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Abstract

We present a rigorous mathematical analysis of a discrete dynamical
system modeling plant pattern formation. In this model, based on the
work of physicists Douady and Couder, fixed points are the spiral or he-
lical lattices often occurring in plants. The frequent occurrence of the
Fibonacci sequence in the number of visible spirals is explained by the
stability of the fixed points in this system, as well as by the structure of
their bifurcation diagram. We provide a detailed study of this diagram.
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1 Introduction

1.1 Description of the Biological Phenomenon

There are hundreds of thousands of species of plants exhibiting a huge diversity
of plant forms. Yet despite this diversity there are only a few ways in which
botanical units such as leaves, florets or scales are arranged along a stem. The
study of these plant patterns is known as phyllotaxis.

It is conventional to classify phyllotactic patterns into three broad categories:
whorled, spiral and distichous. Whorled phyllotaxis is characterized by two or
more botanical units growing from the same region, or node, of a stem. In spiral
phyllotaxis only one botanical unit grows at each node and the angle between
successive units, called the divergence angle, is constant. Distichous phyllotaxis
can be seen as a special case of spiral phyllotaxis where the divergence angle
is 180o. While in distichous phyllotaxis there are two rows along the stem, in
spiral phyllotaxis there are two main visible families of spirals or helices called
parastichies (see Figures 1 and 2).

One of the more remarkable features of spiral phyllotaxis is that the number
of spirals or helices in the two families tend to be two consecutive elements
in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (Fn+1 = Fn + Fn−1) (see
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Figure 1: The pine cone shown on the left displays 13 spirals winding as the one shown
in black, and 8 winding as the one shown in white. These spirals, joining scales to their
nearest neighbors, are called parastichies. The pineapple shows a similar structure,
but its parastichies are helices. On the right, one of the mathematical models (a helical
lattice) studied in this paper.

(a) (b) (b') (c)

Figure 2: The three main phyllotactic types in a disk (or centric) representation:
(a) whorled (here 3 botanical units appear at each node); (b) spiral, with divergence
angle � 137.5o; (b′) spiral again, with same divergence angle but lower growth rate;
(c) distichous.

Figure 1). Moreover, the divergence angle between two successive elements
tends to 360o(τ) � 222.492o (or 360o(1 − τ) � 137.507o) where τ is the golden
ratio τ = −1+

√
5

2 = 0.61803 . . . (see Figure 2). This is the most well known
phenomenon studied in the interdisciplinary field of Phyllotaxis.

Phyllotactic patterns are established at a microscopic scale by a process
known as meristematic development. For example, the patterns seen in large
sunflower heads are actually established when the sunflower’s blossom is only
2mm in diameter. The botanical units or plant organs composing these pat-
terns are formed in the small shoot apices of plants. They first appear at the
usually circular edge of an apex (or apical meristem) as bulges of cells called
primordia (see Figure 3). The biological mechanism of primordium formation
is still unknown, although various hypotheses have been brought forward such
as anisotropic concentrations of morphogens [30] or inhibitory chemical sub-
stances [23] (yet to be determined), or buckling of a layer of cells (tunica) over
the core (corpus) of the apex [11].
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Figure 3: On the left, two scanning electron microscope pictures of a magnolia apex
(size � 2 mm). On the right, a stylized view of a plant apex. New primordia form as
far away as possible from existing primordia. Once formed, primordia move radially
away from the center of the apex.

Phyllotactic patterns are not fixed characteristics of a plant species. Ex-
amples of whorled, distichous, and spiral phyllotaxis can be found in almost
every plant family. Furthermore, it is very common for leaves on a plant to
exhibit distichous phyllotaxis during the early stages of growth and to undergo
a transformation to spiral phyllotaxis shortly before the plant flowers. Typi-
cally, in such plants the floral organs continue to display spiral phyllotaxis. On
the other hand, in some other plants (such as Bromeliads) the leaves display
spiral phyllotaxis in the early stages of growth and undergo a transformation to
distichous phyllotaxis which continues on with the floral organs.

Each type of phyllotactic pattern results from a particular developmental
sequence. The fact that the different types of phyllotaxis occur in almost every
plant family while an individual plant can exhibit different types of phyllotaxis
at different stages indicates that the process of meristematic development is very
similar among the higher plants. The different types of phyllotaxis can result
from a single process operating under different initial conditions and parameter
values. The transformation from one phyllotactic pattern to another in an
individual plant can be a consequence of a parameter varying as the plant grows.

In 1868 the botanist Hofmeister [13] published his results on the microscopic
study of plant shoot apices. Based on his observations he proposed that when
a single primordium forms, it always does so in the least crowded spot along
the apical ring. This is seen as a consequence of primordia exerting an in-
hibitory effect on the formation of new primordia, whether it be chemical or
bio-mechanical. Following Douady and Couder [7], we add a few simple rules
to this:

Hofmeister Hypotheses

(i) The apex has an axis of symmetry.
(ii) Primordia form at the edge of the apex and, due to the shoot’s growth,

they move away radially from the center with radial velocity only depend-
ing on their distance to the edge of the apex.

(iii) New primordia are formed periodically, the period is called the plas-
tochrone.
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(iv) The incipient primordium forms in the largest available space left by the
previous ones.

The region of the apex where primordia form can be approximated by many
different shapes: a flat annulus, a section of a cone, of a cylinder or of a
paraboloid, and others. Numerical experiments we and others have performed
show that there are no drastic qualitative differences in the phenomena observed
when we change shapes. We choose here a cylindrical shape, since the analy-
sis is much simpler than in the other cases, and assume a constant velocity of
transport for the primordia.

1.2 Preview of Results

In this paper, we address two simple and yet fundamental questions:

(1) Why do spiral or helical lattices occur so predominantly?
(2) Why, among these lattices, do the ones exhibiting Fibonacci parastichy

numbers occur most often?

Many models assume that there is a lattice structure and address only the
second question (e.g., [1, 18]). Numerical simulations have also been performed,
most notably by Douady and Couder [7]. This paper studies a parameterized
family of discrete dynamical systems that models meristematic development and
which gives answers to both questions. It should be noted that while Douady
and Couder as well as many others have used the terminology of dynamical
systems, aside from Kunz [16] this conceptual step has not been performed
before. Moreover, because of its relative simplicity, our model allows complete
and rigorous mathematical answers to these questions. Our model is a one–
parameter family of discrete dynamical systems on a high dimensional torus. It
is based on phenomenological observations by the botanist Hofmeister [13] (see
above), as revisited by Douady and Couder [7]. This model also shows how,
as the parameter is varied, a transition occurs between distichous and spiral
phyllotaxis.

Theorem 1 shows that all fixed points of our system are lattice configurations.
In Theorem 2, we prove that all fixed points are stable, accounting for their
widespread occurrence in nature. The parameter we use for a cylindrical shaped
apex is the internodal distance, i.e., the distance between neighboring nodes.
Theorem 3 describes the structure of the bifurcation diagram of our system
as the parameter (internodal distance) varies: it is a “prunned” van Iterson
diagram (see Figure 4).

When the internodal distance is large, there is only one branch in the dia-
gram. On this branch the divergence angle is 180o, corresponding to distichous
phyllotaxis. As the internodal distance decreases, we reach the point A∗. Here
we have an unusual type of symmetry breaking bifurcation (Section 5.7). As the
parameter decreases, the distichous branch ceases to exist and two new branches
descend from A∗. These two branches correspond to lattices of opposite chiral-
ity. As the parameter is decreased further, these branches tend in the limit to
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Figure 4: The fixed point bifurcation diagram (in black) and its underlying hyperbolic
geometry (in grey). Each point of the bifurcation diagram corresponds to a fixed point
of the system, a helical lattice with constant divergence angle. The horizontal axis
is the divergence angle measured as a fraction of a turn. The vertical axis is the
parameter in the system, the internodal distance. The parastichy numbers of the fixed
points vary from segment to segment in the bifurcation diagram, in the figure some of
these are labeled (i, j). The parastichy numbers of distichous phyllotaxis are (1,1). The
point A∗ is a symmetry breaking bifurcation point, where a transition from distichous
to spiral phyllotaxis occurs.

the numbers 1−τ and τ on the horizontal axis. Moreover, as we follow these two
branches, the parastichy numbers of the lattices follow the Fibonacci sequence.

The stability of the fixed points and the structure of the bifurcation dia-
gram can be used to answer the second question. In the early stages of a plant’s
growth the internodal distance is large and the plant exhibits distichous phyl-
lotaxis. As the plant grows, the internodal distance decreases, the phyllotaxis
is transformed to spiral type, and the parastichy numbers of the plant become
consecutive Fibonacci numbers. This decrease in internodal distance is sup-
ported by botanical evidence [20, 25, 33]. In terms of our dynamical system,
if a configuration is near a fixed point and we decrease the parameter (intern-
odal distance) while iterating the map, the successive configurations will follow
closely a branch of the bifurcation diagram.

What is also interesting is the fact that there are other branches in the
bifurcation diagram. The lattices on the largest pair of these other branches
follow the Lucas sequence (1, 3, 4, 7, 11, . . .). Although Lucas numbers are much
less common in spiral phyllotaxis, they do occur. Furthermore, plants have been
observed to display pairs of smaller Lucas numbers in the early stages of growth
and pairs of larger Lucas numbers in their later stages.

Since the complete biological mechanisms of primordium formation are yet
unknown, we do not claim an exhaustive rendition of all the parameters and
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phenomena at play (other models and their relationship with this one are dis-
cussed in Section 7). Instead, we hope that our model points to some universal
(hence, simplest in some sense) mathematical features that we think should be
present in all models of phyllotaxis. Moreover, despite its simplicity, this model
yields patterns (periodic orbits) that do occur in plants but are very seldom
mentioned by botanists (see Section 6). We hope that a classification of such
patterns will yield a better understanding of the transitions between whorl and
spiral patterns.

This paper bears a lot in common with Kunz’s thesis [16] who independently
discovered a dynamical system, similar to ours, which fits Douady and Couder’s
model. In contrast to Kunz’s system, ours only takes into account the influence
of the closest primordium on the nascent one. This greatly simplifies the anal-
ysis of the bifurcation diagram and allows complete mathematical rigor. The
(structural) stability of the fixed points in our system and the lack of agreement
among biologists as to the precise nature of the mutual “inhibition” between
primordia further legitimize the simplicity of our assumption. Adler [1] makes
a similar assumption in a (non–dynamical) lattice model. Levitov [18] intro-
duces, in the context of lattices of superconductivity, a model similar to Adler’s
and uses hyperbolic geometry techniques which influenced this work. Finally,
Douady [6] obtains the same bifurcation diagram as ours using a disk packing
interpretation of the phenomenon. In Section 7 we review in more detail the
relation of these and other authors’ works to ours.

The web site www.math.smith.edu/~phyllo contains interactive applets il-
lustrating some of the concepts studied in this paper.

2 A Dynamical System Model

We remind the reader that a discrete dynamical system is simply a map φ :
E → E where E, called the phase space, is usually a topological space. One is
interested in orbits of φ, defined by xn = φ(xn−1). We will define two related
discrete dynamical systems based on the above Hofmeister hypotheses.

2.1 The Phase Space

For simplicity of the analysis, we work in the cylindrical representation of Phyl-
lotaxis, which we can think of, for example, as leaf primordia forming along
a stem. We represent the stem of our plant upside down, as the half cylinder
C = S

1×[0,∞) with unit circumference. The edge of the apical meristem, where
new primordia are born, is the circle S

1×{0} (see Figure 5). Primordia are ide-
alized as points in C and indexed backwards: pk denotes the primordium that
appeared k plastochrones ago (recall that a plastochrone is the elapsed time
between two consecutively formed primordia), p0 is the most recently formed
primordium, located at the edge of C. A possible configuration can be described
as {p0, p1 . . . , pN}, where pk = (θk, yk) has angular and vertical coordinates.
The periodicity condition in the Hofmeister hypotheses implies that the pri-
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Figure 5: A configuration on the unrolled half cylinder and its image under one
iteration of the map Φ.

mordia have a constant vertical interspacing. This simply translates to yk = ky
for a fixed parameter y > 0 called the internodal distance. Once the parameter y
is fixed, configurations are determined uniquely by their angular coordinates θk.
Hence, the phase space our map Φ (defined below) acts on is the N + 1-torus
T
N+1, with coordinates (θ0, θ1, . . . , θN ). Figure 5 shows a configuration with an

illustration of the notation just introduced.

2.2 The Map Φ

Given a configuration {p0, . . . , pN} of primordia, we denote by {P0, P1, . . . PN}
the new configuration of primordia after one plastochrone. We now define
what the “new” Pk are. According to Hofmeister hypotheses, primordium
pk = (θk, yk) = (θk, ky) has moved up by y, becoming primordium Pk+1. There-
fore, we define Pk+1 = (Θk+1, Yk+1) = (θk, (k+1)y). The incipient primordium
P0 = (Θ0, 0) appears in the “least crowded spot” left by the other Pk’s. This
defines a map Φ : T

N+1 → T
N+1 of the following form:

Θ0 = F (θ0, . . . , θN )
Θ1 = θ0

...
ΘN = θN−1

where F , whose precise definition is given in the next subsection, is a function
implementing Hofmeister’s condition of “least crowded spot”.

2.3 Least Crowded Spot: a Maximin Principle

We now turn to the definition of F . The “crowdedness” will be measured by
some “inhibitory field”. We choose to measure the amount of inhibition felt at
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a location p on the circle S
1 × {0} by the distance between p and the closest

primordium:
D(p)

def
= min

1,...,N
||Pk − p||.

The smaller this minimum distance D(p) is, the more inhibition is felt at p. The
location for the new primordium P0 = (Θ0, 0) should thus be where the least
inhibition is felt, i.e., we want to maximize D. Therefore, we define P0 as the
location such that

D(P0) = max
p∈S1×{0}

D(p).

This defines Θ0 = F (θ0, . . . , θN ), and we refer to it as the Maximin Principle.
We note that occasionally there is more than one location where this maximum
is achieved, we study this in Section 5.4. The Maximin Principle has two geo-
metric consequences that will be crucial in the characterization of fixed points
(Section 5): the incipient primordium P0 must be equidistant from its two near-
est neighbors, say Pn and Pm; furthermore, Pn and Pm must lay on opposite
sides of P0. These statements only make sense when we unroll the cylinder on
the plane, i.e., when we consider its covering space. The caption of Figure 6
gives a trivial “proof” of these two facts.

Remark. We chose the above definition of “least crowdedness” because it is the
simplest that yields the full phenomenon. Moreover, it allows a complete and
rigorous mathematical analysis and the stability results of Theorem 2 ensure
that any nearby model will exhibit the same phenomenon (structural stability).
See Section 7 for comparison with other definitions of “least crowdedness”.

P0

Pn

Pm

Figure 6: The minimum distance function D is the lower envelope of the graphs of the
functions Dk(p) = ||Pk − p||. Since each Dk is convex, a maximum of D must occur
where the graphs of Dn and Dm meet, for some n and m. Such a point P0 must be
equidistant from Pn and Pm, hence it lies on their perpendicular bisector. Moreover,
for D to increase to the left of P0 and decrease to the right, the point P0 must be to
the right of one of Pn or Pm and to the left of the other.

2.4 About the Choice of Dimension

The fixed number N should be large enough so that PN does not have any
effect on D regardless of the position of all the other primordia. The worst case
scenario is a configuration with Pk, 0 < k < N , aligned at positions (1

2 , ky).
One can check that N > 1

2y + 1 is enough.
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Requiring a fixed number of primordia seems artificial in terms of botany,
where the number of primordia is always increasing. But note that configu-
rations of N ′ primordia, with N ′ < N are in fact included in our space of
configurations T

N+1: such a configuration {p0, p1, . . . , pN ′} is completely equiv-
alent (dynamically) to one in which we add “virtual” primordia pN ′+1, . . . , pN
all placed exactly “behind” pN ′ . That is with θN ′ = θN ′+1 = . . . = θN .

2.5 Making Use of Symmetry: the Map φ

Our system has rotational symmetry: we are interested in the shape of a con-
figuration, not its location around the stem. The configuration shapes are thus
determined up to a rotation around the circle. The easiest way to account for
this symmetry is to introduce relative angle coordinates xk = θk+1 − θk, called
divergence angles by botanists. This gives rise to another map φ on the N -
torus T

N parametrized by the divergence angles (x0, . . . , xN−1). To define φ
rigorously, consider the map

S : (θ0, . . . , θN ) → (θ1 − θ0, . . . , θN − θN−1) = (x0, . . . , xN−1)

between absolute angle and divergence angle coordinates. Then φ is uniquely
defined by the relation

S ◦ Φ = φ ◦ S.

3 Fixed Points for φ

A configuration with a constant divergence angle is a helical lattice. As noted
in the introduction, helical lattices are configurations that very often occur in
nature. An essential feature of our model is that the kinds of helical lattices
observed in plants appear as fixed points of the map φ defined above (Section 5
shows exactly which helical lattices appear as fixed points of the dynamical
system). Furthermore, these fixed points are stable: the iterates of all config-
urations in a neighborhood of a fixed point converge to it, accounting for the
robustness of the phenomenon and its occurence in nature.

In this section, we show that fixed points are helical lattices and state the
stability theorem of fixed points. Its proof appears in Appendix I.

3.1 Fixed Points are Helical Lattices

Theorem 1. Fixed points of φ are helical lattices, i.e., configurations with con-
stant divergence angles.

Proof. Let (X0, . . . , XN−1) = φ(x0, . . . , xN−1). A fixed point is such that Xk =
xk, k ∈ {0, . . . , N − 1}. On the other hand, the definition of the map gives
Xk = xk−1, k ∈ {1, . . . , N − 1}. Hence, xk = xk−1, k ∈ {1, . . . , N − 1}: the
divergence angle is constant.
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Figure 7: The limiting image of a configuration after repeated iterations of Φ. In this
case, the limit is a fixed point of the map φ, a helical lattice.

3.2 Stability of Fixed Points

Theorem 2. All fixed points are asymptotically stable: the spectrum of the dif-
ferential of φ is contained in the open unit disk.

The proof, which uses some results of the subsequent sections, is in Ap-
pendix I. Figure 7 shows the convergence of a configuration to a helical lattice
under iteration of the map Φ.

4 Lattices

4.1 Lattices and Parastichies

In order to characterize those helical lattices that correspond to fixed points of
the dynamical system, we need to define certain geometrical features of helical
lattices and their parastichies.

A helical lattice is a discrete subgroup of the cylinder (isomorphic to Z)
generated by a single fixed element (x, y) where, in the language of botany, x
is the constant divergence angle and y is the internodal spacing. We use the
notation L(x, y) to denote the helical lattice generated by (x, y). Elements of
L(x, y) are of the form (kx, ky), k ∈ Z (the first coordinate is understood to be in
R/Z). Botanists (see, for example, [10]) have found it convenient to study helical
lattices by looking at their covering spaces, which are planar lattices. This is
conceived of as “unrolling” the cylinder C. Since C has circumference 1, when
we lift or “unroll” the helical lattice generated by (x, y) we get the planar lattice
Λ(x, y) generated by (x, y) and (1, 0) (where it is understood that x ∈ [0, 1)).
Hence,

Λ(x, y) = {k(x, y) + d(1, 0) | k, d ∈ Z}.
We also use the complex notation z = x + iy and Λ(z) for Λ(x, y). With this
notation, points in Λ(z) are of the form kz + d, with k, d ∈ Z.

Conversely, we conceive of the projection of a planar lattice to a helical lattice
as a “rolling up” of the planar lattice. It is sufficient to project just the lattice
points in the infinite strip (− 1

2 ,
1
2 ] × R (or {w ∈ C | Re(w) ∈ (−1/2, 1/2]})
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to recover all of L(x, y) (this choice of strip picks up the representative of each
element of L(x, y) which is closest to the origin). So we can imagine that
the projection works by cutting the strip from the plane and gluing its edges
together. Given a point (kx, ky)+(d, 0) in Λ(x, y), its representative in the strip
is (kx − ∆k(x), ky) where ∆k(x) is the closest integer to kx. (If there are two
such integers, pick the smallest one.)

0 1 2 3 4

zk kz∆k = 3

z

Figure 8: Geometric meaning of the encyclic number ∆k.

Botanists abbreviate ∆k(x) to ∆k and call it the kth encyclic number. They
also use the notation δk = kx−∆k which they call the kth secondary divergence
angle. Hence, the helical lattice L(x, y) has a one–to–one planar representation
in the strip −1/2 < x ≤ 1/2 as {(δk, ky)| k ∈ Z}. We also use the complex
notation for these favored representatives:

zk = δk + iky = kx− ∆k + iky = kz − ∆k.

When we lift a helix passing through the points of a helical lattice, we get a
line that passes through the points of the corresponding planar lattice. We take
the point pk = (δk, ky) of a helical lattice, lift it to the corresponding zk in the
planar lattice, form the line passing through the origin and zk, and project it
back down to the cylinder to get the least coiled helix in C that passes through
(0, 0) and pk. This helix is called a k–parastichy of the helical lattice if there
are no lattice points in the line between (0, 0) and pk. The lattice points lying
in this k–parastichy form the sub-lattice {(jkx, jky)| j ∈ Z} isomorphic to kZ.
Cosets of this sub-lattice are its translations by elements of L(x, y). The parallel
helixes that run through these cosets are also called k–parastichies. Since the
index of the sub-lattice in L(x, y) is k, there are k such k–parastichies in all.

Among the parastichies, there are two sets that we are particularly interested
in, and they are the ones “most visible to the eye”. These gave rise to the study
of Phyllotaxis. They correspond to parastichies formed by closest elements. In
Λ(z), pick the smallest lattice element with positive imaginary part. (From
now on, when we say smallest we mean closest to the origin.) There might be
several smallest, but that’s okay. Now, pick the smallest lattice point outside of
the subspace spanned by the first, again with positive imaginary part. Denote
the pair by {zm, zn}. It forms a basis for the planar lattice Λ(x, y) known as a
canonical basis [3]. Throughout the paper zm denotes, out of these two elements,
the one with the largest argument (as complex numbers). If min(|zm|, |zn|) <
2 max(|zm|, |zn|), then the m–parastichies and the n–parastichies are the most
visible ones. In this case we say that {zm, zn} is a canonical parastichy basis
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Figure 9: On the left, a helical lattice with exactly four parastichies marked as dotted
lines. On the right, the same lattice with the m–parastichies and n–parastichies drawn.
In this case m = 3 and n = 5. Minding the identification of the two vertical edges,
one can count respectively 3 and 5 parastichies.

or simply a parastichy basis and that the helical lattice has parastichy numbers
m and n. When Re(zm) and Re(zn) are of opposite signs, the two parastichies
that zm and zn generate wind in opposite directions. In this case, we say that
the basis {zm, zn} is opposed1. Finally, if the canonical basis {zm, zn} is such
that |zm| = |zn|, we say that it is a rhombic canonical basis. In this case we say
that Λ(z) is a rhombic lattice.

4.2 Classification of Lattices

As we have seen above, an unrolled helical lattice generated by (x, y) gives rise
to a planar lattice generated by z = x + iy and 1. Hence, the parameter space
of all such planar lattices is the complex plane parameterized by z. Since y > 0,
the parameter space is the upper half complex plane, H, which is a model of
the hyperbolic plane. Here, we will classify lattices according to their parastichy
numbers. This material is a variation on a classical approach to the classification
of lattices (see [3], Chapter 7, where lattices are called discrete modules, and
also [17]).

4.2.1 The Fundamental Quadrilateral and Hexagon

We now determine the set of points z ∈ H such that {z, 1} forms a canonical,
rhombic canonical or parastichy basis for the lattices Λ(z) they generate. This
serves as a template for all the regions where {zm, zn} forms such bases, as we
will see in the next subsection. Define

Q = Q+ ∪Q−,

where
Q+ = {z ∈ H | |z| ≥ 1,−1/2 ≤ Re(z) ≤ 1/2},

1Sometimes, other authors use the term “parastichy numbers” when {zm, zn} form a “con-
spicuous opposed parastichy pair” [1], a notion closely related but not quite equivalent to
opposed canonical basis.
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and Q− is the (hyperbolic) reflection of Q+ about the unit circle centered at 0.
Note that in Q+, |z| ≥ 1, and in Q−, |z| ≤ 1. (See Fig. 10.)

Also define H to be the region obtained by truncating the region Q above
the circle of radius 2 centered at 0 and below the circle of radius 1/2 centered
at 0.

1

2
3

4

5

6

0

A B

Figure 10: The regions Q and H with some of the lattices they represent, numbered 1–
6, on the right. The vertices of the hyperbolic quadrilateral Q are ∞, A = e2πi/3, O =
(0, 0) and B = eπi/3. The gray hyperbolic line inside Q, where lattice 2 is located, is
an arc of the unit circle centered at O and is the set of rhombic lattices in Q. This
line separates the hyperbolic triangles Q+ (above) and Q− (below). Lattice 6 is in Q
but outside H. The boxes enclosing the lattices are all the square [−2, 2] × [0, 4].

Proposition 4.1.

(i) The pair {z,1} is a canonical basis for Λ(z) if and only if z ∈ Q.
(ii) The pair {z,1} is a parastichy basis for Λ(z) if and only if z ∈ H.
(ii) The set of rhombic lattices in Q is the arc of unit circle in Q.

Figure 10 shows the regions Q and H and some of the lattices they represent.
We call Q the fundamental quadrilateral since it is bounded by a hyperbolic
quadrilateral with vertices at 0,∞, A = e2πi/3 and B = eπi/3 (0 and ∞ are
called ideal vertices since they are on the boundary of H). Likewise, H is called
the fundamental hexagon.

Proof. Let K = {z ∈ H | {z, 1} is a canonical basis}, K+ = {z ∈ K | |z| ≥ 1}
and K− = {z ∈ K | |z| ≤ 1}. We now show that Q+ = K+ and Q− = K−.

Suppose z is in Q+. We want to show that z is a smallest element in Λ(z)
outside of the sublattice Z generated by 1. The following shows that |kz+d| > |z|
for k ≥ 2, d ∈ Z:

|kz + d| ≥ Im(kz + d) = Im(kz) = k|z|Im( z
|z| ) ≥ k|z|Im (A) = k|z|

√
3

2 > |z|.
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For the case k = 1, since −1/2 ≤ Re(z) ≤ 1/2, it follows that |Re(z)| ≤
|Re(z + d)| and Im(z) = Im(z + d), and therefore |z + d| ≥ |z|. Hence, z is a
smallest element in Λ(z) outside of the sublattice Z generated by 1 and {z, 1}
forms a canonical basis. Since |z| ≥ 1, z ∈ K+. Conversely, if z ∈ K+, then we
must have |z + d| ≥ |z| for all d ∈ Z and thus necessarily −1/2 ≤ Re(z) ≤ 1/2.
Hence, z ∈ Q+. We have thus proven Q+ = K+.

We now show that Q− = K−. Let z be in K−, i.e., {z, 1} forms a canonical
basis of Λ(z) with |z| ≤ 1. Multiplying the lattice elements by 1/z we obtain a
lattice Λ(1/z) homothetic to Λ(z). (Remember that, geometrically, multiplica-
tion by a complex number induces a homothecy: a rotation by the argument,
together with an expansion by the modulus of the complex number.) Since a ho-
mothecy preserves proportions, {1, 1/z} is a canonical basis of Λ(1/z). However
1/z is in the lower half plane so we consider the mirror symmetric lattice Λ(1/z)
generated by {1, 1/z} instead. Again, this symmetry conserves proportions and
thus the shortest element in the canonical basis {1, 1/z} of Λ(1/z) is 1/z. Since
|1/z| ≥ 1, we have shown that R(K−) ⊂ K+, where R is the map w �→ 1/w.
A parallel argument shows that R(K+) ⊂ K−. Since the map R is the well
known (hyperbolic) reflection about the unit circle and R2 = Id, we conclude
that R(K−) = K+ and R(K+) = K−. Since by definition R(Q+) = Q−, and
we have seen above that Q+ = K+, we have K− = R(K+) = R(Q+) = Q−,
proving (i).

It is clear that the set of z ∈ Q such that Λ(z) is rhombic is given by the
intersection of Q with the unit circle. Now, when does {z, 1} form a parastichy
basis? For z ∈ K+ we need |z| ≤ 2 and for z ∈ K− we need 1 ≤ 2|z|. These
two conditions define two hyperbolic lines that truncate Q, lopping off its ideal
vertices.

4.2.2 The Quadrilateral Qmn and the Hexagon Hmn

We now show that a similar homothecy argument as above describes a quadri-
lateral region Qmn and an hexagonal region Hmn where {zm, zn} is, respectively,
a canonical and a parastichy basis of the lattice Λ(z). The botanical significance
of Hmn is that it is the region where lattices have parastichy numbers m,n.

Proposition 4.2. Let z belong to the strip Re(z) ∈ (0, 1).

(i) The pair {zm, zn} is a canonical basis for Λ(z) oriented as {z, 1} if and
only if

z ∈ Qmn
def
= gmn(Q) where gmn(w)

def
=

∆nw − ∆m

nw −m

and ∆m and ∆n are the unique integers such that

(∗) ∆mn− ∆nm = 1,
[
∆n

n , ∆m

m

]
⊂ [0, 1].

In particular, m and n are always coprime.
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(ii) The pair {zm, zn} is a parastichy basis oriented as {z, 1} if and only if

z ∈ Hmn
def
= gmn(H).

(iii) Rhombic lattices of parastichy numbers m,n are in the image by gmn of
the rhombic lattices in Q.

Notice that statement (ii) can be rephrased as:
A lattice Λ(z) has parastichy numbers m, n (with gcd(m,n) = 1) if and only

if z is in Hmn.

Proof. Assume that {zm, zn} is a canonical basis with same orientation as {z, 1}.
In real coordinates, zm = (mx − ∆m,my) = m(x, y) − ∆m(1, 0), where ∆m is
the integer closest to mx. Hence, the change of basis matrix between z, 1 and
zm, zn is (

m n
−∆m −∆n

)
.

Since it changes integer lattice bases with same orientation, this matrix must
be invertible with integer inverse, forcing its determinant to be 1:

(∗∗) ∆mn− ∆nm = 1.

Since ∆m,∆n are integers, the above equality means that m and n must be
coprime. Dividing (∗∗) by mn, we get ∆m

m − ∆n

n = 1
mn and in particular ∆n

n <
∆m

m .
There are countably many pairs of integers ∆m,∆n that satisfy (∗∗). How-

ever, suppose ∆m+k,∆n+l is another such pair, i.e., (∆m+k)n−(∆n+l)m = 1.
Since m,n are coprime, it is easy to check that k = am and l = an for
the same integer a. In particular ∆m+k

m = ∆m

m + a and ∆n+k
n = ∆n

n + a.
Since Re(z) ∈ [0, 1], we must have Re(mz) ∈ [0,m], Re(nz) ∈ [0, n]. Since
∆m,∆n are the closest integers to Re(mz), Re(nz), respectively, we must have
∆m ∈ [0,m],∆n ∈ [0, n]. Hence, ∆m,∆n is the unique pair satisfying (∗).

Dividing all lattice points of Λ(z) by zn gives rise to a new lattice Λ(w)
generated by w = zm/zn and 1, homothetic to the lattice Λ(z). Since homothecy
preserves proportions, {w, 1} must also be a canonical basis of Λ(w) and hence,
w must belong to the fundamental quadrilateral Q. From the definition of
zm, zn, we have w = mz−∆m

nz−∆n
. This relation can easily be inverted:

z =
∆nw − ∆m

nw −m
= gmn(w),

which proves that z ∈ Qmn.
Conversely, let z = gmn(w) = ∆nw−∆m

nw−m ∈ Qmn, with w ∈ Q and ∆m,∆n

as in (∗). Solving for w, we get w = mz−∆m

nz−∆n
. Since {w, 1} is a canonical basis

for Λ(w), if we multiply all the lattice points by the denominator nz − ∆n, we
get a lattice generated by mz − ∆m and nz − ∆n. Since the multiplication is
a homothecy, the pair {mz − ∆m, nz − ∆n} is a canonical basis for the new

16



lattice. We must show that the numbers ∆m,∆n of (∗) are in fact the closest
integers to mx and nx, respectively, in order to conclude that

{mz − ∆m, nz − ∆n} = {zm, zn}.

Since {mz−∆m, nz−∆n} is a canonical basis, mx−∆m is the closest element
to 0 among {mx − j}j∈Z (and likewise for n). Therefore, ∆m is the closest
integer to mx (and likewise for n). This completes the proof of (i).

A similar reasoning shows that the region where zm and zn form a parastichy
basis is given by Hmn = gmn(H).

We can define g11(w) = 1
1−w and Q11 = g11(Q). The quadrilateral Q11 is

the set of lattices for which z and its translate z − 1 form a parastichy basis.
The maps gmn, of the form w → aw+b

cw+d are Möbius transformations. When
a, b, c, d are real and ad− bc > 0, such transformations are isometries of the hy-
perbolic plane H, whose lines are semicircles centered on the x–axis and vertical
(euclidean) half lines. In particular, gmn take hyperbolic lines to hyperbolic
lines and they also conserve angles between these lines. In fact, ad − bc = 1
in the case of the maps gmn: they form part of a subgroup of the hyperbolic
isometries called PSL(2,Z). Hence, Qmn is congruent to Q and it is bounded by
a hyperbolic quadrilateral. Similarly, Hmn is congruent to H and it is bounded
by a hyperbolic hexagon (see Figure 11). The collection of all images of Q under
the group PSL(2,Z) forms a tessellation of H by congruent quadrilaterals, of
which the Qmn’s form a subset. The union of all the diagonals of the quadri-
laterals Qmn, which correspond to rhombic lattices of parastichy numbers m,n,
together with the half line L = {( 1

2 , y) | y ≥
√

3
6 }, form a binary tree V called

the van Iterson diagram which we describe in more detail in the next section
(see Figures 11 and 12).

4.3 Branching Points of V
The van Iterson diagram is a binary tree. We call its vertices branching points.
Under gmn, the point A = ei2π/3 of Q (see Figure 13) maps to a branching point

of V and thus understanding the neighborhood of Amn
def
= gmn(A) will help us

understand V and the bifurcation diagram. We define two quadrilaterals that
meet Q at A: L, the image of Q under the map α : w �→ w − 1, and R the
image of Q under β : w �→ w

1−w . It is not hard to check that Q,R,L also meet
pairwise at the edges formed by arcs of the unit circles centered at 0 and −1.

Proposition 4.3. The images R′ and L′ of R and L under gmn are

R′ = Qm,m+n and L′ = Qm+n,n.

The proposition derives directly from the following lemma.

Lemma 4.4. gmn ◦ β = gm,m+n and gmn ◦ α = gm+n,n
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-0.5 0 0.5 1

0.59 0.65

Figure 11: The hexagons (in black) and their diagonals of rhombic lattices (in grey),
which form a binary tree called the van Iterson diagram. The horizontal axis is the
diververgence angle x, the vertical axis is the internodal distance y.

Proof. Using the fact that ∆m + ∆n = ∆m+n (see next Lemma) we have:

gm,n(β(w)) =
∆n

w
1−w − ∆m

n w
1−w −m

=
∆nw − ∆m + ∆mw

nw −m + mw
=

=
(∆m + ∆n)w − ∆m

(m + n)w −m
=

∆m+nw − ∆m

(m + n)w −m
= gm,m+n(w).

Therefore R′ = gm+n,m(Q) = Qm,m+n. A similar computation shows that
gmn ◦ α = gm+n,n and L′ = Qm+n,n.

Remark. Proposition 4.3 shows that, starting at a given Qmn and going down V
alternating between left and right branches, the indices will follow a Fibonacci–
like sequence (see Subsection 5.3.2). Note also that the above lemma shows that
the maps α and β generate the maps gmn. Indeed g11 = α−1 ◦ β and any other
gmn is obtained by composing g11 to the right by positive powers of α and β.
More generally, it is not hard to see that α and β generate the whole group
PSL(2,Z).

We recall that the Farey sum of the two rationals a
b < c

d is the number a+c
b+d ,

and it is easily seen that a
b < a+c

b+d < c
d .

Lemma 4.5. ∆m + ∆n = ∆m+n.

Proof. From Proposition 4.2,

1 = −∆nm + ∆mn = −∆n(m + n) + (∆m + ∆n)n and
[
∆n

n , ∆m

m

]
⊂ [0, 1].
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Figure 12: The van Iterson diagram, in black.

gmn

B

R′
L′

∆n

n

∆m

m
∆n + ∆m

n + m

R

Q

B

L

w − 1 w

−
w

1 w

A

-1 0

mn

mnQ

Amn

Figure 13: A quadrilateral Q′ = Qmn and its descendants: R′ = Qm,m+n, L′ =
Qm+n,n.

Since the Farey sum of two rationals is between them, [∆n

n , ∆m+∆n

m+n ] ⊂ [∆n

n , ∆m

m ] ⊂
[0, 1]. The equation above and the uniqueness property of Proposition 4.2 ap-
plied to the pair m + n, n imply that ∆m + ∆n = ∆m+n.

Note that the three ideal points 0,∞ and −1 map to ∆m

m , ∆n

n and ∆m+∆n

m+n

respectively. The vertices A = − 1
2 + i

√
3

2 and B = 1
2 + i

√
3

2 of Q are mapped to

Amn = gmn(A) = (2n+m)∆n+(2m+n)∆m+i
√

3
2(n2+mn+m2)

Bmn = gmn(B) = (2n−m)∆n+(2m−n)∆m+i
√

3
2(n2−mn+m2) .

In particular, Im(Bmn) > Im(Amn). By Proposition 4.3, Amn = Bm+n,n =
Bm,m+n and so, as we travel down the branch of rhombic lattices in Qmn (by let-
ting y decrease), we encounter two branches of rhombic lattices, one in Qm+n,n

and one in Qm,m+n. In the next section, we will see that, in the bifurcation
diagram, one of these branches has one segment pruned away, leaving only one
alternative as y decreases.
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5 The Bifurcation Diagram

5.1 Outline

Now that we have classified lattices according to their parastichy numbers, in
this section we determine the (fixed point) bifurcation diagram of φ, which we
denote by Σ. By definition, this set is formed by the points (x, y) corresponding
to lattices of constant divergence angle x that are fixed points of φ when the
value of the parameter is y. Theorem 3 below shows that Σ is a subset of V.
We first introduce a few concepts.2

A Fibonacci–like sequence {fj} is one satisfying fj = fj−1 + fj−2. The
Fibonacci sequence {Fk} is the one that starts with F1 = 1, F2 = 2. A noble
number is an irrational number which has a continued fraction which becomes
an infinite sequence of 1’s at some point. All noble numbers are images of the
golden ratio τ = −1+

√
5

2 = 0.61803 . . . by elements of PSL(2,Z) (see [12]; note
that, often τ denotes 1+

√
5

2 = 1.61803 . . .). We call a quadrilateral Qmn regular
if m < 2n and n < 2m (equivalently (2n−m)(2m−n) > 0). Otherwise, we call
it irregular.

For each quadrilateral Qmn, we define the curve σmn in the following way.
If Qmn is regular, let σmn = V ∩ Qmn (a compact curve). If Qmn is irregular,
let σmn be the segment of V ∩Qmn lying strictly between the point Zmn (to be
defined in Section 5.4) and Amn. Now, for each irregular quadrilateral Qmn, we
also define the set Cmn to be the union of the curves σmini

, where mi, ni are
consecutive elements in the Fibonacci–like sequence starting at m,n if m < n
and n,m if n > m. (See Figure 14.) As justified by Theorem 3 below, we
call the sets Cmn branches of Σ. In particular, C12 and C21 are the Fibonacci
branches.

Theorem 3. The fixed point bifurcation diagram Σ is the disjoint union of
the branches Cmn and the half line L =

{
( 1
2 , y) | y ≥

√
3

6

}
. The connected

components of Σ are L ∪ C12 ∪ C21 and each of the other Cmn’s. Each branch
Cmn is homeomorphic to an open interval and converges to a noble number on
the real axis. In particular, the Fibonacci branches C12 and C21 converge to τ
and 1 − τ , respectively.

We will prove this theorem in the rest of this section. We will also prove that
each branch Cmn is monotonous, in the sense that it intersects any horizontal
line in at most one point. We now outline the proof. Recall that the maximin
principle implies that the fixed points satisfy the following three properties:

(p1) The parastichy basis must be rhombic.
(p2) The parastichy basis must be opposed.
(p3) Each element of the lattice must satisfy the global max condition for D.

2Note that, as we let y decrease to 0, we have to change the dimension N of the phase
space. (On any given compact interval of y, a sufficiently high N can be assumed fixed, see
Section 2.4.)
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Figure 14: The bifurcation diagram Σ. The horizontal axis is the diververgence
angle x, the vertical axis is the internodal distance y. For each irregular quadrilat-
eral Qmn there is a branch Cmn starting at the point Zmn (see Section 5.4) winding
down to the x–axis, limiting to a noble number. The segments σij correspond to fixed
points (lattices) with paratichy numbers (i, j).

As we already mentioned, (p1) implies that Σ is a subset of the van Iterson
diagram V. In Section 4.3, we showed that, at each branching point of V,
three quadrilaterals of the form Qm+n,n, Qm,m+n and Qmn meet, the latter
being above the former two. In Section 5.3, we show that (p2) amounts to
“pruning” a segment of one of the two branches: if m > n (resp. n > m), the
continuous branch of opposed rhombic lattices travels from Qmn to Qm,m+n

(resp. Qm+n,n) thereby chosing as indices consecutive terms in a Fibonacci–
like sequence. Requiring (p3) shortens a bit more these same branches (see
Section 5.4). This leaves Σ as a countable set of branches, each crossing a
sequence of quadrilaterals with indices in a Fibonacci–like sequence.

In Section 5.5, we prove that the branches are monotonic and converge to
noble numbers. We conclude in Section 5.7 by showing that, by slowly decreas-
ing the internodal distance from a value higher than

√
3

6 while iterating the map,
the orbits shadow the fixed points of one of the main Fibonacci branches C12

or C21 which converge to τ and 1 − τ respectively.

5.2 The Vertical Branch L of Σ

When y is large enough, only primordium P1 has influence on the position of
the incoming primordium P0, so the maximum of D occurs at the location di-
ametrically opposed to that of P1 with divergence angle 1

2 . Thus, any starting
configuration converges, in at most N iterates, to a lattice with constant di-
vergence angle 1

2 , which is a fixed point. Decreasing y, the first moment when
the influence of P2 is felt is when P2 = P1 + ( 1

2 , y) and |P0P2| = |P0P1| (see
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Figure 15), that is, at the point A∗ = ( 1
2 ,

√
3

6 ). With these observations, it is

easy to see that the half line L =
{

( 1
2 , y) | y ≥

√
3

6

}
corresponds to fixed points

of the map φ, see Figure 14. (This type of pattern, commonly seen in leaf
arrangements in plants, is called distichous.)

P0

P2

P1

0

Figure 15: The first moment when P2 influences the location of the new primordium

is when |P0P2| = |P0P1|. The internodal distance is
√

3
6

.

5.3 Opposed Rhombic Lattices

5.3.1 Regular and Irregular Quadrilaterals

For simplicity, we say that a point in H is between two real numbers if its real
part is strictly between these numbers. We refer to Section 4.3 for the definition
of Amn and Bmn.

Lemma 5.1. For a given quadrilateral Qmn,

(i) The vertex Amn is always between the ideal vertices ∆n

n and ∆m

m .
(ii) The vertex Bmn (and hence, all of Qmn) is between the ideal vertices ∆n

n

and ∆m

m if and only if (2n−m)(2m− n) > 0 (i.e., if Qmn is regular).

Proof. Amn is between ∆n

n and ∆m

m if and only if

(
Re(Amn) − ∆n

n

) (
Re(Amn) − ∆m

m

)
= − 2m2+5mn+2n2

4mn(m2+mn+n2)2 < 0,

which is clearly always true.
On the other hand, Bmn is between ∆n

n and ∆m

m if and only if

(
Re(Bmn) − ∆n

n

) (
Re(Bmn) − ∆m

m

)
= −(2m−n)(2n−m)

4mn(m2−mn+n2)2 < 0

which is clearly equivalent to (2n−m)(2m− n) > 0.

A given z ∈ Qmn is between these vertices if and only if (x− ∆m

m )(x− ∆n

n ) <
0. This condition is equivalent to (mx −∆m)(nx −∆n) < 0, which means that
the real parts of zm, zn have opposite signs, i.e., {zm, zn} is an opposed canonical
basis. We have thus proved

Proposition 5.2.

22



(i) For a given z ∈ Qmn, z is between ∆n

n and ∆m

m if and only if {zm, zn} is
an opposed canonical basis.

(ii) Qmn is regular if and only if all its corresponding lattices have an opposed
canonical basis.

(iii) Qmn is regular if and only if it is between its ideal vertices ∆n

n and ∆m

m .

Remark. Proposition 5.2 part (i) includes what Adler and Jean call the Fun-
damental Theorem of Phyllotaxis (see [1, 15], where the term “visible opposed
parastichy pair” is used instead of opposed canonical basis):

If {zm, zn} is an opposed canonical basis, then the divergence angle
x = Re(z) is in the interval [∆n

n , ∆m

m ].

As a direct consequence of Lemma 5.1 and Proposition 5.2 we have:

Proposition 5.3. For (m,n) �= (1, 1), of the two quadrilaterals below Qmn,
one is irregular and the other regular. More specifically:

• If m > n, Qm,m+n is regular and Qm+n,n irregular.
• If n > m, Qm,m+n is irregular and Qm+n,n regular.

Let us examine now the case where (m,n) = (1, 1). The quadrilateral Q11 =
g11(Q) is regular, since it lies between its ideal vertices 0 and 1. On the other
hand, since the unit circle centered at 0 is mapped to x = 1/2 under the map g11,
the quadrilaterals Q21 = g11(L) and Q12 = g11(R) share an edge on x = 1

2 = ∆2
2 :

they are irregular.

5.3.2 Pruning the Tree. Fibonacci and Farey Rules

None of the points inside the diagonals of rhombic lattices of Q12 and Q21

violate (p2) (Proposition 5.2(i)). For every Qmn, define σmn to be the segment
of opposed rhombic lattices in Qmn, i.e., the portion of V ∩ Qmn which is
between ∆n

n and ∆m

m . If Qmn is regular, then σmn is all of V ∩ Qmn, thus
in this case σmn = σmn (as defined before Theorem 3). If Qmn is irregular,
σmn is disconnected from the vertex Bmn (see Figure 16). This, together with
Lemma 4.5 and Propositions 5.2 and 5.3 implies the following general rules:

Proposition 5.4 (Fibonacci & Farey Rules). Suppose m > n (a similar
statement holds for n > m). At the branching point Amn, σmn is connected
to σm,m+n and not to σm+n,n. Hence, decreasing the parameter y produces a
transition of parastichy numbers from (m,n) to (m,m + n).

The divergence angles of the lattices in σmn lie in the interval
[
∆n

n , ∆m

m

]
,

those of σm,m+n lie in
[

∆m+∆n

m+n , ∆m

m

]
.

Thus, the set of opposed rhombic lattices is a union of branches starting
at irregular quadrilaterals and zigzaging down through regular quadrilaterals
following Fibonacci–like sequences. We will see in the next section that the
segments σmn are further shortened by requiring the rule (p3) of global maxi-
mization of F .
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These violate (p2)

These violate (p3)

σ35 = σ35

σ38

B38 = A35 = B85

Q38

Q85

Z38

3
5

5
8

2
3

B35

σ85

σ35

Q35

Figure 16: Pruning the van Iterson tree. In the regular quadrilaterals the whole di-
agonal of rhombic lattices consists of fixed points, and so forms part of the bifurcation
diagram Σ (σ35 and σ85 in the figure) (see Section 5.4). However, in the irregular
quadrilaterals a segment of it violates property (p2) (Proposition 5.2(i)) and a larger
segment violates property (p3) (see Section 5.4). The remaining segment of this diag-
onal (σ38 in the figure, which does not include the point Z38) is in Σ.

5.4 Further Pruning: Requiring Global Maximum for D

We turn to property (p3): each element of a lattice must satisfy the global
maximum condition for D in order for the lattice to be a fixed point of the
map φ. The reader may have remarked that for some configurations the map Φ
is not well defined: there may be more than one point on the edge of the
apical meristem S

1 × {0} that maximizes D(p). These configurations—where
F is multivalued—are rare (codimension 1), but are important as they mark
starting points for branches of the fixed point bifurcation diagram Σ. We shall
now determine those lattices Λ(z) with rhombic opposed parastichy bases (i.e.,
satisfying properties (p1) and (p2)) for which property (p3) holds, making them
fixed points of φ.

We have seen in Section 5.2 that the vertical half–line L consists of fixed
points. We now consider a lattice Λ(z) in Qmn, (m,n) �= (1, 1), with rhombic
opposed parastichy basis {zm, zn}. The partition of C into regions of points that
are closer to one particular lattice point than to any other forms a collection of
Voronoi cells. For our lattice, we take such a partition of C without including
the point z0 = 0 (see Fig. 17). The boundary between two adjacent Voronoi
cells is a segment of the perpendicular bisector for the two lattice points that
generate the two cells. We call the set T of Voronoi cells in the partition that
intersect S

1 × {0} the first tier. The Voronoi cell generated by zk is denoted
by Vk. Let p = max {m,n} and q = min {m,n}.
Proposition 5.5. In a rhombic lattice, all of the maxima of the function D
occur in the boundary of Vp.
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1
2

− 1
2

0ϕ

zp
zqzp−q

Figure 17: The partition of C into regions that are closer to one particular lattice point
than to any other forms a collection of Voronoi cells. The boundaries are segments of
the perpendicular bisectors between lattice points. If the lattice is rhombic, as in the
figure, the origin is on the boundary of the cell Vp generated by zp.

The proof is in Appendix II.
The lattice point z0 = 0 is at the intersection of the common boundary of Vp

and Vq with S
1 ×{0}. Let ϕ be the intersection point on the common boundary

of Vp and Vp−q (see Figure 17). The distances to zp of these points are D(0)
and D(ϕ).

By Proposition 5.5, one or both of these is the maximum of D. With simple
geometry and algebra, and using the fact that δp−q = δp − δq (see Lemma 4.5),

ϕ = |zp|2−|zp−q|2
2δq

.

D(0) > D(ϕ) when δp = Re(zp) is further from 0 than it is from ϕ. That is,
when

δ2
p >

(
δp − |zp|2−|zp−q|2

2δq

)2

.

This is equivalent to 4δpδq < |zp|2 − |zp−q|2. If we substitute |zp|2 = δ2
p +(py)2,

|zp−q|2 = (δp − δq)2 + (p− q)2y2, δp = px− ∆p and δq = qx− ∆q, we get

D(0) > D(ϕ) ⇐⇒
(
x− ∆q

q

) (
x− 2∆p+∆q

2p+q

)
< 2p−q

2p+q y
2, (1)

which is a region bounded by a hyperbola. Recall that the diagonal of rhombic
lattices (σmn) is part of the circle |zm| = |zn|. The single intersection point (in
H) of this circle and the hyperbola is

Zmn = m(2∆m+∆n)−n(2∆n+∆m)
2(m2−n2) + i

√
3

2|m2−n2| .

Notice that the expression is symmetric in m and n, so this is the expression
for Zmn in both cases, p = m and p = n.

Lemma 5.6. The point Zmn lies in σmn ⊂ Qmn if and only if Qmn is an
irregular quadrilateral.

Proof. The point Zmn lies in σmn if it is between Re(Amn) and Re(Bmn), which
is true if and only if

(Re(Amn) −Re(Zmn))(Re(Bmn) −Re(Zmn)) = 3mn(2m−n)(2n−m)
4(n4+m2n2+m4)(m2−n2)2 ≤ 0,
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which is equivalent to (2m− n)(2n−m) ≤ 0, i.e., Qmn is irregular.

Remark. A∗ = B12 = B21 = Z12 = Z21.

Lemma 5.7. For the lattice corresponding to Amn, D(0) > D(ϕ).

Proof. One can check by direct substitution if Amn is in the region where
(1) holds. One can also see it this way: the point A in Q lies on the hyperbolic
line x = −1/2 whose ideal points are −1/2 and ∞, and also on the hyperbolic
line whose ideal points are 0 and −2. Therefore, applying the map gmn, we get
that Amn lies on the hyperbolic lines (euclidean circles) whose ideal points are
2∆m+∆n

2m+n and ∆n

n for one line, and 2∆n+∆m

2n+m and ∆m

m for the other line. The
equations are

0 = y2 +
(
x− ∆n

n

) (
x− 2∆m+∆n

2m+n

)
and

0 = y2 +
(
x− ∆m

m

) (
x− 2∆n+∆m

2n+m

)
.

In either case (p = m or p = n) the left hand side of the second inequality
of (1) is equal to −y2, making the inequality obviously true. Hence, for the
lattice Λ(Amn), the point zp is further from 0 than it is from ϕ.

Now, as we move z up from Amn along σmn towards Bmn, the position
of ϕ moves continuously. As long as z doesn’t cross Zmn, D(0) > D(ϕ), so
condition (p3) is satisfied and the lattice is a fixed point of φ. If Qmn is regular,
then Zmn is not in σmn and all of σmn = σmn corresponds to fixed points. If
Qmn is irregular, then Zmn is in σmn and the only points in Qmn corresponding
to fixed points are those on σmn strictly between Zmn and Amn. Since in the
irregular case this segment of σmn is σmn, we have proved

Theorem 4. In all quadrilaterals Qmn, the curves σmn correspond to fixed
points of the map φ and there are no other fixed points in Qmn.

Continuing the proof of Theorem 3, recall that the branches Cmn are unions
of curves σmini . By Proposition 5.4 and Theorem 4, the curves Cmn are home-
omorphic to open intervals and consist of fixed points. We now need to show
that any fixed point not in L belongs to some Cmn. Since the quadrilaterals
Qmn tessellate the set of all cylindrical lattices, it suffices to show that every
curve σkl is included in some branch Cmn. Assume k < l and start building a
Fibonacci–like sequence backwards by subtraction: . . . i, j, . . . , 2k − l, l− k, k, l.
The curve σkl is connected to all the curves σij , by Proposition 5.4. Stop the
process when the sequence becomes negative. Thus, at some step m,n, with
say m < n, we have 2m − n ≤ 0, i.e., the sequence of σ’s enters an irregular
quadrilateral Qmn. (Note that 1 = gcd(k, l) = gcd(m,n).) We have proven that
Σ is the union of the branches Cmn and L.
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5.5 Limits to Noble Numbers. End of Proof of Theorem 3

From Proposition 5.4, the Fibonacci branch C21 starting in Q21, visits the se-
quence of quadrilaterals Q21, Q23, Q53, Q58, Q13,8, . . ., Qmk,nk

, . . . with corre-
sponding intervals [∆nk

nk
, ∆mk

mk
]: [0, 1

2 ], [13 ,
1
2 ], [13 ,

2
5 ], [38 ,

2
5 ], [38 ,

5
13 ], . . . In particu-

lar, this Fibonacci branch converges on the real axis to

lim
n→∞

Fn−2
Fn

= lim
n→∞

(
1 − Fn−1

Fn

)
= 1 − τ.

The last equality makes use of the well known fact that lim Fn−1
Fn

= τ .
We now turn to an arbitrary branch Cmn of Σ.
Lemma 4.4 implies that for any two quadrilaterals Qmn and Qm′n′ , we have

Qm′n′ = f(Qmn) where f = gm′n′ ◦ g−1
mn ∈ PSL(2,Z). Moreover, for any finite

word
ω = βk1 ◦ αk1 ◦ . . . ◦ βkp ◦ αkp

on α, β, the two quadrilaterals K and K ′ below Qmn and Qm′n′ obtained by
K = gmn ◦w(Q) and K ′ = gm′n′ ◦w(Q) satisfy f(K) = f ◦gmn ◦w(Q) = K ′.
In particular, the sequence of quadrilaterals that a branch Cmn traverses is
gmn ◦ wj(Q) where wj are words with alternating α and β. By continuity the
limit point of Cmn is noble, since it is the image of τ (which is the endpoint
of C12) by gmn ◦ g−1

12 ∈ PSL(2,Z).
This concludes the proof of Theorem 3.

5.6 Monotonicity of Branches

We show here that all the branches Cmn in the bifurcation diagram are mono-
tonic in the sense that they are graphs over the y axis. Denote O = gmn(−1)
and let C be the point of intersection of the hyperbolic line l through O,Amn

and Bmn with either of the vertical lines x = ∆m

m or x = ∆n

n . The segment of l
between Amn and Bmn is σmn.

Lemma 5.8. Assume that (m,n) �= (1, 1) are relatively prime. The hyperbolic
line segment OC of l is monotonic.

Proof. It suffices to show that the point M of highest imaginary part in the (hy-
perbolic) line l is not between ∆n

n and ∆m

m . The real part of M is the midpoint
between the two ideal vertices of l: O = ∆m+∆n

m+n and gmn(1) = ∆m−∆n

m−n . Hence,
Re(M) = ∆mm−∆nn

m2−n2 and M is outside of ∆n

n and ∆m

m if and only if
(

∆mm−∆nn
m2−n2 − ∆m

m

) (
∆mm−∆nn
m2−n2 − ∆n

n

)
= 1

(m2−n2)2 > 0,

which is clearly always true (since m �= n).

Corollary 5.9. All branches Cmn of Σ are monotonic.

Proof. The branches Cmn are made of segments σmini . Whether Qmini is reg-
ular or not, these segments are all contained in segments of the type OC as
above.
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5.7 A Scenario for Fibonacci Phyllotaxis

Many quantitative botanical studies document the change of internodal distance
as a plant grows. (In other geometries, other parameters than the internodal
distance may be used to a similar effect. For the flat disk, one commonly uses as
an equivalent parameter the ratio between the radial distances of two successive
primordia to the center of the apex, called the plastochrone ratio.) This is
especially marked when the plant makes a transition between the vegetative
mode to the inflorescence mode (see e.g., [20]). The scenario that we explore
now with our model assumes that internodal distance decreases slowly from
a relatively high value (y >

√
3

6 ) while the iterative process is running. The
guiding principle is given by the stability of all fixed points: it insures that a
configuration sufficiently close to a fixed point on a branch Cmn of Σ will remain
in the basin of attraction of fixed points of Cmn with slightly lower y values.
Hence, starting with a configuration near Cmn, and slowly decreasing y while
iterating φ, we obtain orbits that follow closely the branch Cmn.

As argued in section 5.3.2, at high internodal distances y >
√

3
6 , all configu-

rations tend quickly to the lattice Λ(1
2 , y) in the vertical half–line of Σ, forming

a distichous pattern. At the point A∗ = ( 1
2 ,

√
3

6 ), there is a transition from dis-
tichous (L) to spiral phyllotaxis (C12 or C21) (see Figure 14). In particular the
symmetry of the distichous patterns (divergence angle of 180o) is broken at this
point. Note however that this bifurcation is not of a common type in Dynami-
cal Systems: the map φ is not differentiable at the configuration corresponding
to A∗ because it is multivalued on x = 1/2 immediately below A∗. Decreasing y,
the choice of C12 or C21 below A∗ locks the pattern in a certain winding direction
(chirality). From then on, decreasing y slowly, the iterated configurations stay
close to the fixed points in the Fibonacci branch chosen. They thus exhibit in-
creasing Fibonacci parastichy numbers and divergence angles increasingly close
to 360o(τ) = 222.492 . . ., or 360o(1 − τ) = 137.507 . . ..

Starting at values of y lower than
√

3
6 and/or decreasing y erratically may

yield patterns in the other branches of the bifurcation diagram. Interestingly,
the ones most observed in nature after the Fibonacci branches are the Lucas
branches C13 or C31, following the Lucas sequence 1, 3, 4, 7, . . .: these branches
are the largest ones after the Fibonacci branches, and they are also close to
them in the parameter space.

6 Periodic Orbits

Stable patterns other than lattices can occur. Indeed, in research still in progress
[4], we found periodic orbits for the map φ, i.e., configurations {x0, x1, . . . , xN−1}
with xk+j = xk for all k and some period j. Our first investigations were nu-
merical and performed in a centric model where the geometry of the apex is
assumed to be that of a flat disk. One of the periodic orbits we found is of
period 8 and, expressed in degrees rounded to the nearest integer is: {130o,
89o, 89o, 130o, 89o, 89o, 130o, 315o, 130o, . . .}. This remarkably coincides with
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measurements made by Tucker [29] on a magnolia carpel: {134o, 94o, 83o, 138o,
92o, 86o, 136o, 310o, 134o, . . .}. This phenomenon may be more prevalent than
realized because the phyllotactic patterns produced by periodic divergence an-
gles can look superficially like a spiral lattice. Only close scrutiny (e.g., [29])
can reveal the periodicity of the divergence angles in such plant patterns.

Questions that we are investigating include: Are all periodic orbits stable?
If so, do their basins of attraction entirely fill the intersections of the domains
of the iterates of φ? If not, are there chaotic orbits?

-0.4 -0.2 0 0.2 0.4

Figure 18: A double lattice configuration corresponding to a period two orbit. The
internodal distance is y = 0.0162374568, and the divergence angle alternates between
α = 0.515688 and β = 0.846893. The existence and stability of this orbit was rigorously
proven using interval arithmetics in Longhi [19]. Contrary to Douady and Couder’s
observations [7], the angles α and β are not simply rationally related.

7 Comparison with Other Works

The process of building a mathematical model for meristematic development has
spanned the last two centuries. An important step was taken by the Bravais
brothers [5] who showed that when the divergence angle is close to the golden
angle then the parastichy numbers are consecutive Fibonacci numbers. One
of the first botanists to study meristematic development under the microscope
was Hofmeister [13]. His observations led him to hypothesize that when a single
primordium forms it always does so in the least crowded spot along the apical
ring. While Hofmeister’s hypothesis is simple enough to state, it is not so easy
to see what types of patterns can form from it. Many people thought that his
hypothesis was incompatible with the idea that the divergence angle is always
close to the golden angle.

The complete mechanism of primordia formation remains unknown. In 1913
Schoute [23] proposed that existing primordia inhibit the production of new
primordia through a chemical inhibitor. Later Turing [30] constructed one of
the first reaction–diffusion equations to model development. Even though his
approach has become popular in developmental biology, he didn’t achieve his
goal of obtaining phyllotactic patterns. With the advent of computers, Veen [31]
implemented Hofmeister’s hypothesis with a cellular automata like program
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based on a reaction–diffusion model. He obtained phyllotactic patterns with a
divergence angle close to the golden angle. Unfortunately, computers weren’t
very powerful in those days. The angular resolution in Veen’s program was only
about 10o and it did not receive a lot of attention. In subsequent years others
([24, 28, 32]) performed computer simulations with reaction–diffusion equations
to model meristematic development but achieved limited success.

In 1992 the physicists Douady and Couder took a new approach implement-
ing Hofmeister’s hypothesis. They represented the primordia with particles
which exerted a repulsive force towards each other. They did this using both
computer simulations and a physical model that used magnetized oil droplets.
They were quite successful and left little doubt that Hofmeister’s hypothesis
could indeed lead to the golden angle. Afterwards, Meinhardt et. al. [21] were
able to obtain similar results with reaction–diffusion equations (whether meris-
tematic development is guided by chemical reactions or by mechanical stresses
as Green [11] proposed is still an open question).

A rigorous analysis such as presented in this paper is extremely difficult to do
with PDE models. Moreover, as mentioned earlier, there is no agreement among
botanists on the biophysical mechanisms of primordium formation. Nonetheless,
it would be interesting to show that in some sense our system appears as a
discretization of some of the PDE’s that have been proposed.

As mentioned in the introduction, our approach bears the most in common
with the work of Kunz [16]. The main difference between his system and ours
is his implementation of the inihibitory field between primordia. He assumes
that all primordia act on the nascent one, which must therefore minimize an
inhibiting energy of the form:

W (p) =
N∑
k=1

U(||Pk − p||),

where U(x) is a positive decreasing function of x. Our approach is equivalent
to using an inhibiting energy of the form:

X(p) = sup
k

U(||Pk − p||),

which can be seen as keeping only the largest term in the sum defining W .
These two inhibitory fields correspond to two extreme possibilities. With the
field X, a point on the apical ring only “feels” the inhibition produced by the
primordium nearest to it. With the field W , a point on the apical ring “feels”
the inhibition produced by all of the primordia. Most likely, in nature a point
on the apical ring “feels” the inhibition produced by some but not all of the
primordia. Fortunately, as shown by Hotton [14], when U(x) = x−s and s is
sufficiently large, there is no qualitative difference between the fixed points saga
for a dynamical system using W and our present definition using the maximin
principle. Kunz has similar, less complete, asymptotic results, where he shows
that the bifurcation diagram of his system is contained within certain regions
tending to noble numbers.
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Whereas Kunz’s model does not allow the use of hyperbolic geometry, Lev-
itov [17, 18] brought it in very nicely in his study of a problem which is in a
sense dual to ours. He considered only lattices with divergence angle, say x,
and minimized the energy:

E(x) =
∑

U(||Pk(x)||),

where U is as above and Pk(x) = (δk, ky) is the k-th primordium in the lattice
Λ(x, y). Therefore, minimizing E answers the question: for a fixed internodal
distance, which lattice exerts the least inhibition on the origin? It turns out
that the answer to this question yields, varying the internodal distance, a criti-
cal point bifurcation diagram remarkably similar to ours. In fact, keeping only
the largest term in E yields a maximin principle, whose critical bifurcation dia-
gram is the subset of the van Iterson diagram one obtains by requiring properties
p1 and p2 (but not p3). This is, in essence, what Adler [2] did and, as in this
paper, the simplification to a maximin principle allows complete rigor (Adler
used only simple Euclidean geometry techniques). In other words, Adler’s model
bears a similar relation to Levitov’s that ours does to Kunz’s.3 The limitation
with the approaches of Adler and Levitov is that they are not dynamical and,
moreover, they assume that the patterns are lattices in the first place. Douady
[6] analyzed Hofmeister’s model in terms of disk packing. He arrived at a dia-
gram of “solutions” which is geometrically the same as our bifurcation diagram,
including the starting points Zmn for the branches. He implicitly left open the
possibility that there could have been other places where the branches should
be pruned.

It is important to remark that Douady and Couder ([8, 9]) moved on from a
model based on the Hofmeister hypotheses to one based on hypotheses proposed
by the botanists Snow and Snow [27], namely that primordia form when and
where the inhibitory field is small enough. This threshold model can also lead
to a dynamical system, which Kunz [16] investigates somewhat (see also [6]
for some mathematical, although not dynamical, exploration of the model in
its “spiral” mode). Douady and Couder’s computer simulations show that a
model using the Snow’s hypothesis has the big advantage of giving rise to whorl
patterns where several primordia are born at essentially the same time and are
spread out equally around the circumference of the apex. One can conceive of
the model based on the Hofmeister hypotheses as a “submode” of the model
based on Snows’ hypotheses.

It is possible that there is a relationship between whorl patterns and periodic
orbits. As Douady & Couder [9] point out, a whorl pattern can continuously
deform to a regular spiral lattice pattern. At intermediate stages of such a
deformation there is periodicity in both the vertical and angular positions of
primordia.

3This answers a question posed by Adler in [2] as to the relationship between these different
models.
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8 Appendix I: Proof of Theorem 2

Proof. We choose to work in the absolute angles coordinates here. See [14]
for a proof in divergence angle coordinates. Remember that S ◦ Φ = φ ◦ S.
KerS = Span{(1, 1 . . . , 1)} is a subset of the 1-eigenspace for DΦ: this general
fact about symmetry can be seen directly in the matrix DΦ below. Moreover,
if v is a λ-eigenvector for DΦ then DSv is a λ-eigenvector for Dφ. Hence, the
spectrum of DΦ is just the union of {1} and the spectrum of Dφ. In other words,
if we show that DΦ has 1 as a simple eigenvalue and that all other eigenvalues
have modulus strictly less than 1, then the spectrum of Dφ is inside the open
unit disk—which would prove the stability of fixed points of φ.

To compute DΦ, first note that, for all k > 0, ∂Xk/∂xj = 0 if j �= k −
1, and ∂Xk/∂xk−1 = 1. The interesting part of the computation lies in the
first row. Remember that the two nearest neighbors, say Pm and Pn, of the
incoming primordium P0 must lay on opposite sides of it. Moreover, P0 lays
at the intersection of the circle S

1 × {0} and the perpendicular bisector of Pn
and Pm. Using the coordinates Pn = (Θn, Yn) = (θn−1, Yn), Pm = (Θm, Ym) =
(θm−1, Ym), P0 = (Θ0, 0), simple algebra gives:

Θ0 = 1
2

[
Y 2

m−Y 2
n

θm−1−θn−1
+ θn−1 + θm−1

]
. (1)

Note that Yn = yn + y = (n + 1)y and Ym = (m + 1)y are constants here.
Hence, for all k �= m,n, ∂Θ0

∂θk
= 0, as expected. Furthermore:

a
def
= ∂Θ0

∂θn−1
= 1

2

[
Y 2

m−Y 2
n

(θm−1−θn−1)2
+ 1

]
.

The same computation yields ∂Θ0
∂θm−1

= 1 − a.

Lemma 8.1. a ∈ (0, 1).

Proof. This is a consequence of the fact that Pn and Pm must lay on opposite
sides of P0. Say θn−1 < Θ0 < θm−1. Using Equation (1) and some elementary
algebra:

θn−1 < Θ0 < θm−1 ⇐⇒ 0 <
Y 2

m−Y 2
n

(θm−1−θn−1)2
+ 1 < 2 ⇐⇒ 0 < 2a < 2,

which proves the lemma.

Hence, the differential of Φ is:
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n m


0 . . . 0 a . . . 1 − a 0 . . . 0
1 0 . . . . . . . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . . . . . . . 0

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
0 1 0




The basis vectors after the mth column generate the generalized 0-eigenspace:
powers of DΦ map them to the zero vector. The nonzero part of the spectrum is
given by the top left m×m submatrix. Call this matrix A. Note that, because
of Lemma 8.1, A is a nonnegative matrix. (In fact it is a stochastic matrix.)
The spectrum of such matrices falls within the realm of the Perron-Froebenius
theory. To present the main points of this theory, we need some definitions. Let
B be an m×m nonnegative matrix. B can be seen as the incidence matrix of
a directed graph with m vertices: draw an edge going from vertex i to vertex j
whenever bij > 0. The matrix B is called irreducible if there is a (directed) path
connecting any given vertex to any other one. B is called acyclic if the gcd of
the lengths of all loops through a vertex is 1 (this gcd does not depend on the
vertex). Finally, B is called primitive if Bk is positive for some integer k. It is
not hard to prove that B is primitive if and only if it is irreducible and acyclic
([26], p.18). These two last conditions are easy to check in our case, since A has
the paths: 1 → 2 → . . . → m → 1 and 1 → 2 → . . . → n → 1, and gcd(n,m) = 1
by Proposition 4.2. We can now apply the following Perron-Frobenius theorem
([26], p.1, and [22], p.123):

Theorem. Suppose B is a nonnegative primitive square matrix. Then there
exists a simple eigenvalue r such that:

• r is a positive real;
• r is associated to the unique strictly positive eigenvector of B;
• All other eigenvalues have modulus strictly less than r.

In our case, the vector (1, 1, . . . , 1) is an eigenvector with eigenvalue 1 for A.
Hence, 1 = r must be the eigenvalue of (strictly) greatest modulus.

9 Appendix II: Proof of Proposition 5.5

Recall that our lattice has a rhombic opposed parastichy basis. If we are not
at a branching point of V (i.e., a point of the type gmn(A)), then there is only
one choice of parastichy basis {zm, zn}, and we let p = max {m,n} and q =
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min {m,n}. If we are at a triple point, there are three lattice points zki (ki > 0)
equally close to the origin z0 = 0, we let p be the largest of these three indices
and q the second largest. It is a general fact about Voronoi cells of complete
planar lattices that they are all congruent (by homogeneity of the lattice). The
boundaries are made of perpendicular bisectors of pair of points in the lattice.
It is well known that for a given point zk, it suffices to consider bisectors with
the eight neighbors zk ± zp, zk ± zq, zk ± zp−q and zk ± zp+q. We denote these
eight neighbors by Np, N−p, Nq, N−q, Np−q, N−(p−q), Np+q and N−(p+q), and
the corresponding bisectors by Bp, B−p, Bq, etc. (see Figure 19). Notice that

q

−p

−q

p+q

−(p+q)

p−q

−(p−q)

p

zk

Figure 19: The lattice point zk and its eight neighbors Np, Nq, N−p, . . .. Segments of
the corresponding bisectors Bp, Bq, B−p, . . . are also depicted.

Bx and B−x, x = p, q, p + q, p − q, are parallel. Since {zp, zq} is a canonical
basis, the boundaries of a general cell Vk are segments of Bp, Bq, B−p, B−q
and, in general, either segments of the pair B(p+q) and B−(p+q) or segments of
the pair B(p−q) and B−(p−q). The Vk’s are either hexagons or parallelograms.
Notice that six of these neighbors are always ordered, from largest imaginary
part to smallest imaginary part (top to bottom in the picture), as follows:

Np+q � Np � Nq � zk � N−q � N−p � N−(p+q)

Now, consider the Voronoi partition of C given by the half–lattice z1, z2,
z3, . . . and disregard anything below the line S

1 ×{0}, which we call the x–axis
(see Figures 17 and 20). We emphazise that the point z0 = 0 is not included.
As mentioned earlier, we call the set T of Voronoi cells that intersect the x–axis
the first tier. Cells in T are therefore not closed, and are not congruent to the
cells of the complete planar lattice, which we call complete. Any Vk ∈ T has two
of its boundaries intersecting the x–axis. We call these two boundaries walls
of the cell. The maxima of the function D must occur at intersection points
of the walls of cells in T with the x–axis. Notice that B(p+q) cannot be a wall
of any Vk ∈ T and, since N−(p+q) is below the x–axis (otherwise Vk would be
complete), B−(p+q) cannot be a wall either.

Lemma 9.1. Let Vk ∈ T . If Bp (resp. B−p) is a wall of Vk then Bq (resp.
B−q) is the other wall.
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Figure 20: Voronoi partition of a half–lattice z1, z2, z3, . . .. The cells intersecting
the x–axis form the first tier T . In this example, from left to right, they are of types
(q, p)−, (q, p)+, (q, p − q)−, (q, p − q)+, etc. (see definition of these types below).

Proof. If B−p is a wall, then N−p is above the x–axis, and therefore so is N−q.
Hence, the other wall is B−q. If Bp is a wall, let L be the bisector of the
segment NpNp−q (see Figure 21). Since Bp is a wall, the intersection of Bp

and L must be below the x–axis. Translating by zq−p, we have a congruent
geometrical situation: the intersection of Bq and the bisector of NqN−(p−q) is
also below the x–axis. Therefore Bq is the other wall.

p−q

p

q

−p
−q −(p−q)

L
Bp

Bq

zk

Figure 21: Translating by zq−p: L ends up on Bq.

We now classify the Voronoi cells in T according to the type of their walls,
not taking into account which wall is on the left and which is on the right.
Considering the previous lemma, it is easy to check that we can only have the
following types:

Definition. A cell Vk ∈ T is said to be of type

i) (q, p)− if it has walls B−q and B−p.
ii) (q, p)+ if it has walls Bq and Bp.
iii) (q, p− q)− if it has walls B−q and B−(p−q).
iv) (q, p− q)+ if it has walls Bq and B(p−q).
v) (q, q) if it has walls Bq and B−q.
vi) (p− q, p− q) if it has walls B(p−q) and B−(p−q).

Lemma 9.2. If Vk ∈ T and k > p, then Vk is of type (q, p)−. Vp is the cell of
type (q, p− q)− of highest index.
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Proof. Since k > p, N−q and N−p are both above the x–axis. Hence, both B−q
and B−p are edges of Vk. They cannot intersect above the x–axis, otherwise Vk �∈
T . Thus, both are walls and Vk is of type (q, p)−. Finally, Vp is of type (q, p−q)−

because |zp| = |zq|, and therefore the bisector of the segment zpzq passes through
the origin 0. In terms of the neighbors of zp, this segment is zpN−(p−q) and the
bisector is B−(p−q). So one of the walls of cell Vp is B−(p−q). Since N−q is above
the x–axis, B−q is the other wall, so the cell is of type (q, p− q)−.

Lemma 9.3. The maximum of D cannot occur in a cell of type (q, p)−.

Proof. Suppose Vk is of type (q, p)−. For every Vk ∈ T , let

dk = max
{
D(x) | x ∈ Vk ∩ (S1 × {0})

}
.

dk is the distance between zk and one of the intersection points for the walls
of Vk with the x–axis. Suppose dk is given by the intersection point Z ′ of the

Z

B−p
B−q

Z ′

zk

N−p

N−q

Figure 22: The maximum of D cannot occur in a cell of type (p, q)− since |zkZ| <
|zkN−p| = |zp|.

wall B−p and the x–axis (see Figure 22) (an identical argument applies if it is
given by the other wall B−q). The intersection point Z of the bisectors B−p
and B−q cannot be above the x–axis because otherwise the cell would not be
in T . We have then two cases: (1) Z is below the axis, and (2) Z is on the
axis. First suppose that it is below the x–axis. It is clear in the figure that then
dk = |zkZ ′| < |zkZ|. Since the angle ZzkN−p (which is half of angle zpz0zq) is
at most π

3 , we have |zkZ| ≤ |zkN−p|, and therefore

dk = |zkZ ′| < |zkZ| ≤ |zkN−p| = |zp| ≤ dp.

So dk cannot be the maximum of D. Suppose now case (2), that Z is on the
axis. So, in Figure 22 we have Z = Z ′. Now, suppose for a moment that our
lattice is at a triple point of V. We then must have Vk = Vp because Vp has
its bisectors B−p and B−q intersecting on the x–axis at the lattice point z0 = 0
and no other cell Vk for k �= p could have a corresponding intersection exactly
on the axis. But this is a contradiction because Vp is not of type (q, p)−, so
we cannot be at a triple point. If our lattice is not at a triple point of V, then
angle ZzkN−p < π

3 and therefore we have |zkZ| < |zkN−p|. Thus dk < dp, and
dk cannot be a maximum of D.
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Notice that if Vk1 and Vk2 are of the same type with k1 < k2, then Im(zk1) <
Im(zk2) and all the neighbors of zk1 are below the corresponding neighbors
of zk2 , therefore dk1 < dk2 . That is, we have proven

Lemma 9.4. If the max value of D occurs in a cell Vk of type x, then k is the
highest index for a cell of same type x.

Proof of Proposition 5.5. Let Vk be a cell where the max value of D occurs in
at least one of its walls (In particular, k is largest index for this type). We know
that the type cannot be (p, q)−. If the type is (q, p− q)− then k = p. If Vk is of
type (q, q), the max must be on the longest wall: Bq. This wall is B−q for the
neighboring cell. By Lemma 9.3, this neighboring cell could not be (q, p)−, so
it must be (q, p− q)−, and therefore it is Vp.

If Vk is of type (p−q, p−q), then the max must be on the longest wall: Bp−q.
This wall is B−(p−q) for the neighboring cell, which must then be of type (q, p−
q)−, and therefore it is Vp.

If Vk is of type (p, q)+, then the max is not on the wall Bp because the
p–side neighboring cell is necessarily of type (p, q)−. The max is then on wall
Bq of Vk. For the neighboring cell on this side, this wall must be B−q. So the
type possibilities for this neighboring cell are (q, q), (q, p)− or (q, p − q)−. It
cannot be (q, q) because the other wall is parallel and higher and it would give
a higher value than the maximum. It cannot be (q, p)− (by Lemma 9.3), so it
must be the third case, and therefore it is Vp.

Suppose Vk is of type (q, p − q)+. If the max occurs in the Bq wall, then
we reason as in the previous case. Suppose max occurs on the Bp−q–wall. The
neighboring cell on this side could either be (p−q, p−q) or (q, p−q)−. It cannot
be (p − q, p − q) because the second wall yields a larger value for D, so it is of
type (q, p− q)−, and therefore it is Vp.

References

[1] Adler I., A Model of Contact Pressure in Phyllotaxis J. Theor. Biol. 45,
(1974), pp. 1-79.

[2] Adler I., The Role of Mathematics in Phyllotaxis, Symmetry in Plants
World Scientific, (1998), pp. xiii-xvi.

[3] Ahlfors L.V., Complex Analysis, McGraw-Hill (1966).
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