

Here, There, and Almost Everywhere

- Ocean habitats ("biozones") the pelagic (water column) environments
- broad:
- neritic zone overlies continental shelf
 oceanic zone beyond shelf break
- specific:
- epipelagic zone
 illuminated surface layer
 mesopelagic zone
- "twilight," no photosynthesi
 bathypelagic zone
- totally dark, no living plants
 abyssalpelagic zone
 more than ¹/₂ ocean volume
- hadalpelagic zone
 deep-sea trenches

the benthic (bottom) environments

- shallow (shelf):
- littoral (intertidal) zone between high and low tide
 sublittoral zone beach to shelf break
- deep:
 - bathyal zone
 - continental slope & rise
 beneath mesopelagic and
 - bathypelagic zones
 - abyssal zone
 - average deep ocean bottom
 - beneath abyssalpelagic zone
 - hadal zone
 - deep-sea trenches
 - beneath hadalpelagic zone

Light penetration zones

- **photic zone** depth where light is sufficient for photosynthesis
- dysphotic zone depth where illumination is too weak for photosynthesis
- aphotic zone receives no light from the surface because it is all absorbed by the water above

Some terms

- Heterotrophs organisms that require food in the form of organic compounds prefabricated by other organisms
- Autotrophs organisms that can synthesize organic compounds (their body tissues) from inorganic substances (nutrients)
 - that is, they make their own food
 - two types:
 - 1. photosynthetic organisms
 - utilize solar energy to power photosynthesis
 - live in the photic zone
 - 2. chemosynthetic organisms
 - utilize *chemical reactions* to power <u>chemosynthesis</u>
 - commonly live near deep sea vents

- bacterioplankton many kinds of heterotrophic bacteria, and some photosynthetic bacteria (cyanobacteria)
- meroplankton larval stage of some benthonic and nektonic animals (spend early part of life as plankton)

- some invertebrates (squid)
- many marine vertebrates (pelagic fish, marine mammals, marine reptiles)

Environmental controls on distribution

- light
- temperaturesalinity
- food availability
- water density
- dissolved nutrients
- pollution
- space to live
- cover
- habitat

- our focus ... temperature
 - salinity

9

Effects of Temperature

- Rates of diffusion, osmosis, and metabolism are strongly temperature-dependent.
- The higher the temperature, the higher the <u>rate of molecular</u> <u>movement into or out of cells</u>, and the higher the <u>rate of biological</u> <u>activity</u> including growth rates, motility, and life span.
- Temperature also controls the <u>concentration of dissolved</u> <u>gases</u> in water (CO₂ for photosynthesis, O₂ for animal respiration)
 - The higher the temperature, the less dissolved gas that water can hold (i.e., cold water holds more dissolved gas)
- Stenothermal organisms can tolerate only a *narrow* range of temperatures (deep and/or mobile organisms)
- Eurythermal organisms can tolerate a *wider* range of temperatures (shallow and/or sessile organisms)

Effects of Salinity

- Salinity is an important control on the distribution of organisms because of <u>osmotic pressure</u>.
- Stenohaline organisms can tolerate only a narrow range of salinity (deep and/or mobile organisms).
 - Many organisms are not be able to tolerate the high salinities (>40‰) of some subtropical lagoons or the reduced salinities (<30 ‰) of coastal waters or estuaries
- Euryhaline organisms can tolerate a wider range of salinities (surface and/or sessile organisms).

<u>Coastal organisms</u> must be able to cope with daily and seasonal swings in salinity related to tidal movement, evaporation, precipitation and river runoff

Environmental Tolerance of Marine Organisms	Mid-Latitude Intertidal Communities	Deep-sea vent Communities
Temperature	Eury- thermal	Steno- thermal
Salinity	Eury- haline	Steno- haline

Diffusion and Osmosis

- Seawater poses a special problem for many marine organisms because of a difference in ionic concentration (salinity) between the body fluids of an organism and its salt water environment.
- Cell walls are semi-permeable; some molecules pass through, others are screened out.
- Diffusion is the passive movement of molecules from high concentration to low concentration.
- Osmosis is the <u>diffusion of water molecules</u> into or out of a cell.
- If there is a difference, or gradient, between the inside and outside of the cell, an osmotic pressure will cause water molecules to move
 - from high concentration of water (=low salinity)
 - to low concentration of water (=high salinity).

Description of the series of the se

