This Jupyter Notebook illustrates how to design a simple multi-layer Tensorflow Neural Net to recognize integers coded in binary and output them as 1-hot vector.

For example, if we assume that we have 5 bits, then there are 32 possible combinations. We associate with each 5-bit sequence a 1-hot vector. For example, 0,0,0,1,1, which is 3 in decimal, is associated with 0,0,0,1,0,0,0...,0, which has 31 0s and one 1. The only 1 is at Index 3. Similarly, if we have 1,1,1,1,1, which is 31 in decimal, then its associated 1-hot vector is 0,0,0,0,...0,0,1, another group of 31 0s and one last 1.

Our binary input is coded in 5 bits, and we make it more interesting by adding 5 additional random bits. So the input is a vector of 10 bits, 5 random, and 5 representing a binary pattern associated with a 1-hot vector. The 1-hot vector is the output to be predicted by the network.

Preparing the Data

Let’s prepare a set of data where we have 5 bits of input, plus 3 random bits, plus 32 outputs corresponding to 1-of for the integer coded in the 5 bits.

Preparing the Raw Data: 32 rows Binary and 1-Hot

We first create two arrays of 32 rows. The first array, called x32, contains the binary patterns for 0 to 31. The second array, called y32, contains the one-hot version of the equivalent entry in the x32 array. For example, [0,0,0,0,0] in x32 corresponds to [1,0,0,0,...,0] (one 1 followed by thirty one 0s) in y32. [1,1,1,1,1] in x32 corresponds to [0,0,0...,0,0,1] in y32.
Addition of Random Bits

Let's add some random bits (say 7) to the rows of x, and create a larger collection of rows, say 100.
In []:
x = []
y = []
noRandomBits = 5
for i in range(100):
 # pick all the rows in a round-robin fashion.
xrow = x32[i%32]
yrow = y32[i%32]

 # generate a random int of 5 bits
r5 = random.randint(0, 31)
r5 = ("0"*noRandomBits + "{0:b}".format(r5))[-noRandomBits:]

 # create a list of integer bits for r5
rBits = [int(n) for n in r5]

 # create a new row of x and y values
x.append(xrow + rBits)
y.append(yrow)

 # display x and y
for i in range(len(x)):
 print("x[%2d] =", ",".join([str(k) for k in x[i]]), "y[%2d] =", ",".join([str(k) for k in y[i]])

Split Into Training and Testing

We'll split the 100 rows in 90 rows of training, and 10 rows for testing.
In []:
Percent = 0.10
x_train = []
y_train = []
x_test = []
y_test = []

pick 10 indexes in 0-31.
indexes = [5, 7, 10, 20, 21, 29, 3, 11, 12, 25]

for i in range(len(x)):
 if i in indexes:
 x_test.append(x[i])
 y_test.append(y[i])
 else:
 x_train.append(x[i])
 y_train.append(y[i])

display train and set xs and ys
for i in range(len(x_train)):
 print('x_train[%2d] =%i, "",".join([str(k) for k in x_train[i]])
 print('y_train[%2d] =%i, "",".join([str(k) for k in y_train[i]])

print()

for i in range(len(x_test)):
 print('x_test[%2d] =%i, "",".join([str(k) for k in x_test[i]])
 print('y_test[%2d] =%i, "",".join([str(k) for k in y_test[i]])

Package Xs and Ys as Numpy Arrays

We now make the train and test arrays into numpy arrays
Definition of the Neural Network

Let's define the neural net. We assume it has just 1 layer.

Constants/Variables

We just have one, the learning rate with which the gradient optimizer will look for the optimal weights. It's a factor used when following the gradient of the function \(y = W.x + b \), in order to look for the minimum of the difference between \(y \) and the target.

```
In [ ]: learning_Rate = 0.1
```

Place-Holders

It will have place holders for

- the X input
- the Y target. That's the vectors of Y values we generated above. The network will generate its own version of y, which we'll compare to the target. The closer the two are, the better.
- the drop-probability, which is defined as the "keep_probability", i.e. the probability a node from the neural net will be kept in the computation. A value of 1.0 indicates that all the nodes are used in the processing of data through the network.
In []:
```python
x = tf.placeholder("float", shape=[None, num_features])
target = tf.placeholder("float", shape=[None, num_labels])
keep_prob = tf.placeholder(tf.float32)
```

Variables

The variables contain tensors that TensorFlow will manipulate. Typically the Wi and bi coefficients of each layer.

We'll assume just one later for right now, with num_features inputs (the width of the X vectors), and num_labels outputs (the width of the Y vectors). We initialize W0 and b0 with random values taken from a normal distribution.

```python
In [ ]:
```W0 = tf.Variable( tf.random_normal( [num_features, num_labels] ) )
b0 = tf.Variable(tf.random_normal([num_labels]))
W1 = tf.Variable(tf.random_normal([num_labels, num_labels * 2]))
b1 = tf.Variable(tf.random_normal([num_labels * 2]))
W2 = tf.Variable(tf.random_normal([num_labels * 2, num_labels]))
b2 = tf.Variable(tf.random_normal([num_labels]))
```

### Model

The model simply defines what the output of the NN, y, is as a function of the input x. The softmax function transforms the output into probabilities between 0 and 1. This is what we need since we want the output of our network to match the 1-hot vector which is the format the y vectors are coded in.

```python
In []:
```#y0 = tf.nn.sigmoid( tf.matmul(x, W0) + b0 )
y0 = tf.nn.sigmoid( tf.matmul(x, W0) + b0 )
y1 = tf.nn.sigmoid( tf.matmul(y0, W1) + b1 )
y = tf.matmul( y1, W2 ) + b2
#y = tf.nn.softmax( tf.matmul( y0, W1) + b1 )
```

Training

We now define the cost operation, **cost_op**, i.e. measuring how "bad" the output of the network is compared to the correct output.
In []:
#prediction = tf.reduce_sum(tf.mul(tf.nn.softmax(y), target), reduction_indices=1)
#accuracy = tf.reduce_mean (prediction)
#cost_op = tf.reduce_mean(tf.sub(1.0, tf.reduce_sum(tf.mul(y, target), reduction_indices=1)))

#cost_op = tf.reduce_mean(tf.sub(1.0, tf.reduce_sum(tf.mul(target, tf.nn.softmax(y)), reduction_indices=[1]))
The cost_op below yields an accuracy on training data of 0.86% and an accuracy on test data = 0.49%
for 1000 epochs and a batch size of 10.
#cost_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = target, logits = y)

And now the training operation, or train_op, which is given the cost_op

In []:
#train_op = tf.train.GradientDescentOptimizer(learning_rate = learning_Rate).minimize(cost_op)
train_op = tf.train.AdamOptimizer(learning_rate = learning_Rate).minimize(cost_op)

Initialization Phase

We need to create an initialization operation, init_op, as well. It won’t be executed yet, not until the session starts, but we have to do it first.

In []: init_op = tf.initialize_all_variables()

Start the Session

We are now ready to start a session!

In []: sess = tf.Session()
sess.run(init_op)

Training the NN

We now train the Neural Net for 1000 epoch. In each epoch we feed just one vector of x to the network.
In []: batchSize = 5

prediction = tf.equal(tf.argmax(y, 1), tf.argmax(target, 1))
accuracy = tf.reduce_mean (tf.cast(prediction, tf.float32))

for epoch in range(10000):
 for i in range(0, train_size, batchSize):
 xx = x_train_np[i:i+batchSize, :]
 yy = y_train_np[i:i+batchSize, :]
 sess.run(train_op, feed_dict={x: xx, target: yy})

 if epoch%100 == 0:
 co, to = sess.run([cost_op,train_op], feed_dict={x: x_train_np, target: y_train_np})
 print(epoch, "cost =", co, end=" ")
 accuracyNum = sess.run(accuracy, feed_dict={x: x_train_np, target: y_train_np})
 print("Accuracy on training data = %1.2f%%" % (accuracyNum*100), end = " ")

 if False:
 print("y = ", sess.run(y, feed_dict={ x: x_train_np, target : y_train_np}))
 print("softmax(y) = ", sess.run(tf.nn.softmax(y), feed_dict={ x: x_train_np, target : y_train_np}))
 print("tf.mul(tf.nn.softmax(y), target) = ",
 sess.run(tf.mul(tf.nn.softmax(y), target),
 feed_dict={ x: x_train_np, target : y_train_np}))

prediction = tf.reduce_sum(tf.mul(tf.nn.softmax(y), target), reduction_indices=1)
accuracyNum = sess.run(accuracy, feed_dict={x: x_train_np, target : y_train_np})
print("Final Accuracy on training data = %1.2f%%" % (100.0*accuracyNum))

accuracyNum = sess.run(accuracy, feed_dict={x: x_test_np, target : y_test_np})
print("Final Accuracy on test data = %1.2f%%" % (100.0*accuracyNum))