CSC270—Circuits & Systems

Week 7 — Spring 2019

Dominique Thiébaut
dthiebaut@smith.edu
• If a question asks whether something is a latch or not, the only valid answers are "Yes, it is a latch," and "No, it is not latch," followed by "because…"

• If a signal is **active-low**, put a circle on its input or output of a circuit, and put a bar over it.

• If you participate on a homework with somebody else, please list that person's name. Otherwise…

• when presented with a Karnaugh map, try to solve it first to see what the function simplifies to. This may give you alternatives for implementing it with a mux.
• You cannot use an oscilloscope to measure a resistor. Scopes are good for measuring high-frequency signals.

• In the GYR FSM, if Green and Red are never on at the same time, then it's simpler to make

\[R = G' \]
Comments on Lab Report

• Make sure you simulate all the transient states, otherwise you are NOT fully simulating your FSM…

```python
# simulate the FSM staring in various states...
for Q2,Q1,Q0 in [(1,1,1), (1,1,0), (1,0,1)]:
    print( "\nStaring with Q2, Q1, Q0 = ", Q2, Q1, Q0 )
    for steps in range( 20 ):
        ...
```

• Set DPI to 300 when scanning diagrams for your reports
The Arduino
History

- The Arduino project was started at the Interaction Design Institute Ivrea (IDII) in Ivrea, Italy. In 2003 Hernando Barragán created the development platform Wiring as a Master's thesis project at IDII, under the supervision of Massimo Banzi and Casey Reas.

https://en.wikipedia.org/wiki/Arduino
• In 2001, together with MIT PhD candidate Ben Fry, Reas created the Processing programming language.[16] Processing is widely used by thousands of artists and designers worldwide, and by educators teaching the fundamentals of programming in art and design schools.[17][18]
```c
void setup() {
  // initialize digital pin LED_BUILTIN as an output.
  pinMode(LED_BUILTIN, OUTPUT);

  // the loop function runs over and over again forever
  void loop() {
    digitalWrite(LED_BUILTIN, HIGH);  // turn the LED on (HIGH is the voltage level)
    delay(1000);                       // wait for a second
    digitalWrite(LED_BUILTIN, LOW);   // turn the LED off by making the voltage low
    delay(1000);                      // wait for a second
  }
}
```
The Mega2650 Arduino (Made by ELEGOO)

"Established in 2011, Elegoo Inc. is a thriving technology company dedicated to open-source hardware research & development, production and marketing. Located in Shenzhen, the Silicon Valley of China, we have grown to over 100+ employees with a 10,763+ square ft. factory."

https://www.elegoo.com/
References

- https://www.arduino.cc/
Outline

- Introduction
- Physical Layout
- Specifications
- Power
- Memory
- Programming
 - Digital I/O
 - Analog I/O
Arduino MEGA Pinout

www.CircuitsToday.com
4-min Intro

https://www.youtube.com/watch?v=3Ek7UEPbkqg
TTL = Transistor-Transistor Logic = 5V

Arduino Mega 2560 Pinout

Pinout
Mega: Specs

- Controller based on **Atmega2560**
- **8-bit** microcontroller. RISC architecture
- **54 digital** IO pins (15 can be used in PWM)
- **16 analog** pins
- **16MHz** crystal
- Programmed with custom **IDE**
- Serial communication ports
Mega: Specs (cont'd)

- Operating voltage: **5V**
- Power supply: 7-12V
- Flash memory: 256KB
- RAM 8KB
- EEPROM 4KB
USB. Connect to a laptop via a USB Cable.

VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

5V. This pin outputs a regulated 5V from the regulator on the board. The board can be supplied with power either from the DC power jack (7 - 12V), the USB connector (5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can damage your board. We don't advise it.

3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

GND. Ground pins.
Power

- +5V
- +7/12V
- 3.3V, 50mA
- 5V
- 6-12V
How **Long** can a **9V** Battery Power the **Arduino**?

- Hard to tell: depends on what's connected

- **Solution**: make Arduino monitor itself (with analog input)!

• **256 KB of flash memory** where the sketch is stored (of which 8 KB is used for the bootloader).

• **8 KB of SRAM** where the sketch creates and manipulates variables when it runs (strings of chars are stored there).

• **4 KB of EEPROM** which is memory space that programmers can use to store long-term information.

• Flash memory and EEPROM memory are **non-volatile** (the information persists after the power is turned off). SRAM is volatile and will be lost when the power is cycled.
Memory (cont'd)

• If your sketch talks to a program running on a (desktop/laptop) computer, you can try shifting data or calculations to the computer, reducing the load on the Arduino.

• If you have lookup tables or other large arrays, use the smallest data type necessary to store the values you need.

• If you don't need to modify the strings or data while your sketch is running, you can store them in flash (program) memory instead of SRAM; to do this, use the PROGMEM keyword.

https://www.arduino.cc/en/tutorial/memory
Outline

- Programming
 - Pins
 - Digital I/O
 - Analog Input
 - "Analog" Output
 - Serial Communications
Programming the Mega2650

Here is an example of code that can be used to program the Mega2650 using Arduino IDE:

```c
void setup() {
  // Initialize the digital pin as output.
  pinMode(13, OUTPUT);
}

void loop() {
  digitalWrite(13, HIGH);  // set the LED on
  delay(1000);             // wait for a second
  digitalWrite(13, LOW);   // set the LED off
  delay(1000);             // wait for a second
}
```
Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.

*/

void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
}

void loop() {
 digitalWrite(13, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // set the LED off
 delay(1000); // wait for a second
}
 void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
 }

 void loop() {
 digitalWrite(13, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // set the LED off
 delay(1000); // wait for a second
 }

 Typical Behavior

 Initialization Check sensors, control devices
Programming: Two Options

setup

setup loop loop loop loop loop

on the loop body empty
Programming: Two Options

```c
void loop() {
    // --- compute ---
    count++; // count is incremented
    x = func( count ); // function call
    // --- wait 1 sec ---
    delay( 1000 ); // delay for 1 second
}
```

- `int count;` is incremented in the `loop` function.
- There is a call to a function `func`.
- A `delay` function is called to wait 1 second.

This diagram illustrates the process:

1. **Setup**: Initializes the environment.
2. **Loop**: Performs computations and function calls.
3. **Delay**: Introduces delays to simulate time.
4. **Time Progression**: Shows the progression of time with delays.
Important

• When the **arduino** is powered back up, it automatically restarts the last sketch that was uploaded to it:

 • **setup()** is executed again

 • **loop()** is repeated forever
Printing is different...
Serial.print()

Serial Monitor (what it is used to mean)

```
void setup() {
  Serial.begin(9600);
}

void loop() {
  Serial.println("x = ");
  Serial.println(x);
}
```

Band = bps = bits per second

x = 3

Serial Monitor

Hello!

Done uploading.

Sketch uses 1950 bytes (0%) of program storage space. Maximum is 2539.
Global variables use 194 bytes (2%) of dynamic memory, leaving 7998 b
Serial.print()
Challenge: Explain This!

very likely pruned by laptop

15:59:44.030 → Start!
15:59:44.068 →
15:59:49.050 →
15:59:54.030 →
15:59:59.042 →
16:00:04.027 →

??
Challenge: Explain This!

Some questions about previous slide

- Does the timing make sense?
- What does 9600 mean?
- Do we see the 5-second delay?
- "Who" prints the time we see in the Serial Monitor window?
- "Who" computes these time markers?
Blink!
Exercise

- Go to https://www.arduino.cc/en/Guide/ArduinoMega2560
- Setup your Arduino, and run the **Blink sketch** on your AtMega2560
Challenge: How Fast is The ELEGOO Mega2650?
Solving the N-Queens Problem

https://www.youtube.com/watch?v=ckC2hFdLff0
C Program for Arduino

N-Queens on the Arduino

D. Thiebaut (talk) 10:17, 27 February 2019 (EST)

- Make sure you set the baud rate to 9600 in your IDE.
- You may also want to turn on the "Show timestamp" option on the Serial Monitor

Source [edit]

/*
 queensdemo.c
D. Thiebaut
Position N queens on an NxN chess board

 Typical output:
 0 2 4 1 12 8 13 11 14 5 15 6 3 10 7 9

http://www.science.smith.edu/dftwiki/index.php/N-Queens_on_the_Arduino
Side Note: Importing C code Into Arduino

```c
#include <stdio.h>

int main( int argc, char *argv[] ) {
    printf( "Hello World!\n" );
    return 0;
}
```

```c
int main2( int argc, char *argv[] ) {
    //printf( "Hello World!\n" );
    Serial.print( "Hello World!\n" );
    return 0;
}
void setup() {
    Serial.begin( 9600 );
    main2( 0, NULL );
}
void loop() {
    // put your main code here, to run repeatedly:
}
```
Benchmarks

(All times in ms)

<table>
<thead>
<tr>
<th>Board size</th>
<th>Macbook Pro 2009</th>
<th>Macbook Pro 2014</th>
<th>MacPro 2009</th>
<th>MacPro 2014</th>
<th>Linux Mint Beowulf2</th>
<th>Laptop 1</th>
<th>Linux 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9x9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10x10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11x11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12x12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13x13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14x14</td>
<td>26</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>15x15</td>
<td>17</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>16x16</td>
<td>37</td>
<td>14</td>
<td>27</td>
<td>18</td>
<td>46</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>17x17</td>
<td>28</td>
<td>10</td>
<td>19</td>
<td>13</td>
<td>31</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>18x18</td>
<td>87</td>
<td>34</td>
<td>67</td>
<td>41</td>
<td>104</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>19x19</td>
<td>19</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>22</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>20x20</td>
<td>144</td>
<td>64</td>
<td>119</td>
<td>70</td>
<td>152</td>
<td>24</td>
<td>99</td>
</tr>
<tr>
<td>21x21</td>
<td>36</td>
<td>13</td>
<td>26</td>
<td>17</td>
<td>50</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>22x22</td>
<td>750</td>
<td>311</td>
<td>662</td>
<td>384</td>
<td>610</td>
<td>221</td>
<td>463</td>
</tr>
<tr>
<td>23x23</td>
<td>81</td>
<td>31</td>
<td>63</td>
<td>39</td>
<td>101</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>24x24</td>
<td>242</td>
<td>101</td>
<td>199</td>
<td>119</td>
<td>226</td>
<td>56</td>
<td>157</td>
</tr>
<tr>
<td>25x25</td>
<td>92</td>
<td>37</td>
<td>72</td>
<td>44</td>
<td>111</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>26x26</td>
<td>248</td>
<td>102</td>
<td>201</td>
<td>121</td>
<td>227</td>
<td>58</td>
<td>161</td>
</tr>
<tr>
<td>27x27</td>
<td>284</td>
<td>118</td>
<td>232</td>
<td>142</td>
<td>257</td>
<td>69</td>
<td>184</td>
</tr>
<tr>
<td>28x28</td>
<td>1551</td>
<td>633</td>
<td>1250</td>
<td>734</td>
<td>1213</td>
<td>469</td>
<td>938</td>
</tr>
<tr>
<td>29x29</td>
<td>1518</td>
<td>356</td>
<td>687</td>
<td>413</td>
<td>684</td>
<td>244</td>
<td>522</td>
</tr>
<tr>
<td>30x30</td>
<td>33667</td>
<td>12586</td>
<td>23558</td>
<td>14158</td>
<td>22889</td>
<td>9041</td>
<td>17252</td>
</tr>
</tbody>
</table>

- **Macbook Pro 2009**: 453 ms
- **Macbook Pro 2014**: 3529 ms
- **MacPro 2009**: 238 ms
- **MacPro 2014**: 18557 ms
- **Linux Mint Beowulf2**: 860 ms
- **Laptop 1**: 172089 ms
- **Linux 8**: 440000 ms
Outline

• Programming

• Pins

• Digital I/O
 • Analog Input
 • "Analog" Output
 • Serial Communications