Data-Intensive Computing with Hadoop

Thanks to:
Milind Bhandarkar <milindb@yahoo-inc.com>
Yahoo! Inc.
Agenda

• Hadoop Overview
• HDFS
• Programming Hadoop
 • Architecture
 • Examples
 • Hadoop Streaming
 • Performance Tuning
• Debugging Hadoop Programs
Hadoop overview

• Apache Software Foundation project
 • Framework for running applications on large clusters
 • Modeled after Google’s MapReduce / GFS framework
 • Implemented in Java
• Includes
 • HDFS - a distributed filesystem
 • Map/Reduce - offline computing engine
 • Recently: Libraries for ML and sparse matrix comp.
• Y! is biggest contributor
• Young project, already used by many
Hadoop clusters

It’s used in clusters with thousands of nodes at Internet services companies
Who Uses Hadoop?

Amazon/A9
Facebook
Google
IBM
Intel Research
Joost

Last.fm
New York Times
PowerSet
Veoh
Yahoo!
Hadoop Goals

• Scalable
 • Petabytes (1015 Bytes) of data on thousands on nodes
 • Much larger than RAM, even single disk capacity

• Economical
 • Use commodity components when possible
 • Lash thousands of these into an effective compute and storage platform

• Reliable
 • In a large enough cluster something is always broken
 • Engineering reliability into every app is expensive
Sample Applications

• Data analysis is the core of Internet services.
• Log Processing
 • Reporting
 • Session Analysis
 • Building dictionaries
 • Click fraud detection
• Building Search Index
 • Site Rank
• Machine Learning
 • Automated Pattern-Detection/Filtering
 • Mail spam filter creation
• Competitive Intelligence
 • What percentage of websites use a given feature?
Problem: Bandwidth to Data

- Need to process 100TB datasets
- On 1000 node cluster reading from remote storage (on LAN)
 - Scanning @ 10MB/s = 165 min
- On 1000 node cluster reading from local storage
 - Scanning @ 50-200MB/s = 33s-8 min
- Moving computation to the data enables I/O bandwidth scaling
 - Network is the bottleneck
 - Data size is reduced by the processing
- Need visibility into data placement
Problem: Scaling Reliably is Hard

- Need to store Petabytes of data
 - On 1000s of nodes, MTBF < 1 day
 - Many components disks, nodes, switches, ...
 - Something is always broken
- Need fault tolerant store
 - Handle hardware faults transparently
 - Provide reasonable availability guarantees
Hadoop Distributed File System

• Fault tolerant, scalable, distributed storage system
• Designed to reliably store very large files across machines in a large cluster
• Data Model
 • Data is organized into files and directories
 • Files are divided into uniform sized blocks and distributed across cluster nodes
 • Blocks are replicated to handle hardware failure
 • Corruption detection and recovery: Filesystem-level checksuming
 • HDFS exposes block placement so that computes can be migrated to data
HDFS Terminology

- Namenode
- Datanode
- DFS Client
- Files/Directories
- Replication
- Blocks
- Rack-awareness
HDFS Architecture

- Similar to other NASD-based DFSs
- Master-Worker architecture
- HDFS Master “Namenode”
 - Manages the filesystem namespace
 - Controls read/write access to files
 - Manages block replication
 - Reliability: Namespace checkpointing and journaling
- HDFS Workers “Datanodes”
 - Serve read/write requests from clients
 - Perform replication tasks upon instruction by Namenode
Interacting with HDFS

- User-level library linked into the application
- Command line interface

```
hadoop fs [-fs <local | file system URI>] [-conf <configuration file>]
[-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>]
[-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>]
[-rmr <src>] [-put <localsrc> <dst>] [-copyFromLocal <localsrc> <dst>]
[-moveFromLocal <localsrc> <dst>] [-get <src> <localdst>]
[-getmerget <src> <localdst> [addnl]] [-cat <src>]
[-copyToLocal <src><localdst>] [-moveToLocal <src> <localdst>]
[-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>]
[-tail [-f] <path>] [-text <path>]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-chgrp [-R] GROUP PATH...]
[-help [cmd]]
```
Map-Reduce overview

- Programming abstraction and runtime support for scalable data processing
- Scalable associative primitive: Distributed “GROUP-BY”
- Observations:
 - Distributed resilient apps are hard to write
 - Common application pattern
 - Large unordered input collection of records
 - Process each record
 - Group intermediate results
 - Process groups
 - Failure is the common case
Map-Reduce

• Application writer specifies
 • A pair of functions called Map and Reduce
 • A set of input files

• Workflow
 • Generate *FileSplits* from input files, one per Map task
 • *Map phase* executes the user map function transforming input records into a new set of kv-pairs
 • Framework *shuffles & sort* tuples according to their keys
 • *Reduce phase* combines all kv-pairs with the same key into new kv-pairs
 • *Output phase* writes the resulting pairs to files

• All phases are distributed among many tasks
 • Framework handles scheduling of tasks on cluster
 • Framework handles recovery when a node fails
Hadoop MR - Terminology

- Job
- Task
- JobTracker
- TaskTracker
- JobClient
- Splits
- InputFormat/RecordReader
Hadoop M-R architecture

- **Map/Reduce Master “Job Tracker”**
 - Accepts Map/Reduce jobs submitted by users
 - Assigns Map and Reduce tasks to Task Trackers
 - Monitors task and Task Tracker status, re-executes tasks upon failure
- **Map/Reduce Slaves “Task Trackers”**
 - Run Map and Reduce tasks upon instruction from the Job Tracker
 - Manage storage and transmission of intermediate output
Map/Reduce Dataflow

The diagram illustrates the Map/Reduce dataflow process. The input data is processed through multiple Map stages, followed by Shuffle & Sort, and then processed through multiple Reduce stages. The output data is then generated.
M-R Example

• Input: multi-TB dataset
• Record: Vector with 3 float32_t values
• Goal: frequency histogram of one of the components
• Min and max are unknown, so are the bucket sizes
M-R Example (cont.)

- Framework partitions input into chunks of records
- Map function takes a single record
 - Extract desired component \(v \)
 - Emit the tuple \((k=v, 1)\)
- Framework groups records with the same \(k \).
- Reduce function receives a list of all the tuples where for a given \(k \)
 - Sum the value \((1)\) for all the tuples
 - Emit the tuple \((k=v, \text{sum})\)
M-R features

- There’s more to it than M-R: Map-Shuffle-Reduce
- Custom input parsing and aggregate functions
- Input partitioning & task scheduling
- System support:
 - Co-location of storage & computation
 - Failure isolation & handling
Hadoop Dataflow (I_2O)

1. **InputSplit**
 - $I_{0..m-1}$

2. **Map**
 - $M_{0..m-1}$

3. **Partition**
 - $M_{0..m-1}$

4. **Copy/Sort/Merge**
 - $R_{0..r-1}$

5. **Reduce**
 - $O_{0..r-1}$
Input => InputSplits

- Input specified as collection of paths (on HDFS)
- JobClient specifies an InputFormat
- The InputFormat provides a description of splits
- Default: FileSplit
 - Each split is approximately DFS’s block
 - mapred.min.split.size overrides this
 - Gzipped files are not split
 - A “split” does not cross file boundary
- Number of Splits = Number of Map tasks
InputSplit => RecordReader

- Record = (Key, Value)
- InputFormat
 - TextInputFormat
 - Unless 1st, ignore all before 1st separator
 - Read-ahead to next block to complete last record
Partitioner

• Default partitioner evenly distributes records
 • hashcode(key) mod NR
• Partitioner could be overridden
 • When Value should also be considered
 - a single key, but values distributed
 • When a partition needs to obey other semantics
 - All URLs from a domain should be in the same file
• Interface Partitioner
 • int getPartition(K, V, nPartitions)
Producing Fully Sorted Output

• By default each reducer gets input sorted on key
• Typically reducer output order is the same as input
• Each part file is sorted
• How to make sure that Keys in part i are all less than keys in part i+1 ?
• Fully sorted output
• Simple solution: Use single reducer
• But, not feasible for large data
• Insight: Reducer input also must be fully sorted
• Key to reducer mapping is determined by partitioner
• Design a partitioner that implements fully sorted reduce input
• Hint: Histogram equalization + Sampling
Streaming

• What about non-Java programmers?
 • Can define Mapper and Reducer using Unix text filters
 • Typically use grep, sed, python, or perl scripts
• Format for input and output is: `key \t value \n`
• Allows for easy debugging and experimentation
• Slower than Java programs

```bash
bin/hadoop jar hadoop-streaming.jar -input in_dir -output out_dir -mapper streamingMapper.sh -reducer streamingReducer.sh
```

• **Mapper:** `sed -e 's| |\n|g' | grep .`
• **Reducer:** `uniq -c | awk '{print $2 "\t" $1}'`
Key-Value Separation in Map Output

```
$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \\
  -input myInputDirs \\
  -output myOutputDir \\
  -mapper org.apache.hadoop.mapred.lib.IdentityMapper \\
  -reducer org.apache.hadoop.mapred.lib.IdentityReducer \\
  -jobconf stream.map.output.field.separator=. \\
  -jobconf stream.num.map.output.key.fields=4
```
Secondary Sort

```
$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar  \
   -input myInputDirs  \
   -output myOutputDir  \
   -mapper org.apache.hadoop.mapred.lib.IdentityMapper  \
   -reducer org.apache.hadoop.mapred.lib.IdentityReducer  \
   -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner  \
   -jobconf stream.map.output.field.separator=\  
   -jobconf stream.num.map.output.key.fields=4  \
   -jobconf map.output.key.field.separator=\  
   -jobconf num.key.fields.for.partition=2  \
   -jobconf mapred.reduce.tasks=12
```
Pipes (C++)

- C++ API and library to link application with
- C++ application is launched as a sub-process
- Keys and values are std::string with binary data
- Word count map looks like:

```cpp
class WordCountMap: public HadoopPipes::Mapper {
public:
    WordCountMap(HadoopPipes::TaskContext& context) {} 

    void map(HadoopPipes::MapContext& context) {
        std::vector<std::string> words = 
            HadoopUtils::splitString(context.getInputValue(), " ");
        for(unsigned int i=0; i < words.size(); ++i) {
            context.emit(words[i], "1");
        }
    }
};
```
class WordCountReduce: public HadoopPipes::Reducer {
public:
 WordCountReduce(HadoopPipes::TaskContext& context) {};
 void reduce(HadoopPipes::ReduceContext& context) {
 int sum = 0;
 while (context.nextValue()) {
 sum += HadoopUtils::toInt(context.getInputValue());
 }
 context.emit(context.getInputKey(), HadoopUtils::toString(sum));
 }
};
Pipes (C++)

• And define a main function to invoke the tasks:

```cpp
int main(int argc, char *argv[]) {
    return HadoopPipes::runTask(
        HadoopPipes::TemplateFactory<WordCountMap,
            WordCountReduce, void,
            WordCountReduce>();
}
```
Deploying Auxiliary Files

- Command line option: `-file auxFile.dat`
- Job submitter adds file to job.jar
- Unjarred on the task tracker
- Available as `$cwd/auxFile.dat`
- Not suitable for more / larger / frequently used files
• Sometimes, you need to read “side” files such as “in.txt”
• Read-only Dictionaries (e.g., filtering patterns)
• Libraries dynamically linked to streaming programs
• Tasks themselves can fetch files from HDFS
 • Not Always! (Unresolved symbols)
• Performance bottleneck
Caching Files Across Tasks

- Specify “side” files via \texttt{--cacheFile}
- If lot of such files needed
 - Jar them up (.tgz coming soon)
 - Upload to HDFS
 - Specify via \texttt{--cacheArchive}
- TaskTracker downloads these files “once”
- Unjars archives
- Accessible in task’s cwd before task even starts
- Automatic cleanup upon exit
How many Maps and Reduces

• Maps
 • Usually as many as the number of HDFS blocks being processed, this is the default
 • Else the number of maps can be specified as a hint
 • The number of maps can also be controlled by specifying the minimum split size
 • The actual sizes of the map inputs are computed by:
 max(min(block_size, data/#maps), min_split_size)
• Reduces
 • Unless the amount of data being processed is small:
 0.95*num_nodes*mapred.tasktracker.tasks.maximum
Map Output => Reduce Input

- Map output is stored across local disks of task tracker
- So is reduce input
- Each task tracker machine also runs a Datanode
- In our config, datanode uses “up to” 85% of local disks
- Large intermediate outputs can fill up local disks and cause failures
 - Non-even partitions too
Performance Analysis of Map-Reduce

• MR performance requires
 • Maximizing Map input transfer rate
 • Pipelined writes from Reduce
 • Small intermediate output
 • Opportunity to Load Balance
Map Input Transfer Rate

- Input locality
 - HDFS exposes block locations
 - Each map operates on one block
- Efficient decompression
 - More efficient in Hadoop 0.18
- Minimal deserialization overhead
 - Java deserialization is very verbose
 - Use Writable/Text
Performance Example

- Count lines in text files totaling several hundred GB
- Approach:
 - Identity Mapper (input: text, output: same text)
 - A single Reducer counts the lines and outputs the total
- What is wrong?
- This happened, really!
Intermediate Output

- Almost always the most expensive component
 - $(M \times R)$ transfers over the network
 - Merging and Sorting
- How to improve performance:
 - Avoid shuffling/sorting if possible
 - Minimize redundant transfers
 - Compress
Avoid shuffling/sorting

• Set number of reducers to zero
 • Known as map-only computations
 • Filters, Projections, Transformations
• Beware of number of files generated
 • Each map task produces a part file
 • Make map produce equal number of output files as input files
 - How? Variable indicating current file being processed
Minimize Redundant Transfers

- Combiners
 - Goal is to decrease size of the transient data
- When maps produce many repeated keys
 - Often useful to do a local aggregation following the map
 - Done by specifying a Combiner
 - Combiners have the same interface as Reducers, and often are the same class.
- Combiners must not have side effects, because they run an indeterminate number of times.
 - `conf.setCombinerClass(Reduce.class);`
Compress Output

• Compressing the outputs and intermediate data will often yield huge performance gains
 • Specified via a configuration file or set programatically
 • Set mapred.output.compress=true to compress job output
 • Set mapred.compress.map.output=true to compress map output

• Compression types:
 • mapred.output.compression.type
 • “block” - Group of keys and values are compressed together
 • “record” - Each value is compressed individually
 • Block compression is almost always best

• Compression codecs:
 • mapred.output.compression.codec
 • Default (zlib) - slower, but more compression
 • LZO - faster, but less compression
Opportunity to Load Balance

- Load imbalance inherent in the application
 - Imbalance in input splits
 - Imbalance in computations
 - Imbalance in partition sizes
- Load imbalance due to heterogeneous hardware
 - Over time performance degradation
- Give Hadoop an opportunity to do load-balancing
 - How many nodes should I allocate?
Load Balance (contd.)

• $M =$ total number of simultaneous map tasks
• $M =$ map task slots per tasktracker * nodes
• Chose nodes such that total mappers is between $5*M$ and $10*M$.
Configuring Task Slots

- `mapred.tasktracker.map.tasks.maximum`
- `mapred.tasktracker.reduce.tasks.maximum`
- **Tradeoffs:**
 - Number of cores
 - Amount of memory
 - Number of local disks
 - Amount of local scratch space
 - Number of processes
- **Consider resources consumed by TaskTracker & Datanode processes**
Speculative execution

- The framework can run multiple instances of slow tasks
 - Output from instance that finishes first is used
 - Controlled by the configuration variable `mapred.speculative.execution=[true|false]`
 - Can dramatically bring in long tails on jobs
Performance

- Is your input splittable?
 - Gzipped files are NOT splittable
- Are partitioners uniform?
- Buffering sizes (especially io.sort.mb)
- Do you need to Reduce?
 - Only use singleton reduces for very small data
 - Use Partitioners and cat to get a total order
- Memory usage
 - Do not load all of your inputs into memory.
Debugging & Diagnosis

• Run job with the Local Runner
 • Set mapred.job.tracker to “local”
 • Runs application in a single process and thread
• Run job on a small data set on a 1 node cluster
 • Can be done on your local dev box
• Set keep.failed.task.files to true
 • This will keep files from failed tasks that can be used for debugging
 • Use the IsolationRunner to run just the failed task
• Java Debugging hints
 • Send a kill -QUIT to the Java process to get the call stack, locks held, deadlocks
Example: Computing Standard Deviation

• Takeaway: Changing algorithm to suit architecture yields best implementation

\[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]
Implementation 1

- Two Map-Reduce stages
- First stage computes Mean
- Second stage computes std deviation
Implementation 1 (contd.)

• Stage 1: Compute Mean
 • Map Input (xi for i = 1 ..Nm)
 • Map Output (Nm, Mean(x1..Nm))
 • Single Reducer
 • Reduce Input (Group(Map Output))
 • Reduce Output (Mean(x1..N))
Implementation 1 (contd.)

- Stage 2: Compute Standard deviation
 - Map Input \((x_i \text{ for } i = 1 \ldots Nm)\) & Mean\((x_1 \ldots N)\)
 - Map Output \((\text{Sum}(x_i - \text{Mean}(x))^2 \text{ for } i = 1 \ldots Nm)\)
 - Single Reducer
 - Reduce Input (Group (Map Output)) & N
 - Reduce Output (Standard Deviation)
- Problem: Two passes over large input data
Implementation 2

• Second definition algebraic equivalent
 • Be careful about numerical accuracy, though

\[\sigma = \sqrt{\frac{1}{N} \left(\sum_{i=1}^{N} x_i^2 - N \bar{x}^2 \right)} \]
Implementation 2 (contd.)

- Single Map-Reduce stage
- Map Input (x_i for $i = 1 \ldots N_m$)
- Map Output (N_m, $[\text{Sum}(x^2_{1..N_m}), \text{Mean}(x_{1..N_m})]$)
- Single Reducer
- Reduce Input (Group (Map Output))
- Reduce Output (σ)
- Advantage: Only a single pass over large input