Lecture Notes - Mineralogy - Closest Packed Structures

Using tennis balls we discussed three possible packing arrangements of spheres: cubic closest packing (X^c), hexagonal closest packing (X^h), and simple cubic packing (X^{sc}). The pattern of anion packing in many simple ionic crystals and common minerals follows one of these packing arrangements with cations in octahedrally coordinated holes (A^o), tetrahedrally coordinated holes (A^t), or simple cubic coordinated holes (A^{cb}). Differences among the resulting structures are due to the relative charges on and radii of the anion(s) and cation(s) involved and, therefore, which cation sites ("polyhedral holes") are occupied. A number of examples are given by Bloss (Chap. 9) including:

				Electro-	
<u>Structure</u>	<u>Formula</u>	<u>Mineral</u>	$\underline{R}^{+}/\underline{R}^{-}$	negativity	<u>%Ionic</u>
A°X ^c	NaCl	halite	.54	2.23	71
	MgO	periclase	.47	2.13	68
	PbS	galena	.65	0.25	02
$A^{\scriptscriptstyle O} X^{\scriptscriptstyle h}$	NiAs	niccolite		0.27	02
	Fe _{1-X} S	pyrrhotite	.40	0.75	14
A ^{cb} X ^{sc}	CsCl CsBr		.92	2.37	75
$A^t X^c$	ZnS	sphalerite	.40	0.93	20
$A^t X^h$	ZnS	wurtzite	.40	0.93	20
	ZnO	zincite	.53	1.79	55
$A^{o}X^{c}_{2}$	CdCl ₂		.54	1.47	42
$A^oX^h_{2}$	CdI_2		.44	0.97	21
A ^{cb} X ^{sc} ₂	CaF ₂	fluorite	.74	2.98	89