Fixed-Point & Floating-Point Number Formats

CSC231—Assembly Language
Week #13

Dominique Thiébaut
dthiebaut@smith.edu
Reference

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-and_Floating-Point_Numbers
public static void main(String[] args) {
 int n = 10;
 int k = -20;
 float x = 1.50;
 double y = 6.02e23;
}

public static void main(String[] args) {
 int n = 10;
 int k = -20;
 float x = 1.50;
 double y = 6.02e23;
}

public static void main(String[] args) {

 int n = 10;
 int k = -20;

 float x = 1.50;
 double y = 6.02e23;

}
Nasm knows what 1.5 is!
in memory, x is represented by

00111111 11000000 00000000 00000000
or 0x3FC00000

Nasm knows what 1.5 is!
• Fixed-Point Format

• Floating-Point Format
Fixed-Point Format

- Used in very few applications, but *programmers know about it*.

- Some micro controllers (e.g. Arduino Uno) do not have Floating Point Units (FPU), and must rely on libraries to perform Floating Point operations (VERY SLOW)

- Can be used when storage is at a premium (can use small quantity of bits to represent a real number)
Review Decimal System

\[123.45 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} \]

Decimal Point
Can we do the same in binary?

- Let's do it with **unsigned numbers** first:

\[1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} \]
Can we do the same in binary?

- Let's do it with **unsigned numbers** first:

\[
1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}
\]

\[
= 8 + 4 + 1 + 0.5 + 0.25
\]

\[
= 13.75
\]
• If we know where the binary point is, we do not need to "store" it anywhere. (Remember we used a bit to represent the +/- sign in 2’s complement.)

• A format where the binary/decimal point is fixed between 2 groups of bits is called a fixed-point format.
Definition

• A number format where the numbers are **unsigned** and where we have \(a \) integer bits (on the left of the decimal point) and \(b \) fractional bits (on the right of the decimal point) is referred to as a **\(U(a,b) \) fixed-point format**.

• Value of an \(N \)-bit binary number in \(U(a,b) \):

\[
x = \left(\frac{1}{2^b}\right) \sum_{n=0}^{N-1} 2^n x_n
\]
Exercise 1

\[x = 1011\,1111 = 0\text{xBF} \]

- What is the value represented by \(x \) in \(U(4,4) \)?
- What is the value represented by \(x \) in \(U(7,3) \)?
Exercise 2

- $z = 00000001 00000000$
- $y = 00000010 00000000$
- $v = 00000010 10000000$
- What values do z, y, and v represent in a $U(8,8)$ format?
Exercise 3

• What is 12.25 in $U(4,4)$? In $U(8,8)$?
What about **Signed** Numbers?
Observation #1

- In an N-bit, **unsigned** integer format, the weight of the MSB is 2^{N-1}
<table>
<thead>
<tr>
<th>nybble</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>+8</td>
</tr>
<tr>
<td>1001</td>
<td>+9</td>
</tr>
<tr>
<td>1010</td>
<td>+10</td>
</tr>
<tr>
<td>1011</td>
<td>+11</td>
</tr>
<tr>
<td>1100</td>
<td>+12</td>
</tr>
<tr>
<td>1101</td>
<td>+13</td>
</tr>
<tr>
<td>1110</td>
<td>+14</td>
</tr>
<tr>
<td>1111</td>
<td>+15</td>
</tr>
</tbody>
</table>

\[N = 4 \]
\[2^{N-1} = 2^3 = 8 \]
Observation #2

- In an N-bit signed 2's complement, integer format, the weight of the MSB is -2^{N-1}
<table>
<thead>
<tr>
<th>nybble</th>
<th>2's complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[N=4 \]
\[-2^{N-1} = -2^3 = -8 \]
Fixed-Point Signed Format

- **Fixed-Point signed** format = sign bit + \(a \) integer bits + \(b \) fractional bits = \(N \) bits = \(A(a, b) \)

- \(N = \) number of bits = 1 + \(a \) + \(b \)

- Format of an \(N \)-bit \(A(a, b) \) number:

\[
x = (1/2^b) \left[-2^{N-1}x_{N-1} + \sum_{0}^{N-2} 2^n x_n \right],
\]
Examples in A(7,8)

- $000000001 00000000 = 00000001 \cdot 00000000 = ?$
- $10000001 00000000 = 10000001 \cdot 00000000 = ?$
- $0000010 00000000 = 0000010 \cdot 00000000 = ?$
- $1000010 00000000 = 1000010 \cdot 00000000 = ?$
- $0000010 10000000 = 0000010 \cdot 10000000 = ?$
- $1000010 10000000 = 1000010 \cdot 10000000 = ?$
Examples in A(7,8)

- 000000001 00000000 = 00000001 . 00000000 = 1d
- 100000001 00000000 = 10000001 . 00000000 = -128 + 1 = -127d
- 00000010 00000000 = 0000010 . 00000000 = 2d
- 10000010 00000000 = 1000010 . 00000000 = -128 + 2 = -126d
- 00000010 10000000 = 0000010 . 10000000 = 2.5d
- 10000010 10000000 = 1000010 . 10000000 = -128 + 2.5 = -125.5d
Exercises

• What is -1 in $A(7,8)$?
• What is -1 in $A(3,4)$?
• What is 0 in $A(7,8)$?
• What is the smallest number one can represent in $A(7,8)$?
• The largest in $A(7,8)$?
Exercises

• What is the largest number representable in $U(a, b)$?

• What is the smallest number representable in $U(a, b)$?

• What is the largest positive number representable in $A(a, b)$?

• What is the smallest negative number representable in $A(a, b)$?
We Stopped Here Last Time...

http://i.imgur.com/doh3mIZ.jpg
• Fixed-Point Format

• Definitions

 • Range

 • Precision

 • Accuracy

 • Resolution

• Floating-Point Format
Range

- Range = difference between most positive and most negative numbers.

- **Unsigned Range:**
 The range of $U(a, b)$ is $0 \leq x \leq 2^a - 2^{-b}$

- **Signed Range:**
 The range of $A(a, b)$ is $-2^a \leq x \leq 2^a - 2^{-b}$
2 different definitions

- **Precision** = \(b \), the number of fractional bits

 https://en.wikibooks.org/wiki/Floating_Point/Fixed-Point_Numbers

- **Precision** = \(N \), the total number of bits

Resolution

- The **resolution** is the smallest non-zero magnitude representable.

- The **resolution** is the size of the intervals between numbers represented by the format

- Example: $A(13, 2)$ has a resolution of 0.25.
A(13, 2) \rightarrow sbbbb bbbbb bbbbb bb . bb

$2^{-2} = 0.25$

$2^{-1} = 0.5$
\[A(13, 2) \rightarrow \text{sbbbbb bbbbbb bb . bb} \]

\[2^{-2} = 0.25 \]
\[2^{-1} = 0.5 \]

Resolution
Accuracy

- The **accuracy** is the largest magnitude of the difference between a number and its representation.

- **Accuracy** = $1/2$ **Resolution**
$A(13, 2) \rightarrow \text{sbbb bbbb bbbb bb . bb}$

Real quantity we want to represent
A(13, 2) → sbbb bbbb bbbb bb . bb

Real quantity we want to represent

Representation

$2^{-2} = 0.25$

$2^{-1} = 0.5$
\[A(13, 2) \rightarrow \text{ sbbbb bbbbb bbbbb bb . bb} \]
$A(13, 2) \rightarrow \text{sbbb bbb bbb bbb b} . \text{ bb}$

$Largest\ Error = Accuracy$

$2^{-2} = 0.25$

$2^{-1} = 0.5$
Questions in search of answers…

• What is the accuracy of an U(7,8) number format?

• How good is U(7,8) at representing small numbers versus representing larger numbers? In other words, is the format treating small numbers better than large numbers, or the opposite?
• Fixed-Point Format
• Floating-Point Format
IEEE Floating-Point Number Format
A bit of history…

• 1960s, 1970s: many different ways for computers to **represent** and **process** real numbers. Large variation in way real numbers were operated on

• 1976: **Intel** starts design of first hardware floating-point **co-processor** for 8086. Wants to define a **standard**

• 1977: Second meeting under umbrella of **Institute for Electrical and Electronics Engineers** (IEEE). Mostly microprocessor makers (IBM is observer)

• Intel first to put whole **math library** in a processor
Intel Coprocessors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8087</td>
<td>1980</td>
<td>Numeric coprocessor for 8086 and 8088 processors.</td>
</tr>
<tr>
<td>80C187</td>
<td>19??</td>
<td>Math coprocessor for 80C186 embedded processors.</td>
</tr>
<tr>
<td>80287</td>
<td>1982</td>
<td>Math coprocessor for 80286 processors.</td>
</tr>
<tr>
<td>80387</td>
<td>1987</td>
<td>Math co-processor for 80386 processors.</td>
</tr>
<tr>
<td>80487</td>
<td>1991</td>
<td>Math co-processor for SX versions of 80486 processors.</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>2012</td>
<td>Multi-core co-processor for Xeon CPUs.</td>
</tr>
</tbody>
</table>
(Early) Intel Pentium

Integrated Coprocessor
Some Processors that do not contain FPUs

- Some ARM processors
- Arduino Uno
- Others
Some Processors that do not contain FPUs

Few people have heard of ARM Holdings, even though sales of devices containing its flavor of chips are projected to be 25 times that of Intel. The chips found in 99 percent of the world’s smartphones and tablets are ARM designs. About 4.3 billion people, 60 percent of the world’s population, touch a device carrying an ARM chip each day.

Ashlee Vance, Bloomberg, Feb 2014
How Much Slower is Library vs FPU operations?

Library-emulated FP operations = **10 to 100 times slower** than hardware FP operations executed by FPU
Floating Point Numbers Are Weird...
“0.1 decimal does not exist”

— D.T.
import java.util.*;

public class SomeFloats {

 public static void main(String args[]) {

 float x = 6.02E23f,
 y = -0.0000001f,
 z = 1.23456789E-19f,
 t = -1.0f,
 u = 80000000000f;

 System.out.println("\nx = " + x
 + "\ny = " + y
 + "\nz = " + z
 + "\nt = " + t
 + "\nu = " + u");

 }

}
```java
import java.util.*;

public class SomeFloats {
    public static void main(String args[]) {
        float x = 6.02E23f,
                y = -0.0000001f,
                z = 1.23456789E-19f,
                t = -1.0f,
                u = 8000000000f;

        System.out.println("\nx = "+ x
                + "\ny = "+ y
                + "\nz = "+ z
                + "\nt = "+ t
                + "\nu = "+ u);
    }
}
```

```
231b@aurora ~/handout $ java SomeFloats

x = 6.02E23
y = -1.0E-6
z = 1.2345678E-19
t = -1.0
u = 8.0E9
```
1.230

= 12.30 10^{-1}

= 123.0 10^{-2}

= 0.123 10^{1}
IEEE Format

- 32 bits, single precision (floats in Java)
- 64 bits, double precision (doubles in Java)
- 80 bits*, extended precision (C, C++)

\[x = +/-\ 1.\texttt{bbbbbbb}...\texttt{bbb} \times 2^{\texttt{bbb}...\texttt{bb}} \]

* 80 bits in assembly = 1 Tenbyte
10110.01
10110.01

1.011001 \times 2^4
10110.01

1.011001 \times 2^4

1.011001 \times 2^{100}
10110.01

1.011001 \times 2^4

+ 1.011001 \times 2^{100}
10110.01

1.011001 \times 2^4

+ 1.011001 \times 2^{100}

0 011001 100
10110.01
Observations

\[x = +/- \ 1.bbbbbbb....bbb \times 2^{bbb...bb} \]

- +/- is the sign. It is represented by a bit, equal to 0 if the number is positive, 1 if negative.
- the part 1.bbbbbbb....bbb is called the mantissa
- the part bbb...bb is called the exponent
- 2 is the base for the exponent (could be different!)
- the number is normalized so that its binary point is moved to the right of the leading 1.
- because the leading bit will always be 1, we don't need to store it. This bit will be an implied bit.
http://www.h-schmidt.net/FloatConverter/IEEE754.html
for (double d = 0; d != 0.3; d += 0.1)
System.out.println(d);
Normalization (in decimal)

(normal = standard form)

\[y = 123.456 \]

\[y = 1.23456 \times 10^2 \]
Normalization (in binary)

\[y = 1000.100111 \ (8.609375d) \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]

\[y = 1.000100111 \times 2^3 \]

\[y = 1.000100111 \times 10^{11} \]
$+1.000100111 \times 10^{11}$

- **Sign**: 0
- **Mantissa**: 1000100111
- **Exponent**: 11
But, remember, all* numbers have a leading 1, so, we can pack the bits even more efficiently!

*really?
implied bit!

+ $1.000100111 \times 10^{11}$

- 0
- Sign

- 0001001110
- Mantissa

- 11
- Exponent
IEEE Format

24 bits stored in 23 bits!
\[y = 1000.100111 \]
\[y = 1.000100111 \times 2^3 \]
\[y = 1.000100111 \times 10^{11} \]
\[y = 1.000100111 \times 10^{11} \]

Why not 00000011 ?
How is the exponent coded?
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
<tr>
<td>real exponent</td>
<td>stored exponent</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>
y = 1.000100111 \times 10^{11}

Ah! 3 represented by $130 = 128 + 2$

1.0761719×2^3

$= 8.6093752$
Verification
8.6093752 in IEEE FP?

http://www.h-schmidt.net/FloatConverter/IEEE754.html
Exercises

• How is 1.0 coded as a 32-bit floating point number?
• What about 0.5?
• 1.5?
• -1.5?
• What floating-point value is stored in the 32-bit number below?

1 | 1000 0011 | 111 1000 0000 0000 0000 0000
what about 0.1?
0.1 decimal, in 32-bit precision, IEEE Format:

0 01111011 100110011001100110011001101101
0.1 decimal, in 32-bit precision, IEEE Format:

0 01111011 10011001100110011001101

Value in double-precision: 0.10000000149011612
NEVER

NEVER

NEVER

COMPARE FLOATS OR DOUBLES FOR EQUALITY!

N-E-V-E-R!
for (double d = 0; d != 0.3; d += 0.1)
System.out.println(d);
Special Cases

<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td>Special Case #2</td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>
Zero

• Why is it special?

• $0.0 = 0 \, 00000000 \, 00000000000000000000000000000000$
if mantissa is 0: number = 0.0

<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>
Very Small Numbers

- Smallest numbers have stored exponent of 0.
- In this case, the implied 1 is omitted, and the exponent is -126 (not -127!)
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>

if mantissa is 0: number = 0.0
if mantissa is !0: no hidden 1
Very Small Numbers

- Example: $0 \ 00000000\ 001000000000000000000000$

$$+ \ (2^{-126}) \times \ (0.001)$$

$$+ \ (2^{-126}) \times \ (0.125) = 1.469 \times 10^{-39}$$
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>
Very large numbers

- stored exponent = 1111 1111

- if the mantissa is = 0 $\Rightarrow +/- \infty$
Very large numbers

- stored exponent = 1111 1111
- if the mantissa is = 0 \rightarrow $\pm\infty$
Very large numbers

- stored exponent = 1111 1111

- if the mantissa is = 0 \Rightarrow +/- ∞

- if the mantissa is != 0 \Rightarrow NaN
Very large numbers

- stored exponent = 1111 1111
- if the mantissa is = 0 → +/- ∞
- if the mantissa is != 0 → NaN = Not-a-Number
Very large numbers

• stored exponent = 1111 1111

• if the mantissa is = 0 ==> +/- \infty

• if the mantissa is != 0 ==> NaN
NaN is sticky!
• 0 11111111 00000000000000000000000000000000 = + ∞

• 1 11111111 00000000000000000000000000000000 = - ∞

• 0 11111111 10000010000000000000000000000000 = NaN
Operations that create NaNs (http://en.wikipedia.org/wiki/NaN):

- The **divisions** $0/0$ and $\pm\infty/\pm\infty$
- The **multiplications** $0\times\pm\infty$ and $\pm\infty\times0$
- The **additions** $\infty + (−\infty)$, $(−\infty) + \infty$ and equivalent subtractions
- The **square root** of a negative number.
- The **logarithm** of a negative number
- The **inverse sine or cosine** of a number that is less than $−1$ or greater than $+1$
Generating NaNs

```java
// http://stackoverflow.com/questions/2887131/when-can-java-produce-a-nan
import java.util.*;
import static java.lang.Double.NaN;
import static java.lang.Double.POSITIVE_INFINITY;
import static java.lang.Double.NEGATIVE_INFINITY;

public class GenerateNaN {
    public static void main(String args[]) {
        double[] allNaNs = { 0D / 0D,
                POSITIVE_INFINITY / POSITIVE_INFINITY,
                POSITIVE_INFINITY / NEGATIVE_INFINITY,
                NEGATIVE_INFINITY / POSITIVE_INFINITY,
                NEGATIVE_INFINITY / NEGATIVE_INFINITY,
                0 * POSITIVE_INFINITY,
                0 * NEGATIVE_INFINITY,
                Math.pow(1, POSITIVE_INFINITY),
                POSITIVE_INFINITY + NEGATIVE_INFINITY,
                NEGATIVE_INFINITY + POSITIVE_INFINITY,
                POSITIVE_INFINITY - POSITIVE_INFINITY,
                NEGATIVE_INFINITY - NEGATIVE_INFINITY,
                Math.sqrt(-1),
                Math.log(-1),
                Math.asin(-2),
                Math.acos(+2),
        };
        System.out.println(Arrays.toString(allNaNs));
        System.out.println(NaN == NaN);
        System.out.println(Double.isNaN(NaN));
    }
}
```

[NaN, NaN, NaN]
false
true
Range of Floating-Point Numbers

<table>
<thead>
<tr>
<th></th>
<th>Denormalized</th>
<th>Normalized</th>
<th>Approximate Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>$\pm 2^{-149}$ to $(1-2^{-23})\times2^{-126}$</td>
<td>$\pm 2^{-126}$ to $(2-2^{-23})\times2^{127}$</td>
<td>$\pm ~10^{-44.85}$ to $~10^{38.53}$</td>
</tr>
<tr>
<td>Double Precision</td>
<td>$\pm 2^{-1074}$ to $(1-2^{-52})\times2^{-1022}$</td>
<td>$\pm 2^{-1022}$ to $(2-2^{-52})\times2^{1023}$</td>
<td>$\pm ~10^{-323.3}$ to $~10^{308.3}$</td>
</tr>
</tbody>
</table>
Range of Floating-Point Numbers

<table>
<thead>
<tr>
<th></th>
<th>Denormalized</th>
<th>Normalized</th>
<th>Approximate Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>$\pm 2^{-149}$ to $(1-2^{-23}) \times 2^{-126}$</td>
<td>$\pm 2^{-126}$ to $(2-2^{-23}) \times 2^{127}$</td>
<td>$\pm \sim 10^{-44.85}$ to $\sim 10^{38.53}$</td>
</tr>
<tr>
<td>Double Precision</td>
<td>$\pm 2^{-1074}$ to $(1-2^{-52}) \times 2^{-1022}$</td>
<td>$\pm 2^{-1022}$ to $(2-2^{-52}) \times 2^{1023}$</td>
<td>$\pm \sim 10^{-323.3}$ to $\sim 10^{308.3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>$\pm (2-2^{-23}) \times 2^{127}$</td>
<td>$\sim \pm 10^{38.53}$</td>
</tr>
<tr>
<td>Double Precision</td>
<td>$\pm (2-2^{-52}) \times 2^{1023}$</td>
<td>$\sim \pm 10^{308.25}$</td>
</tr>
</tbody>
</table>

Remember that!
Resolution of a Floating-Point Format

Check out table here: http://tinyurl.com/FPResol
Resolution
Another way to look at it

http://jasss.soc.surrey.ac.uk/9/4/4.html
• Rosetta Landing on Comet

• 10-year trajectory
Why not using 2’s *Complement* for the Exponent?

\[
\begin{align*}
0.00000005 &= 0 \textcolor{red}{01100110} 10101101011111111100101011 \\
1 &= 0 \textcolor{red}{01111111} 00000000000000000000000000000000 \\
65536.5 &= 0 \textcolor{red}{10001111} 00000000000000000001000000 \\
65536.25 &= 0 \textcolor{red}{10001111} 00000000000000000001000000
\end{align*}
\]
END OF THE SEMESTER!
http://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 745 Converter

This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point). The conversion is limited to single precision numbers (32 Bit). The purpose of this webpage is to help you understand floating point numbers.

Exercises

- Does this converter support NaN, and \(\infty \)?
- Are there several different representations of \(+\infty \)?
- What is the largest float representable with the 32-bit format?
- What is the smallest normalized float (i.e. a float which has an implied leading 1. bit)?
How do we add 2 FP numbers?
• $fp_1 = s_1 \ m_1 \ e_1$
 $fp_2 = s_2 \ m_2 \ e_2$
 $fp_1 + fp_2 = ?$

• **denormalize** both numbers (restore hidden 1)

• assume fp_1 has largest exponent e_1: make e_2 equal to e_1 and **shift decimal point** in $m_2 \rightarrow m_2'$

• compute **sum** $m_1 + m_2'$

• **truncate** & **round** result

• **renormalize** result (after checking for special cases)
\[1.111 \times 2^5 + 1.110 \times 2^8 \]

\[1.111 \times 2^5 + 1.110 \times 2^8 \]
\[1.110000000 \times 2^8 \]
\[+ 0.00111100 \times 2^8 \]
\[= 1.11111100 \times 2^8 \]
\[= 10.000 \times 2^8 \]
\[= 1.000 \times 2^9 \]
How do we multiply 2 FP numbers?
• $fp_1 = s_1\ m_1\ e_1$
 $fp_2 = s_2\ m_2\ e_2$
 $fp_1 \times fp_2 = ?$

• Test for multiplication by special numbers (0, NaN, ∞)

• **denormalize** both numbers (restore hidden 1)

• compute product of $m_1 \times m_2$

• compute **sum** $e_1 + e_2$

• **truncate** & **round** $m_1 \times m_2$

• **adjust** $e_1 + e_2$ and **normalize**.
How do we compare two FP numbers?
As unsigned integers!
No unpacking necessary!
Programming FP Operations in Assembly…
Pentium

EAX
EBX
ECX
EDX

ALU
Pentium

Cannot do FP computation
D. Thiebaut, Computer Science, Smith College

Operation: \((7+10)/9\)
Operation: \((7+10)/9\)

fpush 7
Operation: \((7+10)/9\)

fpush 7

fpush 10
Operation: \((7+10)/9\)

- fpush 7
- fpush 10
- fadd

Diagram:
- Stack locations: SP0 to SP7
- Floating Point Unit
- Operation flow:
 - 7
 - 10
 - (7+10)
 - 9
Operation: \((7+10)/9\)

- `fpush 7`
- `fpush 10`
- `fadd`
Operation: \((7+10)/9\)

- fpush 7
- fpush 10
- fadd
- fpush 9
Operation: \((7+10)/9\)

- `fpush 7`
- `fpush 10`
- `fadd`
- `fpush 9`
- `fdiv`
Operation: \(\frac{7+10}{9} \)

- fpush 7
- fpush 10
- fadd
- fpush 9
- fdiv
The Pentium computes FP expressions using RPN!
The Pentium computes FP expressions using RPN!
Nasm Example: \(z = x + y \)

```
SECTION .data

x dd 1.5
y dd 2.5
z dd 0

; compute \( z = x + y \)
SECTION .text

fld dword [x]
fld dword [y]
fadd
fstp dword [z]
```
Printing floats in C

```c
#include "stdio.h"

int main() {
    float z = 1.2345e10;
    printf( "z = %e\n\n", z );
    return 0;
}
```
Printing floats in C

```
#include "stdio.h"

int main() {
    float z = 1.2345e10;
    printf( "z = %e\n\n", z );
    return 0;
}
```

gcc -m32 -o printFloat printFloat.c
.
```
./printFloat
z = 1.234500e+10
```
Printing floats in Assembly?

- asm program
- call printf
- C stdio.h library (printf)
- object file
- executable
- nasm
- gcc
extern printf ; the C function to be called

SECTION .data ; Data section

msg db "sum = %e",0x0a,0x00
x dd 1.5
y dd 2.5
z dd 0
temp dq 0

SECTION .text ; Code section.
global main ; "C" main program
main: ; label, start of main program
 fld dword [x] ; need to convert 32-bit to 64-bit
 fld dword [y]
 fadd
 fstp dword [z] ; store sum in z
 fld dword [z] ; transform z to 64-bit by pushing in stack
 fstp qword [temp] ; and popping it back as 64-bit quadword
 push dword [temp+4] ; push temp as 2 32-bit words
 push dword [temp]
 push dword msg ; address of format string
 call printf ; Call C function
 add esp, 12 ; pop stack 3*4 bytes
 mov eax, 1 ; exit code, 0=normal
 mov ebx, 0
 int 0x80
dthiebaut@hadoop:~/.temp$ nasm -f elf addFloats.asm

dthiebaut@hadoop:~/.temp$ gcc -m32 -o addFloats addFloats.o

dthiebaut@hadoop:~/.temp$./addFloats

sum = 4.000000e+00

dthiebaut@hadoop:~/.temp$
More code examples here:

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-__and_Floating-Point_Numbers#Assembly_Language_Programs