supplementary appendix
A?). Let the coordinates of the three consecu-
tive lattice points be (X1, Y1), (X2, Y2), (X3, Y3)
where (X1, Y1) is the outermost and (X3, Y3) is
the innermost. And let (xc, yc) be the coordi-
nates for the center of the spiral lattice. The

Figure 1: An equiangular spiral and two config-
urations. The spiral lattice, Pattern C, is indi-
cated by the solid dots. Pattern C ′ is indicated
by the open boxes.

plastochron ratio is given by:

a =

√

(X2 −X1)2 + (Y2 − Y1)2

(X3 −X2)2 + (Y3 − Y2)2

The divergence angle is

δ = atan2(Y3 − Y2, X3 −X2)

−atan2(Y2 − Y1, X2 −X1)

The atan2 function is explained in supplemen-
tary appendix B?. Define the four quantities:

x± =
(a cos(δ) − 1)(X3 −X2) ± a sin(δ)(Y3 − Y2)

1 + a2 − 2a cos(δ)

y± =
(a cos(δ) − 1)(Y3 − Y2) ± a sin(δ)(X3 −X2)

1 + a2 − 2a cos(δ)

and the pair of points:

((x+) +X3, (y−) + Y3)

((x−) +X3, (y+) + Y3)

When δ = 0o or δ = 180o these two points are
actually the same and are equal to (xc, yc) (the
case δ = 0o doesn’t resemble a phyllotactic pat-
tern but the case δ = 180o is quite common).
When δ 6= 0o and δ 6= 180o these are two dis-
tinct points and only one of them is (xc, yc). The
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Mathematically Ideal Pattern Realistic Pattern
Outer Triplet Inner Triplet Outer Triplet Inner Triplet

P1 (40.496,0.0) (8.9840,11.708) (42.239,-0.49173) (8.6569,11.379)
P2 (-21.326,19.542) (-10.381,-1.8305) (-20.873,18.595) (-10.450,-1.9776)
P3 (1.8007,-20.582) (6.3503,-4.0456) (2.2537,-20.230) (6.2918,-5.3393)
a 1.4000 1.4000 1.4590 1.3652
δ 137.50o 137.50o 137.61o 133.69o

(xc, yc) (0.00000,0.00000) (0.00000,0.00000) (0.38883,-0.65946) (0.14202,-0.48471)

Table 1: Results from the triplets of lattice points shown in figure 1. The calculations were done
to ten digits and have been rounded to five digits in the table.

correct choice can be made by inspection of the
figure. A formal procedure to make the correct
choice is in supplementary appendix A?.

We shall call this the three-point method. Ma-
ksymowych & Erickson (Maksymowych & Erick-
son, 1977) derived the same formula for a and a
formula like the one here for δ. Meicenheimer
expanded on their work to derive a formula sim-
ilar to the one here for the coordinates of the
center which he applied to Linum shoot apices
(Meicenheimer, 1986).

In this mathematically ideal situation it does
not matter which three consecutive points of the
equiangular spiral lattice we use - we will get the
same value for the center. For example consider
the equiangular spiral lattice in figure 1. This
spiral lattice resembles a commonly seen phyl-
lotactic pattern. Its plastochron ratio is 1.4, its
divergence angle is 137.5o and the center is lo-
cated at (0, 0). The positions of the lattice points
are

xj = 1.4(12−j) cos(137.5o(j − 1))

yj = 1.4(12−j) sin(137.5o(j − 1))

where j = 1, . . . , 6. We’ll shall call this configu-
ration “pattern C”.

In this demonstration we select two distinct
triplets of consecutive lattice points from this
spiral lattice. In particular we choose the outer
most triplet

(X1, Y1) = (x1, y1)

(X2, Y2) = (x2, y2)

(X3, Y3) = (x3, y3)

and the inner most triplet

(X1, Y1) = (x4, y4)

(X2, Y2) = (x5, y5)

(X3, Y3) = (x6, y6).

We apply the three-point method to these two
triplets to obtain two sets of values for the plas-
tochron ratio, divergence angle, and coordinates
of the center for the spiral lattice. Table 1 shows
the results. We see in the middle two columns
that when we have very precise values for the
coordinates of the lattice points we can get vir-
tually the same values for the coordinates of C
using different triplets of lattice points.

We now want to consider what happens when
we add noise to pattern C. We’ll perturb each
point in pattern C by adding Gaussian noise with
a standard deviation of 1. We’ll call the resulting
configuration “pattern C ′” (see figure 1). There
are dual interpretations for the meaning of the
added noise. First we can think of the added
noise as the deviation an individual plant makes
from a mathematically ideal pattern. Second we
can think of the added noise as experimental er-
rors made in measuring the location of primor-
dia. We shall consider both viewpoints, the first
viewpoint will be taken up presently and the sec-
ond viewpoint will be taken up in section 7.

When we think of pattern C ′ as the devia-
tion a plant makes from a mathematical ideal
we cannot assume the center of the pattern is
(0, 0). The perturbations are in random direc-
tions which roughly tend to cancel each other
out but not perfectly. The effect of the random
perturbations is to both distort the ideal pattern
and to move it somewhat. So we don’t have an
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exact position for the center of pattern C ′ as we
did for pattern C.

We can apply the three-point method to the
inner and outer triplet of points in pattern C ′ to
try and find the center. The results are shown in
the last two columns of table 1. We see that the
three-point method only yields approximately the
same results with the two triplets. The results
are close to (0, 0) as we expect since we hardly
perturbed pattern C to get pattern C ′, but we
still don’t have an exact position for the cen-
ter. Without a precise definition for the center
of pattern C ′ we can’t even estimate the error
of approximation for the three-point method in
these examples.

There is another commonly used technique
for finding the center that does give us an unam-
biguous result (Matkowski et al., 1998). This is
a center of mass calculation. It is very much like
computing the mean of a data set. One treats in-
dividual points as having a unit mass and adds
together the position vectors of all the points in
a data set. The vector sum is then divided by the
number of points used in the sum. Let J denote
the number of points in a phyllotactic pattern
and let the coordinates of the points in the pat-
tern be (xj , yj) where j = 1, . . . , J . The center
of mass calculation is:

1

J

J
∑

j=1

(xj , yj)

With the three-point method we could only
use three points at a time and we got different
results using different triplets of points. The cen-
ter of mass calculation overcomes this problem
by making use of the whole data set. It also
has the advantage of being much easier to use.
However it has a serious drawback. Even with a
mathematically perfect spiral lattice the center
of mass method will not give accurate results.
For example using the center of mass method on
pattern C gives (4.32058, 0.79858) which is not
even close to (0, 0).

Only in the limit as the number of points
used goes to infinity will the center of mass cal-
culation yield the correct position for a perfect
spiral lattice. With only a finite number of lat-

tice points there must be some error. The size of
the error depends on the number of lattice points
used and the divergence angle of the spiral lat-
tice (Matkowski et al., 1998). Since the center of
mass method isn’t very accurate in mathemati-
cally ideal cases it can’t be expected to gives us
good results for more realistic patterns.

We can combine the three-point method and
the center of mass method into a single method.
We can use the three-point method on every con-
secutive triple of points in the pattern to pro-
duce a set of points each of which approximates
the center of the pattern. We can then find
the center of mass for this set of points. This
has the advantage of using all of the points and
producing an unambiguous result. Furthermore
when we apply this combination method to a
mathematically ideal case like pattern C it accu-
rately gives us the center. So this combination
method has overcome some of the difficulties we
ran into using the three-point method or the cen-
ter of mass method individually. However the
most serious difficulty remains. When we apply
the combination method to pattern C ′ we get
(0.15215,−0.39930). This appears to be a rea-
sonable approximation for the center of pattern
C ′ but without an exact definition for the center
we are unable to estimate the error of approx-
imation. We cannot even claim that the com-
bination method is any more accurate than the
three-point method.

Nor is pattern C ′ a pathological case. Far
more distorted phyllotactic patterns are not hard
to find. Often in naturally occurring phyllotac-
tic patterns the plastochron ratio is not constant.
When the plastochron ratio varies the resulting
spiral lattice is no longer an equiangular spiral
lattice. A square root spiral lattice is a com-
mon occurrence (Williams, 1975). In principal
a three point type method can be developed for
this type of spiral lattice but its extremely cum-
bersome. As with the equiangular spiral lattices
any deviation in a sample pattern from a perfect
square root spiral lattice will just lead to uncer-
tainty about the location of the center.

Not only can the plastochron ratio vary as
a plant develops but shoot apices can be ellip-
soidal or have even stranger shapes. What is
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needed is a definition that does not assume that
phyllotactic patterns conform to any mathemat-
ical ideal. There is no limit to the number of ad

hoc methods that can be devised for finding the
center of patterns that we believe resemble some
mathematically ideal form but without a general
definition for the center we can’t say which of the
many methods is the best.

3. The Minimal Variation Center of a

Phyllotactic Pattern

To obtain a general definition for the center of a
phyllotactic pattern let’s consider how the cen-
ter is used to study these patterns. The center
is the point from which the divergence angles
are computed. In well formed phyllotactic pat-
terns the divergence angles are nearly constant.
In more distorted specimens there appears to be
a greater variability in the divergence angles. It
is an open question as to how the variation in the
divergence angles arises as we observe increas-
ingly distorted apices. Even though phyllotactic
patterns can be strikingly well formed no plant
is perfect. To a greater or lesser extent the vari-
ation in the divergence angles always plays some
role in the developmental process and we’d like
to have a better understanding of that role. For
example how does the shape of the apex affect
the shape of the parastichies?

If we have only a vague idea of where the cen-
ter is we can only have a vague idea of what the
divergence angles are. We could only say that
divergence angles tend to become more variable
in distorted apices and we would be unable to
even address a question like: what affect does
the curvature along an ellipsoidal apex have on
divergence angles? Finding the center of a phyl-
lotactic pattern will not by itself give us com-
plete answers to questions like this but it is an
important step in that direction.

However even in a mathematically ideal pat-
tern we can end up observing variation in the di-
vergence angles if we don’t work from the correct
point. In a pattern that has been constructed so
that the divergence angles are constant an ob-
server can ascertain that the divergence angles
are all the same only if they can determine the

right point to use to calculate the divergence an-
gles from. If the observer uses a different point
they will see some variation in the divergence an-
gles. There are several ways to assess variation
in a data set. We shall use the standard devi-
ation to assess the amount of variation in the
divergence angles. But regardless of which mea-
sure of variation that is used it tends to be the
case that the further the point used to calculate
the divergence angles is from the point used to
construct the pattern the greater the variation
that will be observed in the divergence angles.

With a real phyllotactic pattern it will almost
never be possible to find a point so that the di-
vergence angles computed relative to that point
will be exactly the same between consecutive pri-
mordia. As with the mathematically ideal cases
the amount of variation that will be observed
depends on the point used to calculate the di-
vergence angles. There will be some point inside
the pattern that will give the smallest amount
of variation. The further the point we use to
calculate the divergence angles is from the point
that minimizes the variation the larger the varia-
tion tends to be. This raises the question of how
much of the observed variation is intrinsic to the
pattern itself and how much is due to our choice
for the center. The best way to provide an ob-
jective analysis of this variation is to choose the
point in each pattern which minimizes this vari-
ation. In mathematically ideal cases the point
that does this is of course the point which we
already consider to be the center of the spiral
lattice (the divergence angles are all the same
relative to this point). In real phyllotactic pat-
terns the best we can hope for is to minimize the
variation in the divergence angle. Formally:

We define the minimal variation center of a
two dimensional phyllotactic pattern to be the
point inside the pattern that gives the small-
est value for the standard deviation of the di-
vergence angles as computed from this point.

The minimal variation center for pattern C ′

is (−0.161339,−0.504142). Table 2 shows the
standard deviation of the divergence angles in
pattern C ′ using the points obtained from the
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Dist. Std. dev.

outer triplet 0.572 3.33o

inner triplet 0.304 2.43o

combination 0.331 2.58o

min variation 0 2.00o

Table 2: The rows refer to four points used as
the center of pattern C ′. The second column
shows the distance of the point from the minimal
variation center. The third column shows the
standard deviation of the divergence angles

three-point and combination methods to calcu-
late the divergence angles from. It also shows
the standard deviation we get using the min-
imal variation center. It is interesting to see
how much the standard deviation depends on the
point used as the center of pattern C ′. No point
of pattern C ′ is any closer to any other point of
the pattern than a distance of 15. Yet using a
point only a distance 0.572 away from the mini-
mal variation center to calculate the divergence
angles from has increased the standard deviation
from 2.00 to 3.33. This could give an observer
a somewhat exaggerated view of the extent to
which the divergence angles in pattern C ′ devi-
ate from one another.

We have explicitly assumed in the definition
of the minimal variation center that the apex
is two dimensional. There is also an implicit
assumption which is that the divergence angles
tend to vary only slightly about their mean value
so that it is worthwhile to look for the minimal
variation center. We have made no assumptions
about the shape of a shoot apex or the type of
spiral the parastichies form. Thus the minimal
variation center is applicable to a wide variety of
phyllotactic patterns.

4. An Algorithm for Finding the Min-

imal Variation Center

An advantage of having precisely defined our goal
is that we can construct algorithms specifically
to reach that goal. In this section we will con-
struct one fairly simple algorithm for finding the
minimal variation center. This algorithm will be
accurate in the sense that in the absence of ex-

perimental errors in the data set it will find the
minimal variation center of the pattern up to the
precision of the computer used to implement the
algorithm.

We let (xmvc, ymvc) be the coordinates for
the minimal variation center. The algorithm will
take an estimate for (xmvc, ymvc) and produce a
new point that will be even closer to (xmvc, ymvc).
We let (x0, y0) be the coordinates for an esti-

mate of the minimal variation center’s location.
By iteration the value of (x0, y0) will converge to
(xmvc, ymvc).

Let there be J primordia in a sample phyl-
lotactic pattern. Then there will be J − 1 diver-
gence angles to work with. Let θj be the angular
position of (xj , yj) relative to (x0, y0). Let the di-
vergence angle between (xj+1, yj+1) and (xj, yj)
be δj = θj+1 − θj. The sequence of divergence
angles is δ1, δ2, . . . , δJ−1.

We seek to minimize the standard deviation,
s, of the divergence angles. The value of s is
computed from the statistical quantity known as
the sum of squares, S, according to the formula
s =

√

S/(J − 2). Consequently minimizing the
value of s is equivalent to minimizing the value
of S. It is sufficient, therefore, for the algorithm
to just minimize the sum of squares. The sum of
squares is defined as

S =
J−1
∑

j=1

(δj − δ)2

where δ is the mean of the data set {δ1, . . . , δJ−1}.
Since the value of S depends on δ1, . . . , δJ−1 which
in turn depend on (x0, y0) we can think of the
sum of squares as a function which associates
to each point in the plane, (x0, y0), the non-
negative number S. To indicate the dependence
of S on (x0, y0) we write S(x0, y0). The goal of
the algorithm is to find the value for (x0, y0) that
minimizes S(x0, y0).

Computing the gradient of S(x0, y0) gener-
ally gives us a vector that points in the direc-
tion of greatest increase for S(x0, y0) while the
negative of the gradient points in the direction
of greatest decrease for S(x0, y0). By following a
path that always points in the direction of great-
est decrease we generally end up reaching a min-

7



imum. This is known as the method of gradient
descent.

There are several ways to implement gradient
descent but one of the simplest will prove quite
sufficient for minimizing S. We scale the gradi-
ent vector by a small number, ε, and then choose
a new position for the estimate of the minimal
variation center by subtracting the scaled down
vector from the old position. Let (X0, Y0) denote
the new estimate. Our method can be written
out as

(X0, Y0) = (x0, y0) − ε∇S(x0, y0)

We then replace the value of (x0, y0) with the
value of (X0, Y0) and do the calculation again.
By repeating this calculation over and over the
point (x0, y0) tends to converge to (xmvc, ymvc).
We stop when the magnitude of the gradient vec-
tor becomes too small to produce any significant
change in the position of (x0, y0). Even for a
complicated pattern the algorithm can finished
in a matter of a few minutes on a modern com-
puter. More information on this algorithm is
available in supplementary appendix B?,1

5. The Algorithm in Operation

In this section we illustrate how the algorithm
works by applying it to three configurations.

The first illustration uses pattern C ′ and it
is displayed in figure 2. A sparse configuration
like pattern C ′ shows that it is important that
the initial estimate be reasonable. It should be
closer to the minimal variation center than any
of the points in the pattern. Otherwise gradi-
ent descent can lead outside of the configura-
tion and move away from it. From the view
of a point far away from the pattern the diver-
gence angles are all close to zero. Consequently
the standard deviation of the divergence angles
is also close to zero. Once we are too far from
the minimal variation center moving even fur-
ther away can lower the values of the divergence
angles and their standard deviation. Therefore
the algorithm can lead away from the pattern.

1 A sample C code that implements this algorithm
along with instructions for its use is at http://math.sm
ith.edu/˜phyllo/Research/findcenter/findcenter.html

Figure 2: The boxes show the points of pattern
C ′. Six different initial estimates for the mini-
mal variation center have been used. The circle
shows the location of the center of mass which is
one of the initial estimates. The six curves show
the paths followed by the algorithm with these
initial estimates. Three of the initial estimates
including the center of mass are close enough to
the minimal variation center that the paths go
to it. The other three estimates are too far away
and the paths go off to infinity.

It is not difficult to choose an initial estimate
by inspection but this is not necessary. A useful
starting estimate can be obtained from the cen-
ter of mass method (explained in section 2) so
that a computer program only needs to be pro-
vided with the coordinates for the position of the
points in the configuration. The center of mass
for pattern C ′ is one of the initial estimates for
the minimal variation center shown in figure 2.

We now define two mathematically ideal pat-
terns for illustrating this algorithm. We will
call these patterns A and B. These are square
root lattices and they are very similar, respec-
tively, to the patterns shown in figures 4A and
4B by Matkowski et al. to illustrate their algo-
rithm. As mentioned earlier square root lattices
are common in nature (Williams, 1975). We in-
dex the points differently here so that the first
one corresponds to the oldest primordium of the
pattern and the last point corresponds to the
newest primordium. The divergence angle is the

8



A B

Figure 3: Results of the algorithm with the pattern A and pattern B. The circles denote the
positions of the points forming the pattern. The curves show the paths followed by gradient
descent to the center from three different initial estimates. The initial estimates lie on the vertices
of an equilateral triangle. In pattern A the initial estimates are at a distance of 75 from the center
and in pattern B they are at a distance of 160 from the center.

constant 137.5o = 360o − 222.5o. Pattern A is:

xj = 39.23725
√

27 − j cos (222.5o(26 − j) + 90o)

yj = 39.23725
√

27 − j sin (222.5o(26− j) + 90o)

where j = 1, . . . , 26. Pattern B is:

xj = 40.57925
√

62 − j cos (222.5o(61 − j) + 90o)

yj = 40.57925
√

62 − j sin (222.5o(61− j) + 90o)

where j = 1, . . . , 40. Figure 3 shows patterns
A and B and the paths that the algorithm fol-
lows from different initial conditions. There are
many more points in these two patterns and the
starting estimates for the minimal variation cen-
ter can be much further away from the minimal
variation center than in pattern C ′. This is par-
ticular clear from the illustration for pattern A.
For these two mathematically ideal patterns gra-
dient descent went to (0, 0) (up to the precision
of the computer). We know that this is the min-
imal variation center because we have designed
the pattern to have constant divergence angles
when calculated from (0, 0). This gives zero for
the standard deviation of the divergence angles
which is the smallest value the standard devia-
tion can have.

It is worth pointing out that the methods em-
ployed by Matkowski et al. to find the center of
these patterns gave approximations that are no-
ticeably different from (0, 0). And the divergence
angles obtained with their estimates of the cen-
ters fluctuated by several degrees (Matkowski et

al., 1998) even though the patterns themselves
were mathematically perfect.

To simulate more realistic patterns we have
added Gaussian noise with a standard deviation
of 5 to A to obtain pattern A′ and Gaussian noise
with a standard deviation of 10 to pattern B to
get pattern B ′. Figure 4 shows the perturbed
patterns. With this much Gaussian noise the
parastichies of the patterns are barely recogniz-
able. They are not unlike what we sometimes
see in naturally occurring patterns. The gradi-
ent descent algorithm was given the same start-
ing estimates with the perturbed patterns as it
was with the unperturbed patterns and it be-
haved pretty much as it did before. The minimal
variation center of pattern A′ is (2.03,−1.15).
The minimal variation center of pattern B ′ is
(−2.28,−0.77). It is worth noting that for pat-
terns A, B, and C the addition of noise resulted
in the minimal variation center moving by less
than half the standard deviation of the added
noise.

6. The Minimal Variation Center and

Uncertainties in the Positions of Primor-

dia

We have defined the minimal variation center of
a phyllotactic pattern and we have constructed
an algorithm which can accurately find it when
there is no uncertainty about the position of the

9
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Figure 4: Results of the algorithm with pattern A′ and pattern B ′. The circles denote the positions
of the points forming the pattern. The curves show the paths followed by gradient descent to the
center from the same starting points as figure 3

primordia in a phyllotactic pattern. But as was
explained in the introduction we can not mea-
sure primordia positions precisely. This leads
to some uncertainty in the values of the diver-
gence angles. A sequence of divergence angles
does not form a set of statistically independent
events though. In this section we will see how
that fact can work to our advantage. Computing
the minimal variation center from less than per-
fect information on primordia position reduces
the effect the uncertainties have on the compu-
tation of the divergence angles.

While naturally occurring phyllotactic pat-
terns do resemble spiral lattices we can not as-
sume that if we had precise data on primordia lo-
cation it would exactly conform to a mathemat-
ically ideal configuration or that the divergence
angles would all have the same value. We do ex-
pect in many cases that the values we compute
for the divergence angles will vary only slightly
about their mean but we still want to be able to
detect the variation in the original sequence as
best as we can.

We let (x1, y1), . . . , (xJ , yJ) stand for the lo-
cation of the primordia in an apex and δ1, . . . ,
δJ−1 be the divergence angles of the pattern com-
puted using the minimal variation center for the
reasons explained in section 3 i.e. we don’t want
the amount of variation in the divergence angles
to be an artifact of the point used as the center.
We let (x′1, y

′

1), . . . , (x
′

J , y
′

J) stand for imprecise
measurements of the primordia’s positions. The

sequence of divergence angles computed from the
imprecise data will be denoted by δ′1, . . . , δ

′

J−1.
We will not assume that this sequence of diver-
gence angles was necessarily computed from the
minimal variation center of (x′1, y

′

1), . . . , (x
′

J , y
′

J).
We want the sequence δ′1, . . . , δ

′

J−1 to be as
close as possible to the original sequence δ1, . . . ,
δJ−1. One way to measure the distance between
two sequences is to form the sum of squares of
the differences between corresponding members.
To keep the distance the same scale across se-
quences of different length we divide the sum by
J−1, the length of the sequence. Finally we take
the square root to make the distance the same
scale as the differences between corresponding
members. This can be written out as

√

∑J−1
j=1 (δ′j − δj)2

J − 1
(1)

Our goal is to make this distance as small as we
can without knowledge of the divergence angles
δ1, . . . , δJ−1 or the positions (x1, y1), . . . , (xJ , yJ).
Without this knowledge we cannot hope to find
the exact minimum of (1) but we can at least
approximate it.

To approximately minimize (1) we will make
use of the fact that the means of the two se-
quences δ1, . . . , δJ−1 and δ′1, . . . , δ

′

J−1 are close
to each other. The reason for this is as follows.
Starting from the first point in the configuration,
(x1, y1), and going around from one point to the
next until we reach the last point (xJ , yJ) we

10



turn about the minimal variation center by a to-
tal amount of

∑J−1
j=1 δj . If instead we start with

(x′1, y
′

1) and go around from one point to the next
until we reach (x′J , y

′

J) the total amount that we

turn will be the sum
∑J−1

j=1 δ
′

j . In either case
the total amount that we turn depends only on
the angular position of the first and last point
- not on the angular position of the intermedi-
ate points. The more points there are in the
pattern the less it matters that the angular po-
sition of (x′1, y

′

1) differs slightly from angular po-
sition of (x1, yj) and that the angular position of
(x′J , y

′

J) differs slightly from the angular position
of (xJ , yJ). These slight differences will be small
in proportion to the size of the sums

∑J−1
j=1 δj ,

∑J−1
j=1 δ

′

j. The mean divergence angles are these
sums divided by J − 1 so the means will be close
to each other2

Since δ ≈ δ
′

we get
∑J−1

j=1 (δ′j − δ)2

J − 1
≈

∑J−1
j=1 (δ′j − δ

′

)2

J − 1
(2)

Now since we use the minimal variation cen-
ter to prevent undue variation in the sequence
δ1, . . . , δJ−1 we keep the values of δj close to δ.
This gives us the approximation

∑J−1
j=1 (δ′j − δj)

2

J − 1
≈

∑J−1
j=1 (δ′j − δ)2

J − 1
(3)

If the divergence angles δ1, . . . , δJ−1 are all the
same then (3) becomes a strict equality. As the
standard deviation of δ1, . . . , δJ−1 rises above zero
the left and right hand sides of (3) can move
apart. So long as the standard deviation is small
enough the right hand side is a good approxima-
tion of the left hand side.

We can combine expressions (2) and (3) to
get

∑J−1
j=1 (δ′j − δj)

2

J − 1
≈

∑J−1
j=1 (δ′j − δ

′

)2

J − 1
(4)

2The mean divergence angle is closely related to the
concept of the rotation number of an orientation preserv-
ing diffeomorphism of a circle to itself. The argument
presented above for the close proximity of the mean di-
vergence angles is a variation of a step in the proof of the
theorem that the rotation numbers of C

0-close orientation
preserving diffeomorphism of a circle have approximately
the same value. For a concise presentation of a proof of
this theorem see (Devaney, 1989).

The left hand side is the expression under the
radical in (1) which we want to minimize. The
right hand side can be computed entirely from
(x′1, y

′

1), . . . , (x
′

J , y
′

J). (An estimate for the er-
ror of approximation in expression (4) is in sup-
plementary appendix C?. As was explained in
section 4 using the minimal variation center to
compute the divergence angles δ1, . . . , δJ−1 min-
imizes the numerator of the right hand side of
(4). Thus finding the minimal variation center of
the points (x′1, y

′

1), . . . , (x
′

J , y
′

J) provides us with
a way of approximately minimizing (1). We can
use it under those circumstances where both (2)
and (3) are good approximations i.e. when there
are a large number of divergence angles and the
divergence angles vary only slightly about their
mean.

7. Finding Divergence Angles: Four

Examples

We now provide four demonstrations of the use-
fulness of the minimal variation center for re-
covering the underlying sequence of divergence
angles of a phyllotactic pattern from imprecise
data. In this section we will now interpret noise
added to a pattern as experimental errors made
in the measurement of primordia positions. We
will compute approximate values for the diver-
gence angles of the original patterns using only
the noisy data. The divergence angles will be
computed using both the minimal variation cen-
ter and the center of mass. We will see that
the minimal variation center does a better job of
finding the divergence angles.

We begin with patterns A and B which have
over two dozen points each and whose divergence
angles are a constant 137.5o. These two patterns
are too perfect to be natural. They represent
ideal cases where we expect to get good results
for the divergence angles because approximation
(3) in section 6 is an equality for these cases. We
add Gaussian noise with a standard deviation of
2 to pattern A to get pattern A′′ and we add
Gaussian noise with a standard deviation of 4 to
pattern B to get pattern B ′′.

The divergence angles are shown in figures 5
and 6. The original sequences are constant and
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Figure 5: The thick line marks 137.5o - the value for every divergence angle in pattern A. The
thin solid line passing through the open circles shows the sequence of divergence angles in pattern
A′′ using the minimal variation center to compute the angles. The dotted line passing through the
crosses shows the sequence of divergence angles in pattern A′′ using the center of mass to compute
the angles.

125

130

135

140

145

150

5 10 15 20 25 30 35

Figure 6: The thick line marks 137.5o - the value for every divergence angle in pattern B. The
thin solid line passing through the open circles shows the sequence of divergence angles in pattern
B′′ using the minimal variation center to compute the angles. The dotted line passing through the
crosses shows the sequence of divergence angles in pattern B ′′ using the center of mass to compute
the angles.
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Figure 7: The thick line indicates the sequence of divergence angles in pattern A ′ using the minimal
variation center to compute the angles. The thin solid line passing through the open circles shows
the sequence of divergence angles in pattern A′′′ using the minimal variation center to compute
the angles. The dotted line passing through the crosses shows the sequence of divergence angles in
pattern A′′′ using the center of mass to compute the angles.
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Figure 8: The thick line indicates the sequence of divergence angles in pattern B ′ using the minimal
variation center to compute the angles. The thin solid line passing through the open circles shows
the sequence of divergence angles in pattern B ′′′ using the minimal variation center to compute
the angles. The dotted line passing through the crosses shows the sequence of divergence angles in
pattern B ′′′ using the center of mass to compute the angles.
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the sequences obtained from the perturbed pat-
terns using the minimal variation center is closer
to being level than the sequences obtained us-
ing the center of mass. We can not expect to
completely overcome the effects of the noise that
has been added to patterns A and B. We see
in figures 5 and 6 that some of the divergence
angles deviate from 137.5o by a few degrees re-
gardless of whether we use the minimal varia-
tion center or the center of mass. For the vast
majority of divergence angles, though, the value
obtained using the minimal variation center is
closer to original value than the value obtained
using the center of mass. So we have, at least,
reduced the effect of the noise by using the min-
imal variation center.

The next two examples are based on patterns
A′ and B′. The divergence angles in patterns A′

and B′ vary by several degrees. We interpret
these configurations as the location of primor-
dia in a pair of phyllotactic patterns that do not
conform to a mathematical ideal. We continue
to interpret the noise in patterns A′ and B′ as a
natural deviation plants make from a mathemat-
ical ideal form. We add more noise to patterns A′

and B′ which we interpret as experimental errors
in the measurement of primordia position. We
add Gaussian noise with a standard deviation of
2 to pattern A′ to get pattern A′′′ and we add
Gaussian noise with a standard deviation of 4 to
pattern B ′ to get pattern B ′′′3. The divergence
angles are shown in figures 7 and 8.

We can see in figures 7 and 8 that the se-
quences of divergence angles in patterns A′′′ and
B′′′ computed with the minimal variation center
does follow the original sequence more closely
than the sequences computed using the center
of mass. Not every divergence angle computed
with the minimal variation center of pattern A′′′

is closer to its corresponding value in pattern A′

but there clearly is an overall tendency for the
corresponding values to be closer when the min-
imal variation center is used to compute the di-
vergence angles. The same things holds for pat-
tern B′′′.

3 Data files for patterns A,A′,A′′,A′′′,B,B′,B′′,B′′′,C,
and C

′ are at http://math.smith.edu/˜phyllo/Research/
findcenter/findcenter.html

Distance Min. Var. CM

Pattern A′′ 1.17o 2.33o

Pattern B ′′ 1.14o 2.60o

Pattern A′′′ 0.98o 1.63o

Pattern B ′′′ 0.86o 1.76o

Table 3: Each of the four rows refers to a pat-
tern that has been perturbed to simulate the ef-
fect of experimental errors (see text for a de-
scription of each pattern). The table shows the
distance between the sequence of divergence an-
gles in the perturbed pattern and the sequence
of divergence angles in the corresponding unper-
turbed pattern. In the second column the min-
imal variation center has been used to compute
the divergence angles in the perturbed pattern.
In the third column the center of mass has been
used to compute the divergence angles in the per-
turbed pattern.

The distances (as defined by (1) in section 6)
between the original sequences and the sequences
obtained from the perturbed patterns are shown
in table 3. For each of the patterns the table
clearly shows that the minimal variation center
provides us with the sequence of divergence an-
gles which is closer to the original sequence.

We can expect similar results with naturally
occurring phyllotactic patterns whose divergence
angles deviate less about their mean values than
the divergence angles of patterns A′ and B′ do.
We can see in figure 4 that patterns A′ and B′

deviate quite noticeably from a mathematically
ideal form. They are not unrealistic but more
well formed patterns are fairly common in na-
ture. The minimal variation center can be a
useful tool to uncover systematic variations in
the divergence angles which may arise in capit-
ula that are slightly imperfect.

8. Phyllotaxis in Three Dimensions

Although the shape of capitula tend to be well
approximated by a flat disk most apices are dome
or conical shaped. In these cases the primordia
form a three dimensional configuration. The ad-
dition of an extra dimension means that the cen-
ter of the pattern in space is no longer merely
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Figure 9: Given two points, P1, P2 and a line L
there is a unique plane containing L and P1 and a
unique plane containing L and P2. We take the
dihedral angle between the planes as the angle
between P1 and P2 relative to L. This angle is
labeled δ1.

a point but a curve. This curve is known as
the axis of the shoot. We do not want the axis
to be curved any more than necessary. Math-
ematically speaking we want the curvature at
each point of the axis to remain within a cer-
tain bound and for the integral curvature to be
small. In this paper we will focus mainly on the
case where the axis is straight (i.e. when the
curvature is zero everywhere).

The divergence angle between consecutive pri-
mordia needs to be calculated relative to the
axis. Computing divergence angles is much eas-
ier when the curve is a straight line where we
can make use of the dihedral angle between two
planes that meet at the axis (see figure 9). When
the axis is not straight we need to generalize the
concept of a dihedral angle. To do this for an
axis that is sufficiently smooth we can make use
of the Serret-Frenet frame of the curve but we
leave this to be a topic for a future paper.

As in the planar cases the divergence angles
in many three dimensional phyllotactic patterns
tend to vary only slightly about some particular

value (e.g. 137.5o). Some phyllotactic patterns
show greater variation in their divergence angles
than others. Computing these divergence angles
requires a good estimate for the location of the
axis. Like in the planar case we don’t want the
variation in the divergence angles to be an arti-
fact of the choice for the shoot’s axis. We would
like to choose a curve that minimizes the varia-
tion in the divergence angles. However for any
finite configuration of points we can find a suffi-
ciently winding curve so that the divergence an-
gles computed relative to this curve will all be
zero. Such a curve would be a poor choice for
the axis of most any configuration. We need to
strike a balance between the amount of curvature
in the axis and the amount of variation in the di-
vergence angles. For now we will only consider
axis that are straight. Formally

We provisionally define the minimal varia-

tion axis of a three dimensional phyllotactic pat-
tern to be the line passing through the pattern
that gives the smallest value for the standard
deviation of the divergence angles as computed
from this line.

With this definition for the axis of a three di-
mensional phyllotactic pattern we can construct
an algorithm to find it. The algorithm will be
based on gradient descent. We need to estab-
lishing a coordinate system to work in. First
we have to decide where the origin is going to
be. The location of the origin is only a matter of
convenience and a convenient spot is near the tip
of the shoot. This is also a conventional choice
in making measurements for the location of pri-
mordia of three dimensional patterns. It would
be most convenient if the minimal variation axis
were to pass through the origin but that is too
much to expect before we have found it. We
have to be content with putting the origin close
to where the minimal variation axis meets the
tip of the apex.

We will choose our initial estimate for the
minimal variation axis to be the vertical coor-
dinate axis which we will call the w-axis. The
positive direction will point up. The remaining
two coordinate axes will be called the u-axis and
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Figure 10: A unit vector is shown as the thick
straight line. Its position is given in terms of
(φ, ψ). These two angles are shown as thick arcs.
The u-axis is the “pole”, φ gives the angle be-
tween the vector and the positive u-axis, and ψ
gives the angle of rotation about the u-axis from
the horizontal direction to the vector.

v-axis. We place them so that the u, v, w-axes
form a right handed orthogonal coordinate sys-
tem. As we iterate the algorithm our estimate for
the location of the minimal variation axis will be
updated but we will keep the coordinate system
fixed.

To specify the location of a line we need a
vector pointing in the direction of the line and
the location of some point that the line passes
through. It is convenient to use unit vectors to
specify the direction of a line. The set of all
unit vectors forms a sphere of radius 1 about
the origin. We can use spherical coordinates to
specify a unit vector on this sphere (see figure
10). Each pair of angles (φ, ψ) will specify the
unit vector

(cos(φ), sin(φ) cos(ψ), sin(φ) sin(ψ))

This is slightly different from the usual form for
spherical coordinates. We choose this form so
that the coordinate singularities4 are at (±1, 0, 0).
These are perpendicular to the estimated direc-
tion of the minimal variation axis so that the
algorithm is not likely to venture near them.

We let (φm, ψm) specify the direction of the
minimal variation axis and (φ0, ψ0) specify an es-
timate for the direction of the minimal variation

4Coordinate singularities are like the north and south
poles where the Earth’s “lines” of longitude meet

L

(u ,v ,w )

u v

w

x

y
η

ξ

0

0 0 0

0

0

0

0

Figure 11: The vectors ξ0, η0 form an orthonor-
mal basis for the plane which is perpendicular to
the line L0 and which passes through the origin.
The point where L0 passes through this plane is
x0ξ0 + y0η0.

axis. The initial estimate for the direction of the
minimal variation axis is (90o, 90o) but as we it-
erate the algorithm we will update the values for
(φ0, ψ0) so that they become closer to (φm, ψm).
The corresponding unit vectors are

(um, vm, wm) =

(cos(φm), sin(φm) cos(ψm), sin(φm) sin(ψm))

(u0, v0, w0) =

(cos(φ0), sin(φ0) cos(ψ0), sin(φ0) sin(ψ0))

The point in the line that we will use to spec-
ify it is where it meets the plane which passes
through the origin and which is perpendicular to
the line. The vectors
−→
ξ m = (− sin(φm), cos(φm) cos(ψm), cos(φm) sin(ψm))
−→η m = (0,− sin(ψm), cos(ψm))

form an orthonormal basis for the plane which
passes through the origin and which is perpen-
dicular to (um, vm, wm). Wherever this plane
meets the minimal variation axis there is a unique
pair of numbers (xm, ym) such that the intersec-

tion point can be expressed as xm
−→
ξ m + ym

−→η m.
The minimal variation axis is the set of points

Lm = {(um, vm, wm)t+ xm
−→
ξ m + ym

−→η m : t ∈ R}

The minimal variation axis is completely speci-
fied by the numbers (φm, ψm, xm, ym).
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Similarly the vectors

−→
ξ 0 = (− sin(φ0), cos(φ0) cos(ψ0), cos(φ0) sin(ψ0)
−→η 0 = (0,− sin(ψ0), cos(ψ0))

form an orthonormal basis for the plane through
the origin that is perpendicular to (u0, v0, w0).
There is a unique pair of numbers (x0, y0) such
that this plane meets our estimate for the min-

imal variation axis at x0
−→
ξ 0 + y0

−→η 0 (see figure
11). The estimate for the minimal variation axis
is the set of points

L0 = {(u0, v0, w0)t+ x0
−→
ξ 0 + y0

−→η 0 : t ∈ R}

This line is completely specified by the numbers
(φ0, ψ0, x0, y0).

The algorithm we are constructing will take
the estimate (φ0, ψ0, x0, y0) and produce an new
estimate that will be closer to (φm, ψm, xm, ym).
We do this by applying gradient descent to the
sum of squares, S, of the divergence angles com-
puted relative to the line L0.

Assume the positions of the sequence of points
P1, . . . , PJ of the three dimensional configuration
have been measured and recorded as (u1, v1, w1),
. . . , (uJ , vJ , wJ) respectively. To compute the di-
vergence angles relative to L0 from (u1, v1, w1),
. . ., (uJ , vJ , wJ) we can orthogonally project the
spatial configuration into a plane perpendicular
to L0 (see figure 12). The computation of the di-
vergence angles in a spatial configuration is then
reduced to the computation of divergence angles
of a planar configuration.

Let us denote the projection of (uj, vj , wj)

into the plane by (xj , yj). Since
−→
ξ 0,

−→η 0 form an
orthonormal basis for the plane containing the
origin and perpendicular to L0 we get explicit
expressions for xj and yj by using the dot prod-
uct.

xj = (uj , vj , wj) •
−→
ξ 0 =

−uj sin(φ0) + cos(φ0)(vj cos(ψ0) + wj sin(ψ0))

yj = (uj , vj , wj) •
−→η 0 = −vj sin(ψ0) + wj cos(ψ0)

The computation of the divergence angles δ1, . . . ,
δJ−1 of (x1, y1), . . . , (xJ , yJ) relative to (x0, y0)
proceeds just as it did in the planar case. From

P

P

P L

1

2

3 0

δ
1

Figure 12: The angle between points relative to
L0 is preserved when we orthogonally project the
points into any plane that is perpendicular to
L0. (The plane in this figure is not the one that
passes through the origin.)

δ1, . . . , δJ−1 we can compute

S =
J−1
∑

j=1

(δj − δ)2

S is now a function of (φ0, ψ0, x0, y0). Gradient
descent can be expressed as

(Φ0,Ψ0, X0, Y0)

= (φ0, ψ0, x0, y0) − ε∇S(φ0, ψ0, x0, y0)

where ε is a small number that scales down the
length of the gradient vector. We then replace
(φ0, ψ0, x0, y0) with (Φ0,Ψ0, X0, Y0) and repeat.
For a detailed computation of the gradient vector
see supplementary appendix D?,1

With the minimal variation axis we can re-
cover the sequence of divergence angles in three
dimensional phyllotactic patterns. Experimental
errors in the measurement of primordia positions
will limit the precision with which we can recover
the angles. The arguments of section 6 (and
supplementary appendix C?) require very little
modification for three dimensional patterns. So
long as the standard deviations are small and
the number of primordia is large approximation
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(4) of section 6 remains valid and using the mini-
mal variation axis to compute the divergence an-
gles reduces the impact of experimental errors in
three dimensions just as the minimal variation
center reduces their impact in two dimensions.
The possibility exists that the impact of these
experimental errors could be further reduced by
using an appropriately chosen curve instead of a
line to compute the divergence angles from.

A program which implements this algorithm
can complete the calculations in a matter of min-
utes on a modern desktop computer5

9. Summary

The field of phyllotaxis has been challenged by
the diversity of shapes that shoot apices can have.
This paper has introduced the concept of the
minimal variation center to help deal with this
diversity. The minimal variation center provides
us with an objective way to compute divergence
angles in capitula whose primordia do not con-
form perfectly to a spiral lattice. It also helps
to mitigate the effect experimental errors in the
measurement of the primordia positions have on
the computed values of the divergence angles.
This helps lay the groundwork to objectively com-
pare theory against experiment for a more gen-
eral class of phyllotactic patterns6.
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Appendix A

In this appendix we derive formulas for the pa-
rameters of an equiangular spiral lattice from
three consecutive lattice points. Let P1, P2, P3

be three consecutive lattice points where P1 is
the outermost and P3 is the innermost lattice
point. Let C be the center of the spiral lattice
(see figure 13). Recall that the coordinate of
P1, P2, P3 are (X1, Y1), (X2, Y2), (X3, Y3) respec-
tively and the coordinates of C are (xc, yc).

Figure 13 shows that value of a equals the
length of P1P2 divided by the length of P2P3. In
coordinates this is

a =

√

(X2 −X1)2 + (Y2 − Y1)2

(X3 −X2)2 + (Y3 − Y2)2

To obtain δ we extend P1P2 to P1A. Figure
14 shows that δ equals ∠AP2P3. The angle that
P1A makes with a horizontal line is the same
as the angle P1P2 makes with a horizontal line.
This angle is given by atan2(Y2 − Y1, X2 −X1).
The angle that P2P3 makes with a horizontal line
is atan2(Y3 − Y2, X3 − X2). The difference be-
tween these two is δ:

δ = atan2(Y3 − Y2, X3 −X2)

−atan2(Y2 − Y1, X2 −X1)

The atan2 function is explained in appendix B.
We can apply the law of cosines to 4P2CP3

to obtain the value of R. Looking at figure 13
we see the law of cosines in this case gives:

Q2 = R2 + (aR)2 − 2(R)(aR) cos(δ)

We know Q2 = (X3 −X2)
2 +(Y3 −Y2)

2. Solving
for R gives:

R =

√

(X3 −X2)2 + (Y3 − Y2)2

1 + a2 − 2a cos(δ)

Point C lies at distance R from P3 and it lies
at distance aR from P2 (see figure 15). Or in

C

P1

P2

P3

Q

aQ

R

aR

a R2

δ

δ

Figure 13: The length of P2C is a times the
length of P3C. The length of P3C is denoted by
R in the figure. The length of P1C is a times the
length of P2C. Since δ = ∠P1CP2 = ∠P2CP3

the triangles 4P1CP2 and 4P2CP3 are similar.
Therefore the length of P1P2 is a times the length
of P2P3. The length of P2P3 is denoted by Q in
the figure.

other words it must be one of the places where
the circle with radius R about P3 intersects the
circle with radius aR about P2. The equations
for these two circles are

(aR)2 = (x−X2)
2 + (y − Y2)

2

R2 = (x−X3)
2 + (y − Y3)

2.

The coordinates for the intersection points of
these two circles are given by those values of
(x, y) which satisfy both of these equations. Solv-
ing these two equations is tedious. We only pro-
vide the solution here. First define the following
four quantities:

x± =
(a cos(δ) − 1)(X3 −X2) ± a sin(δ)(Y3 − Y2)

1 + a2 − 2a cos(δ)

y± =
(a cos(δ) − 1)(Y3 − Y2) ± a sin(δ)(X3 −X2)

1 + a2 − 2a cos(δ)

The intersection points are

((x+) +X3, (y−) + Y3)

((x−) +X3, (y+) + Y3)

Point C must be one of these two points. These
formulas for the center are similar to the ones
presented in (Meicenheimer, 1986). With the
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A

C

P1

P2

P3

δ

δ

δ

Figure 14: The sum of the angles in 4P1CP2

is 180o and the points P1, P2, A are collinear.
This gives us the equation ∠P1P2C+∠CP1P2 +
∠P1CP2 = ∠P1P2C+∠CP2P3 +∠AP2P3. Since
∠P1P2C appears on both sides we can cancel
those terms. And since 4P1CP2 is similar to
4P2CP3 the angles ∠CP1P2 and ∠CP2P3 are
equal. We can cancel them from the equation as
well. This leaves ∠P1CP2 = ∠AP2P3.

formulas here it is easier to see how the num-
ber of intersection points between the two circles
depends on the divergence angle. Except when
δ = 0o or δ = 180o there are two distinct inter-
section points. When δ = 0o or δ = 180o the
circles intersect in a single point which is C so
no choice has to be made.

For the case δ 6= 0o and δ 6= 180o a choice
needs to be made for C. Since C must lie on the
circle with radius a2R about P1 a rigorous way to
determine which of these two intersection points
is actually C is to plug each into the equation:

(a2R)2 = (x−X1)
2 + (y − Y1)

2

The correct choice for (xc, yc) will satisfy this
equation while the incorrect choice will not.

Appendix B

The tangent function has a period of 180o i.e.

tan(θ + 180o) = tan(θ). Consequently the in-
verse of the tangent function is not uniquely de-
fined. However if we restrict the domain of tan
to the interval between −90o and 90o it becomes
a continuous one to one map onto the real line.
This makes it convenient to restrict the range of

C

P1

P2

P3

R

aR

a R2

Figure 15: The point C lies on a circle of radius
R about P3. It also lies on a circle of radius aR
about P2 and on a circle of radius a2R about
P1. The location of C can be determined from
the fact that these three circles only intersect
simultaneously in a single point.

the inverse function to the interval between −90o

and 90o. This gives a continuous function that
is one to one on the whole real line. This inverse
is called arctan.

Even though arctan is a convenient function
it cannot give us the angular coordinate for some
points in plane. For example consider the points
(1, 1) and (−1,−1). They are collinear with the
origin and the slope of this line is 1. We can sub-
stitute this slope into the arctan function to get
the angular coordinate of (1, 1) (i.e. the angle
that the ray starting at the origin and passing
through (1, 1) makes with the positive x-axis).
This angle is 45o = arctan(1). However the an-
gular coordinate of (−1,−1) is −135o (or 225o)
which is outside of the range of arctan.

One way to avoid this problem is to define a
function which makes use of both the horizontal
and vertical coordinates of the point. That is the
purpose of the atan2 function. Its range is the
interval between −180o and 180o along with the
value 180o. The atan2 function can be defined
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in terms of arctan as follows:

atan2(y, x) = arctan(y/x) if x > 0

atan2(y, x) = arctan(y/x) + 180o if x < 0, y ≥ 0

atan2(y, x) = arctan(y/x) − 180o if x < 0, y < 0

atan2(y, 0) = 90o if y > 0

atan2(y, 0) = −90o if y < 0

atan2 is left undefined for the point (0, 0). Note
that it is conventional to put the y coordinate
before the x coordinate in atan2.

An analysis of a phyllotactic pattern in the
early stages of development begins with measure-
ments for the position of the primordia. Let the
primordia be labeled in ontological order so that
oldest one is labeled “1”, the second oldest is la-
beled “2”, and so on up to the newest one which
is labeled “J”. Let the horizontal and vertical
coordinates measured for the jth primordium be
(xj , yj).

If the origin of the coordinate system is used
as the center of the pattern then the angular co-
ordinate of (xj , yj) would simply be atan2(yj , xj).
However we want the angle that a ray starting at
our initial estimate for the center, (x0, y0), and
passing through (xj , yj) makes with a horizontal
ray starting at (x0, y0). To do this we need to
take the vector difference between (xj , yj) and
(x0, y0) before using the atan2 function. In a
sense we are translating our coordinate system
so that (x0, y0) becomes the origin and (xj −
x0, yj − y0) are the coordinates for the jth pri-
mordium. We denote the angular coordinate of
the jth primordium by θj. It is given by

θj = atan2(yj − y0, xj − x0).

We denote the divergence angle between the j th

and j + 1th primordium by δj . There are J − 1
divergence angles altogether. They are given by

δj = θj+1 − θj.

The formula for gradient descent is

(X0, Y0) = (x0, y0) − ε

(

∂S

∂x0
,
∂S

∂y0

)

(5)

where (X0, Y0) is the new estimate for the center
of the pattern. A convenient and well known

formula for computing the sum of squares is

S(x0, y0) =

J−1
∑

j=1

δ2j −

(

∑J−1
j=1 δj

)2

J − 1

The dependence of δj on (x0, y0) has been sup-
pressed in the notation. We now compute the
gradient of this function. Its x component is

∂S

∂x0

= 2

J−1
∑

j=1

δj
∂δj
∂x0

− 2

(

∑J−1

j=1
δj

) (

∑J−1

j=1

∂δj

∂x0

)

J − 1
(6)

and its y component is

∂S

∂y0
= 2

J−1
∑

j=1

δj
∂δj
∂y0

− 2

(

∑J−1

j=1
δj

)(

∑J−1

j=1

∂δj

∂y0

)

J − 1
. (7)

We need the partial derivatives for the δj . They
can be computed from the formulas above for δj .

∂δj
∂x0

=
∂θj+1

∂x0
−
∂θj
∂x0

(8)

∂δj
∂y0

=
∂θj+1

∂y0
−
∂θj
∂y0

These partial derivatives for the θj can be com-
puted from the formulas above for θj.

∂θj
∂x0

=
∂

∂x0
atan2(yj − y0, xj − x0)

∂θj
∂y0

=
∂

∂y0
atan2(yj − y0, xj − x0)

We now need the partial derivatives of atan2.
For x 6= 0 they can be computed by using the
chain rule with arctan(y/x), arctan(y/x)+180o,
and arctan(y/x) − 180o. Of course the addition
of a constant has no affect on the derivative.

∂

∂x
atan2(y, x) = −

y

x2 + y2

∂

∂y
atan2(y, x) =

x

x2 + y2

We can extend these formulas by continuity to
the cases where x = 0 and y 6= 0 so that atan2 is
differentiable over the whole plane except at the
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origin. Now applying the chain rule with these
formulas gives

∂θj
∂x0

=
yj − y0

(xj − x0)2 + (yj − y0)2
(9)

∂θj
∂y0

= −
xj − x0

(xj − x0)2 + (yj − y0)2

We now have all the formulas needed to im-
plement the gradient descent algorithm. We use
the measured values, (xj, yj), for the location of
the primordia in equation (9) to give us the par-
tial derivatives of the angular coordinates θj. We
substitute this into equation (8) to get the par-
tial derivatives of the divergence angles δj . We
substitute this into equations (6) and (7) to get
the partial derivatives of the sums of squares S.
And finally we substitute this into equation (5).

These calculations are too much to do by
hand but they are actually quite easy to do on a
desktop computer7.

Appendix C

In this appendix we estimate the error of approx-
imations (2), (3), and (4) in section 6. We let δ
be the mean of δ1, . . . , δJ−1 and s be the stan-

dard deviation. Similarly δ
′

denotes the mean of
δ′1, . . . , δ

′

J−1 and s′ is the standard deviation.
Since divergence angles are differences be-

tween angular positions the scale of the differ-
ences between corresponding angular positions
is about the same as the scale of the differences
between corresponding divergence angles. There
are at most a few hundred primordia in an apex
and there is very little chance that correspond-
ing divergence angles would differ by more than
five times the sum of the standard deviations of
the two sequences of divergence angles. So it is
very unlikely that experimental error in the mea-
surement of a primordium’s position would cause
the angular position to differ by more than 5(s+
s′). In most cases it will differ by much less but
here we will make a very conservative estimate.
The differences between the sums

∑J−1
j=1 δj and

7 A sample C code that implements this algorithm
along with instructions for its use is at http://math.sm
ith.edu/˜phyllo/Research/findcenter/findcenter.html

∑J−1
j=1 δ

′

j depends only the difference between the
angular positions of (x1, y1), (x′1, y

′

1) and the dif-
ference between the angular positions of (xJ , yJ),
(x′J , y

′

J). This gives us

∣

∣

∣

∣

∣

∣

J−1
∑

j=1

δ′j −

J−1
∑

j=1

δj

∣

∣

∣

∣

∣

∣

≺ 10(s+ s′) (10)

The symbol “≺” is meant to indicate that it is
very likely for the left hand side to be less than
the right hand side.

A straight forward algebraic computation gives
the equality

∑J−1
j=1 (δ′j − δ)2

J − 1
−

∑J−1
j=1 (δ′j − δ

′

)2

J − 1

= (δ
′

− δ)2 =
1

(J − 1)2





J−1
∑

j=1

δ′j −

J−1
∑

j=1

δj





2

Combining this computation with inequality (10)
just above gives

∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δ)2

J − 1
−

∑J−1
j=1 (δ′j − δ

′

)2

J − 1

∣

∣

∣

∣

∣

(11)

≺
100(s + s′)2

(J − 1)2

This is our estimate for the error of approxima-
tion (2) in section 6. Keeping s, s′ small and J
large keeps this error small.

Another straight forward algebraic computa-
tion shows that

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

=
1

J − 1

J−1
∑

j=1

((δ′j − δj) + (δ′j − δ))(δ − δj)

Taking the absolute value of both sides and ap-
plying the triangle inequality in a straight for-
ward manner several times gives us

∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

∣

∣

∣

∣

∣

≤
1

J − 1

J−1
∑

j=1

(|δ′j − δj| + |δ′j − δ|)|δ − δj |
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Another application of the triangle inequality gives
us

|δ′j − δ| ≤ |δ′j − δ
′

| + |δ
′

− δ|

Therefore
∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

∣

∣

∣

∣

∣

≤

1

J − 1

J−1
∑

j=1

(|δ′j − δj | + |δ′j − δ
′

| + |δ
′

− δ|)|δ − δj |

As we have already stated it is very unlikely for
δ′j and δj to differ by more than 5(s + s′). It is

also very unlikely for δj and δ to differ by more
than 5s or for δ′j and δ to differ by more than
5s′. And using inequality (10) above gives

|δ
′

− δ| ≺
10(s+ s′)

J − 1

Therefore
∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

∣

∣

∣

∣

∣

≺
1

J − 1

J−1
∑

j=1

(

5(s+ s′) + 5s′ +
10(s + s′)

J − 1

)

5s

Since there are J − 1 terms in the sum this sim-
plifies to

∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

∣

∣

∣

∣

∣

(12)

≺ 25s

(

s+ 2s′ +
10(s+ s′)

J − 1

)

This is an estimate for the error of approximation
(3) in section 6.

Combining the triangle inequality with in-
equalities (12) and (13) we get

∣

∣

∣

∣

∣

∑J−1
j=1 (δ′j − δj)

2

J − 1
−

∑J−1
j=1 (δ′j − δ)2

J − 1

∣

∣

∣

∣

∣

(13)

≺
100(s + s′)2

(J − 1)2
+ 25s

(

s+ 2s′ +
10(s+ s′)

J − 1

)

The left hand side of this inequality contains the
two terms in expression (4) of section 6. We see

that the smaller s and s′ are the more confident
we can be that the left and right hand sides of
(4) are close to each other. The coefficients may
seem large but remember that we are being very
conservative here. The key point is that the dif-
ference between the left and right hand sides of
(4) has very little chance of being larger than this
homogeneous quadratic polynomial in s and s′.
Therefore the smaller we can make s and s′ be
the more confident we can be that the left and
right hand sides of (4) are close to each other.

If we could be lucky enough to get s = s′ = 0
then the left and right hand sides of (4) would
be equal. Further if s′ = 0 the right hand side
of (4) would be zero. Therefore the left hand
side would be zero as well. This means the two
sequences δ′1, . . . , δ

′

J−1 and δ1, . . . , δJ−1 would be
the same.

With experimental errors in the measurements
of naturally occurring phyllotactic patterns it is
very unlikely we would get s = s′ = 0 but using
the minimal variation center to keep these stan-
dard deviations as small as we can reduces the
amount of separation between the sums

∑J−1
j=1 (δ′j−

δj)
2 and

∑J−1
j=1 (δ′j−δ

′

)2. Since the minimal vari-

ation center minimizes the sum
∑J−1

j=1 (δ′j − δ
′

)2

it approximately minimizes the sum
∑J−1

j=1 (δ′j −

δj)
2. This means we have reduced the distance

between the two sequences of divergence angles
δ′1, . . . , δ

′

J−1 and δ1, . . . , δJ−1.

Appendix D

In this appendix we compute the partial deriva-
tives of the function S(φ0, ψ0, x0, y0) in section
8. The formula for gradient descent is

(Φ0,Ψ0, X0, Y0)

= (φ0, ψ0, x0, y0) − ε

(

∂S

∂φ0

,
∂S

∂ψ0

,
∂S

∂x0

,
∂S

∂y0

)

Since the values of (xj, yj) as defined in section
8 do not depend on x0 or y0 the computation of
the partial derivatives with respect to x0 and y0

proceeds just as it did in appendix B. We only
need to compute the partial derivatives with re-
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spect to φ0 and ψ0. We begin with

∂S

∂φ0

= 2

J−1
∑

j=1

δj
∂δj
∂φ0

− 2

(

∑J−1

j=1
δj

) (

∑J−1

j=1

∂δj

∂φ0

)

J − 1

∂S

∂ψ0

= 2

J−1
∑

j=1

δj
∂δj
∂ψ0

− 2

(

∑J−1

j=1
δj

) (

∑J−1

j=1

∂δj

∂ψ0

)

J − 1

We need
∂δj
∂φ0

and
∂δj
∂ψ0

. Like in appendix B

∂δj
∂φ0

=
∂θj+1

∂φ0
−
∂θj
∂φ0

∂δj
∂ψ0

=
∂θj+1

∂ψ0
−
∂θj
∂ψ0

Applying the chain rule to

θj = atan2(yj − y0, xj − x0)

gives

∂θj
∂φ0

=
(xj − x0)

∂yj

∂φ0
− (yj − y0)

∂xj

∂φ0

(xj − x0)2 + (yj − y0)2

∂θj
∂ψ0

=
(xj − x0)

∂yj

∂ψ0
− (yj − y0)

∂xj

∂ψ0

(xj − x0)2 + (yj − y0)2

We compute ∂xj/∂φ0, ∂yj/∂φ0, ∂xj/∂ψ0, ∂yj/∂ψ0

using the basic rules for finding derivatives.

∂xj
∂φ0

= −uj cos(φ0) − sin(φ0)(vj cos(ψ0) + wj sin(ψ0))

∂yj
∂φ0

= 0

∂xj
∂ψ0

= −vj cos(φ0) sin(ψ0) + wj cos(φ0) cos(ψ0)

∂yj
∂ψ0

= −vj cos(ψ0) − wj sin(ψ0)

These formulas allow us to compute ∂S/∂φ0 and
∂S/∂ψ0

8.

8 A sample C code that implements this algorithm
along with instructions for its use is at http://math.sm
ith.edu/˜phyllo/Research/findcenter/findcenter.html

24


