CSC103 Syllabus 2012

From DftWiki

Jump to: navigation, search

--D. Thiebaut 15:46, 26 February 2012 (EST)

If you were interested in the previous version of this page, click here.

Wikis | Weekly Schedule

Dominique Thiébaut
Ford Hall 356, 208.
Smith College
Telephone: 3854


CSC 103: How Computers Work, Spring 12


This course has no prerequisites. It is intended to introduce students to the history, theory and use of digital computers. Students from all majors are welcome - though there is some math and computer programming during the semester, the course is designed assuming students have no previous computer experience. Through the material presented in this course, students will be introduced to:

  1. A brief history of computers
  2. Binary numbers, and understanding how and why computers use them
  3. Logic gates - the basic building blocks of computers
  4. programming with Processing - which you may find you'll like to use beyond this course!
  5. A better understanding of how the computer does everything you direct it to do.
  6. Some important issues about computers in our future

A great number of topics are discussed in this seven week period, with the purpose not to explore any one topic fully or in depth. Rather the purpose is to provide a high level view of how a computer works - from the most fundamental hardware component (the logic gate) through the sophisticated programs we all use every day (such as word processors). Hopefully this first look at all these topics will encourage students to take additional courses in areas that are of most interest.


Dominique Thiebaut
Office: Ford Hall 356, Clark Science Center
Office Hours: Office Hours: M 1:10-3:00 p.m., W 4:00-6:00 p.m.


First half of Spring 2012: Mon January 30th, to Wed. March 7, 2012.


  • There are no textbooks for the class. We will use on line resources throughout the class.
  • If you'd prefer having a textbook to read, these are good options:
    • How Computers Work., by Ron White, 9th Edition, QUE [1]. QUE Editor.
    • The Most Complex Machine., by David Eck, A. K. Peters, Natick Ma [2].

Tentative list of topics covered

  • Binary system, arithmetic, logic gates
  • Logic gates, binary adder
  • Logic design: building a simple circuit typically found inside microprocessors.
  • What's inside a computer?
    • Computer architecture: the methodology used to design computers: the von Neumann architecture
    • Von Neuman bottleneck
    • CPU, RAM, Secondary Memory
  • Assembly Language: how a microprocessor operates: what does it do? How fast?
  • History of computers
    • Babbage
  • Programming: the Processing language
    • Programming Environment
    • Program development
    • Other programming languages
  • Important Concepts:


  • Attendance and participation: 10%
  • Homework assignments (roughly one weekly assignmnent): 50%. Homework assignments will be typically due on Wednesdays.
  • Quiz: 10%
  • Final take-home exam: 30%
No late assigments will be accepted.

Teaching Assistants

  • Lucia Villagra (, TA hours Tuesday evening from 7-9 p.m., FH 241.