Week 14

Fixed & Floating Point Formats

CSC231—Fall 2017
Week #14

Dominique Thiébaut
dthiebaut@smith.edu
• In C, strings are terminated by a byte containing 0 decimal, or 0000 0000 binary. In C, we express this quantity as '\0'.

• In assembly, 0 as a byte is expressed as 0

• '\0' in C = 0000 0000 = 0

• '0' in assembly = 0011 0000 = 0x30

Cmsg db "hello", 0
cmp al, 0
Reference

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-__and_Floating-Point_Numbers
public static void main(String[] args) {

 int n = 10;
 int k = -20;

 float x = 1.50;
 double y = 6.02e23;

}
```java
public static void main(String[] args) {
    int n = 10;
    int k = -20;
    float x = 1.50;
    double y = 6.02e23;
}
```
public static void main(String[] args) {
 int n = 10;
 int k = -20;
 float x = 1.50;
 double y = 6.02e23;
}

Nasm knows what 1.5 is!
in memory, \(x \) is represented by

\[
00111111\ 11000000\ 00000000\ 00000000 \\
or \quad 0\times3FC00000
\]
Outline

• Fixed-Point Format

• Floating-Point Format
Fixed-Point Format

- Used in very few applications, but programmers know about it.

- Some micro controllers (e.g. Arduino Uno) do not have Floating Point Units (FPU), and must rely on libraries to perform Floating Point operations (VERY SLOW)

- Fixed-Point can be used when storage is at a premium (can use small quantity of bits to represent a real number)
Review Decimal Real Numbers

123.45 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2}
Can we do the same in binary?

- Let's do it with **unsigned numbers** first:

 \[1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}\]
Can we do the same in binary?

• Let's do it with **unsigned numbers** first:

\[1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}\]

\[
= 8 \quad + 4 \quad + 1 \quad + 0.5 \quad + 0.25
\]

\[= 13.75\]
• If we know where the binary point is, we do not need to "store" it anywhere. (Remember we used a bit to represent the +/- sign in 2’s complement.)

• A format where the binary/decimal point is fixed between 2 groups of bits is called a **fixed-point format**.
Definition

• A number format where the numbers are unsigned and where we have \(a \) integer bits (on the left of the decimal point) and \(b \) fractional bits (on the right of the decimal point) is referred to as a \(U(a,b) \) fixed-point format.

• Value of an \(N \)-bit binary number in \(U(a,b) \):

\[
x = \left(\frac{1}{2^b}\right) \sum_{n=0}^{N-1} 2^n x_n
\]
Exercise 1

What is the value represented by x in $U(4,4)$?

What is the value represented by x in $U(7,3)$?
Exercise 2

typical final exam question!

• $z = 00000001 \ 00000000$

• $y = 00000010 \ 00000000$

• $v = 00000010 \ 10000000$

• What values do z, y, and v represent in a $U(8,8)$ format?
Exercise 3

• What is 12.25 in $U(4,4)$? In $U(8,8)$?
What about *Signed Fixed-Point Numbers*?
Observation #1

• In an N-bit, unsigned integer format, the weight of the MSB is 2^{N-1}
<table>
<thead>
<tr>
<th>nybble</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>+8</td>
</tr>
<tr>
<td>1001</td>
<td>+9</td>
</tr>
<tr>
<td>1010</td>
<td>+10</td>
</tr>
<tr>
<td>1011</td>
<td>+11</td>
</tr>
<tr>
<td>1100</td>
<td>+12</td>
</tr>
<tr>
<td>1101</td>
<td>+13</td>
</tr>
<tr>
<td>1110</td>
<td>+14</td>
</tr>
<tr>
<td>1111</td>
<td>+15</td>
</tr>
</tbody>
</table>

\[N = 4 \\
2^{N-1} = 2^3 = 8 \]
Observation #2

- In an N-bit *signed* 2's complement integer format, the weight of the MSB is \(-2^{N-1}\)
<table>
<thead>
<tr>
<th>nybble</th>
<th>2's complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[N=4 \]

\[-2^{N-1} = -2^3 = -8\]
Fixed-Point Signed Format

- **Fixed-Point signed** format = sign bit + a integer bits + b fractional bits = N bits = $A(a, b)$

- $N = $ number of bits = $1 + a + b$

- Format of an N-bit $A(a, b)$ number:

\[
x = (1/2^b) \left[-2^{N-1} x_{N-1} + \sum_{0}^{N-2} 2^n x_n \right],
\]
Examples in A(7,8)

• 000000001 00000000 = 00000001 . 00000000 = ?

• 100000001 00000000 = 10000001 . 00000000 = ?

• 00000010 00000000 = 0000010 . 00000000 = ?

• 10000010 00000000 = 1000010 . 00000000 = ?

• 0000010 00000000 = 0000010 . 00000000 = ?

• 10000010 00000000 = 1000010 . 00000000 = ?

• 00000010 10000000 = 0000010 . 10000000 = ?

• 10000010 10000000 = 1000010 . 10000000 = ?
Examples in A(7,8)

- $00000001 \ 00000000 = 00000001 \cdot 00000000 = 1d$
- $10000001 \ 00000000 = 10000001 \cdot 00000000 = -128 + 1 = -127d$
- $00000010 \ 00000000 = 0000010 \cdot 00000000 = 2d$
- $10000010 \ 00000000 = 1000010 \cdot 00000000 = -128 + 2 = -126d$
- $00000010 \ 10000000 = 0000010 \cdot 10000000 = 2.5d$
- $10000010 \ 10000000 = 1000010 \cdot 10000000 = -128 + 2.5 = -125.5d$
Exercises

• What is -1 in $A(7,8)$?
• What is -1 in $A(3,4)$?
• What is 0 in $A(7,8)$?
• What is the smallest number one can represent in $A(7,8)$?
• The largest in $A(7,8)$?
Exercises

• What is -1 in $A(7,8)$?
 11111111 00000000

• What is -1 in $A(3,4)$?
 1111 0000

• What is 0 in $A(7,8)$?
 00000000 00000000

• What is the smallest number one can represent in $A(7,8)$?
 10000000 00000000

• The largest in $A(7,8)$?
 01111111 11111111
• What is the largest number representable in $U(a, b)$?

• What is the smallest number representable in $U(a, b)$?

• What is the largest positive number representable in $A(a, b)$?

• What is the smallest negative number representable in $A(a, b)$?
Exercises

• What is the largest number representable in $U(a, b)$?
 \[1111\ldots1\ 111\ldots1 = 2^a - 2^b\]

• What is the smallest number representable in $U(a, b)$?
 \[0000\ldots0\ 000\ldots01 = 2^{-b}\]

• What is the largest positive number representable in $A(a, b)$?
 \[0111\ldots11\ 111.\ldots11 = 2^{a-1} - 2^b\]

• What is the smallest negative number representable in $A(a, b)$?
 \[1000\ldots00\ 000\ldots000 = 2^{a-1}\]
• **Fixed-Point Format**

• **Definitions**

 • Range

 • Precision

 • Accuracy

 • Resolution

• **Floating-Point Format**
• Range = difference between most positive and most negative numbers.

• **Unsigned Range:**
 The range of \(U(a, b) \) is \(0 \leq x \leq 2^a - 2^{-b} \)

• **Signed Range:**
 The range of \(A(a, b) \) is \(-2^a \leq x \leq 2^a - 2^{-b} \)
Precision

2 different definitions

- **Precision** = \(b \), the number of fractional bits

 https://en.wikibooks.org/wiki/Floating_Point/Fixed-Point_Numbers

- **Precision** = \(N \), the total number of bits

Resolution

• The **resolution** is the smallest non-zero magnitude representable.

• The **resolution** is the size of the intervals between numbers represented by the format

• Example: $A(13, 2)$ has a resolution of 0.25.
$A(13, 2) \rightarrow \text{ sbbb bbb bbb bbb bb . bb}$

\[
\begin{align*}
2^{-2} &= 0.25 \\
2^{-1} &= 0.5
\end{align*}
\]
A(13, 2) \rightarrow \ s b b b \ b b b b \ b b b b \ b b . \ b b
The **accuracy** is the largest magnitude of the difference between a number and its representation.

- **Accuracy** = $\frac{1}{2}$ Resolution
Real quantity we want to represent
A(13, 2) → sbbb bbbb bbbb bb . bb

Representation

Real quantity we want to represent

\[2^{-2} = 0.25 \]
\[2^{-1} = 0.5 \]
\[A(13, 2) \rightarrow \text{sb}bb \text{ b}b\text{bb b}b\text{b b . bb} \]

\[2^{-2} = 0.25 \]
\[2^{-1} = 0.5 \]
A(13, 2) -> sbbbb bbbbb bbbbb bb . bb

Largest Error = **Accuracy**

\[
2^{-2} = 0.25 \\
2^{-1} = 0.5
\]
We stopped here last time...
A look at Homework 8
```
section .data
s1      db      "Hello world! 123 <$#", 10, 0
s1Len   equ      $-s1

section .text
global _start
extern _printString, _println

_start:
mov     ebx, s1      ;ebx points to start of s1
for:    cmp     byte[ebx], 0    ;char at ebx == 0?
        je        done    ;if so, we're done
        cmp     byte[ebx], 'a'    ;char at ebx lower than 'a'
        jb        next    ;if so, not interested
        cmp     byte[ebx], 'z'    ;char at ebx higher than 'z'
        ja        next    ;if so, not interested
        add     byte[ebx], -'a'+'A'    ;else, it's a lowercase, make it
        inc     ebx    ;uppercase
        jmp     for    ;point to next char
next:
done:   mov     ecx, s1      ;we're done, print the string
        mov     edx, s1Len-1
        call    _printString
        call    _println
```
f1: takes string address passed in stack at ebp+8
and transforms in into its uppercase equivalent.
f1 assumes string is terminated by $0

f1:
push ebp
mov ebp, esp
push ebx ;save ebx

mov ebx, s1
mov ebx, dword[ebp+8]

.for:
cmp byte[ebx], 0 ;char at ebx == 0?
je .done ;if so, we're done
cmp byte[ebx], 'a' ;char at ebx lower than 'a'
jb .next ;if so, not interested
cmp byte[ebx], 'z' ;char at ebx higher than 'z'
ja .next ;if so, not interested
add byte[ebx], '-'a'+'A' ;else, it's a lowercase, make it uppercase
.next:
ing ebx ;point to next char
jmp .for ;loop back

.done:
pop ebx
pop ebp
ret 4

getcopy hw8_f1b.asm
;;; hw8 f3 solution
;;; D. Thiebaut

section .data
array dd 3, 5, 0, 1, 2, 10, 100, 4, 1
arrayLen equ ($-array)/4 ; figure out the /4 part.

section .text
global _start
extern _printInt
extern _println

_start:
mov ebx, array
mov ecx, arrayLen
mov eax, 0 ; set counter of even numbers
 ; to 0

for:
mov edx,dword[ebx] ; get int at ebx in edx
 ; test last bit of edx for parity
and edx, 1
jnz next ; if 1, then odd, skip increment
inc eax ; if 0, then even, increment counter

next:
add ebx, 4 ; ebx points to next int
loop for

call _printInt ; print # of even ints found
call _println
;;; f3: gets array and array length in stack.
;;; counts the number of even ints in array and returns
;;; it in eax.

```
f3:        push    ebp
 mov       ebp, esp  ;set up stack frame

 push      ebx         ;save regs used (but not eax)
push      ecx
push      edx

mov       ebx, dword[ebp+12]
mov       ecx, dword[ebp+8]
mov       eax, 0     ;set counter of even numbers
                ; to 0

 .for:     mov       edx,dword[ebx]  ;get int at ebx in edx
            and       edx, 1  ;test last bit of edx for parity
            jnz       .next    ;if 1, then odd, skip increment
inc       eax        ;if 0, then even, increment counter

.next:    add       ebx, 4  ;ebx points to next int
loop       .for       ;keep looping...

pop       edx         ;restore regs saved
pop       ecx
pop       edx
pop       ebp         ;restore old stack frame
ret        2*4         ;return and pop 2 dwords
```
Documentation is IMPORTANT!
A word about Hw7a
• Fixed-Point Format

• Floating-Point Format
Exercise

• What is the accuracy of an U(7,8) number format?

• How good is U(7,8) at representing small numbers versus representing larger numbers? In other words, is the format treating small numbers better than large numbers, or the opposite?
• Fixed-Point Format

• Floating-Point Format
IEEE Floating-Point Number Format
A bit of history…

• 1960s, 1970s: many different ways for computers to represent and process real numbers. Large variation in way real numbers were operated on.

• 1976: Intel starts design of first hardware floating-point co-processor for 8086. Wants to define a standard.

• 1977: Second meeting under umbrella of Institute for Electrical and Electronics Engineers (IEEE). Mostly microprocessor makers (IBM is observer).

• Intel first to put whole math library in a processor.
Intel Coprocessors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8087</td>
<td>1980</td>
<td>Numeric coprocessor for 8086 and 8088 processors.</td>
</tr>
<tr>
<td>80C187</td>
<td>19??</td>
<td>Math coprocessor for 80C186 embedded processors.</td>
</tr>
<tr>
<td>80287</td>
<td>1982</td>
<td>Math coprocessor for 80286 processors.</td>
</tr>
<tr>
<td>80387</td>
<td>1987</td>
<td>Math co-processor for 80386 processors.</td>
</tr>
<tr>
<td>80487</td>
<td>1991</td>
<td>Math co-processor for SX versions of 80486 processors.</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>2012</td>
<td>Multi-core co-processor for Xeon CPUs.</td>
</tr>
</tbody>
</table>

Pentium
March 1993
Some Processors that do not contain FPUs

- Some ARM processors
- Arduino Uno
- Others
Some Processors that do not contain FPUs

Few people have heard of ARM Holdings, even though sales of devices containing its flavor of chips are projected to be 25 times that of Intel. The chips found in **99 percent** of the world’s smartphones and tablets are ARM designs. **About 4.3 billion people, 60 percent of the world’s population, touch a device carrying an ARM chip each day.**

Ashlee Vance, Bloomberg, Feb 2014

- Some ARM processors
- Arduino Uno
- Others
How Much Slower is Library vs FPU operations?

Library-emulated FP operations = 10 to 100 times slower than hardware FP operations executed by FPU
Floating Point Numbers Are Weird…
“0.1 decimal does not exist”

— D.T.
import java.util.*;

public class SomeFloats {
 public static void main(String args[]) {
 float x = 6.02E23f,
 y = -0.000001f,
 z = 1.23456789E-19f,
 t = -1.0f,
 u = 80000000000f;

 System.out.println("\nx = " + x
 + "\ny = " + y
 + "\nz = " + z
 + "\nt = " + t
 + "\nu = " + u");
 }
}

```java
import java.util.*;

public class SomeFloats {
    public static void main(String args[]) {
        float x = 6.02E23f,
                y = -0.0000001f,
                z = 1.23456789E-19f,
                t = -1.0f,
                u = 8000000000f;

        System.out.println("\nx = \n+y = \nz = \nt = \nu = ");
    }
}
```

```
231b@aurora ~/handout $ java SomeFloats

x = 6.02E23
y = -1.0E-6
z = 1.2345678E-19
t = -1.0
u = 8.0E9
```
1.230 \\
= 12.30 \times 10^{-1} \\
= 123.0 \times 10^{-2} \\
= 0.123 \times 10^{1}
IEEE Format

- 32 bits, single precision (floats in Java)
- 64 bits, double precision (doubles in Java)
- 80 bits*, extended precision (C, C++)

\[x = +/- \ 1.bbbbbbb....bbb \times 2^{bbb...bb} \]

*80 bits in assembly = 1 Tenbyte
10110.01

1.011001 \times 2^4
10110.01

1.011001 \times 2^4

1.011001 \times 2^{100}
10110.01

1.011001 \times 2^4

+ 1.011001 \times 2^{100}
10110.01

1.011001 \times 2^4

\begin{array}{c}
+ \quad 1.011001 \times 2^{100} \\
\hline
0 \quad 011001 \\
\hline
100
\end{array}
Multiplying/Dividing by the Base

In Decimal

1234.56
1234.56 x 10 = 12345.6
12345.6 x 10 = 123456.0

1234.56
1234.56 / 10 = 123.456
123.456 / 10 = 12.3456
Multiplying/Dividing by the Base

<table>
<thead>
<tr>
<th>In Decimal</th>
<th>In Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234.56</td>
<td>101.11</td>
</tr>
<tr>
<td>1234.56 x 10 = 12345.6</td>
<td>101.11 x 2 = 10111.1</td>
</tr>
<tr>
<td>12345.6 x 10 = 123456.0</td>
<td>10111.1 x 2 = 101111.0</td>
</tr>
<tr>
<td>1234.56</td>
<td>101.11</td>
</tr>
<tr>
<td>1234.56 / 10 = 123.456</td>
<td>101.11 / 2 = 10.111</td>
</tr>
<tr>
<td>123.456 / 10 = 12.3456</td>
<td>10.111 / 2 = 1.0111</td>
</tr>
</tbody>
</table>
Multiplying/Dividing by the Base

In Decimal

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234.56 \times 10</td>
<td>12345.6</td>
</tr>
<tr>
<td>12345.6 \times 10</td>
<td>123456.0</td>
</tr>
<tr>
<td>1234.56 \div 10</td>
<td>123.456</td>
</tr>
<tr>
<td>123.456 \div 10</td>
<td>12.3456</td>
</tr>
</tbody>
</table>

In Binary

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.11 \times 2</td>
<td>1011.1</td>
</tr>
<tr>
<td>1011.1 \times 2</td>
<td>10111.0</td>
</tr>
<tr>
<td>101.11 \div 2</td>
<td>10.111</td>
</tr>
<tr>
<td>10.111 \div 2</td>
<td>1.0111</td>
</tr>
</tbody>
</table>

- $=5.75d$
- $=11.50d$
- $=23.00d$
- $=5.75d$
- $=2.875d$
- $=1.4375d$
Multiplying/Dividing by the Base

<table>
<thead>
<tr>
<th>In Decimal</th>
<th>In Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234.56</td>
<td>101.11</td>
</tr>
<tr>
<td>1234.56 x 10 = 12345.6</td>
<td>101.11 x 2 = 1011.1</td>
</tr>
<tr>
<td>12345.6 x 10 = 123456.0</td>
<td>1011.1 x 2 = 10111.0</td>
</tr>
<tr>
<td>1234.56 / 10 = 123.456</td>
<td>101.11 / 2 = 10.111</td>
</tr>
<tr>
<td>123.456 / 10 = 12.3456</td>
<td>10.111 / 2 = 1.0111</td>
</tr>
</tbody>
</table>

101.11 x 10 = 1011.1

=5.75_d
=11.50_d
=23.00_d
=5.75_d
=2.875_d
=1.4375_d
Observations

\[x = +/- 1.bbbbbb...bbb \times 2^{bbb...bb} \]

- +/- is the sign. It is represented by a bit, equal to 0 if the number is positive, 1 if negative.
- the part 1.bbbbbb....bbb is called the mantissa
- the part bbb...bb is called the exponent
- 2 is the base for the exponent (could be different!)
- the number is normalized so that its binary point is moved to the right of the leading 1
- because the leading bit will always be 1, we don't need to store it. This bit will be an implied bit
http://www.h-schmidt.net/FloatConverter/IEEE754.html
for (double d = 0; d != 0.3; d += 0.1)
 System.out.println(d);
Normalization (in decimal)

(normal = standard form)

\[y = 123.456 \]

\[y = 1.23456 \times 10^2 \]
Normalization (in binary)

\[y = 1000.100111 \ (8.609375d) \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]
\[y = 1.000100111 \times 2^3 \]
\[y = 1.000100111 \times 10^{11} \]
$+1.000100111 \times 10^{11}$

- **sign**: 0
- **mantissa**: 1000100111
- **exponent**: 11
But, remember, all* numbers have a leading 1, so, we can pack the bits even more efficiently!

*really?
implied bit!

\[+1.000100111 \times 10^{11} \]

- **Sign**: 0
- **Mantissa**: 0001001110
- **Exponent**: 11
IEEE Format

31 30 23 22 0

S Exponent (8) Mantissa (23)

24 bits stored in 23 bits!
\[y = 1000.100111 \]
\[y = 1.000100111 \times 2^3 \]
\[y = 1.000100111 \times 10^{11} \]
\[y = 1.000100111 \times 10^{11} \]

Why not 00000011 ?
How is the exponent coded?