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line built using the PyCogent toolkit6, to address the problem of 
taking sequencing data from raw sequences to interpretation and 
database deposition. QIIME, available at http://qiime.sourceforge.
net/, supports a wide range of microbial community analyses and 
visualizations that have been central to several recent high-pro-
file studies, including network analysis, histograms of within- or 
between-sample diversity and analysis of whether ‘core’ sets of 
organisms are consistently represented in certain habitats. QIIME 
also provides graphical displays that allow users to interact with the 
data. Our implementation is highly modular and makes extensive 
use of unit testing to ensure the accuracy of results. This modularity 
allows alternative components for functionalities such as choosing 
operational taxonomic units (OTUs), sequence alignment, infer-
ring phylogenetic trees and phylogenetic and taxon-based analysis 
of diversity within and between samples (including incorporation of 
third-party applications for many steps) to be easily integrated and 
benchmarked against one another (Supplementary Fig. 1).

We applied the QIIME workflow to a combined analysis of pre-
viously collected data (see Supplementary Discussion) for distal 
gut bacterial communities from conventionally raised mice, adult 

QIIME allows analysis of high-
throughput community sequencing data
To the Editor: High-throughput sequencing is revolutionizing 
microbial ecology studies. Efforts like the Human Microbiome 
Projects1 and the US National Ecological Observatory Network2 are 
helping us to understand the role of microbial diversity in habitats 
within our own bodies and throughout the planet.

Pyrosequencing using error-correcting, sample-specific barcodes 
allows hundreds of communities to be analyzed simultaneously in 
multiplex3. Integrating information from thousands of samples, 
including those obtained from time series, can reveal large-scale 
patterns that were inaccessible with lower-throughput sequencing 
methods. However, a major barrier to achieving such insights has 
been the lack of software that can handle these increasingly massive 
datasets. Although tools exist to perform library demultiplexing and 
taxonomy assignment4,5, tools for downstream analyses are scarce.

Here we describe ‘quantitative insights into microbial ecology’ 
(QIIME; prounounced ‘chime’), an open-source software pipe-

Figure 1 | QIIME analyses of the distal gut microbiotas of conventionally raised and conventionalized mice, gnotobiotic mice colonized with a human fecal 
gut microbiota (H-mice), and human adult mono- and dizygotic twins. (a) Principal coordinates analysis plots for mice, H-mice and twins. Colors correspond 
to separate samples by species and time point, and are consistent throughout the panels. (b) Unweighted UniFrac distance histograms between the data 
for fecal microbiota of human twins; human donors for the H-mice study; day 56 post-transplant H-mice on a low-fat (LF) and plant polysaccharide–rich 
(PP) diet; day 1 H-mice (LF and PP diet); and day 0 H-mice. Taxonomic classifications are presented at the class level. (c) Alpha diversity rarefaction 
plots of phylogenetic diversity for the H-mice samples. (d) OTU network connectivity of H-mice time series data. CONV-D, conventionalized mice; CONV-R, 
conventionally raised mice; and GF, germ-free mice.
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human monozygotic and dizygotic twins and their mothers, and a 
time series study of adult germ-free mice after they received human 
fecal microbiota (Fig. 1, Supplementary Table 1 and Supplementary 
Discussion). This analysis combined ten full 454 FLX runs and one 
partial run, totalling 3.8 million bacterial 16S rRNA sequences from 
previously published studies, including reads from different regions 
of the 16S rRNA gene.

QIIME is thus a robust platform for combining heterogeneous 
experimental datasets and for rapidly obtaining new insights about 
various microbial communities. Because QIIME scales to millions 
of sequences and can be used on platforms from laptops to high-
performance computing clusters, we expect it to keep pace with 
advances in sequencing technology and to facilitate characterization 
of microbial community patterns ranging from normal variations to 
pathological disturbances in many human, animal and other envi-
ronmental ecosystems.

Note: Supplementary information is available on the Nature Methods website.

ACKNOWLEDGMENTS
We thank our collaborators for their helpful suggestions on features, 
documentation and the manuscript, and our funding agencies for their 
commitment to open-source software. This work was supported in part by Howard 
Hughes Medical Institute and grants from the Crohn’s and Colitis Foundation 
of America, the German Academic Exchange Service, the Bill and Melinda Gates 
Foundation, the Colorado Center for Biofuels and Biorefining and the US National 
Institutes of Health (DK78669, GM65103, GM8759, HG4872 and its ARRA 
supplement, HG4866, DK83981 and LM9451).

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details accompany the full-text 
HTML version of the paper at http://www.nature.com/naturemethods/.

J Gregory Caporaso1,12, Justin Kuczynski2,12, Jesse Stombaugh1,12, 
Kyle Bittinger3, Frederic D Bushman3, Elizabeth K Costello1,  
Noah Fierer4, Antonio Gonzalez Peña5, Julia K Goodrich5,  
Jeffrey I Gordon6, Gavin A Huttley7, Scott T Kelley8, Dan Knights5, 
Jeremy E Koenig9, Ruth E Ley9, Catherine A Lozupone1,  
Daniel McDonald1, Brian D Muegge6, Meg Pirrung1, Jens Reeder1, 
Joel R Sevinsky10, Peter J Turnbaugh6, William A Walters2,  
Jeremy Widmann1, Tanya Yatsunenko6, Jesse Zaneveld2 &  
Rob Knight1,11

1Department of Chemistry and Biochemistry, University of Colorado, Boulder, 
Colorado, USA. 2Department of Molecular, Cellular and Developmental Biology, 
University of Colorado, Boulder, Colorado, USA. 3Department of Microbiology, 
University of Pennsylvania, Philadelphia, Pennsylvania, USA. 4Cooperative 
Institute for Research in Environmental Sciences and Department of Ecology and 
Evolutionary Biology, University of Colorado, Boulder, Colorado, USA. 5Department 
of Computer Science, University of Colorado, Boulder, Colorado, USA. 6Center for 
Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, 
USA. 7Computational Genomics Laboratory, John Curtin School of Medical 
Research, The Australian National University, Canberra, Australian Capital Territory, 
Australia. 8Department of Biology, San Diego State University, San Diego, California, 
USA. 9Department of Microbiology, Cornell University, Ithaca, New York, USA. 
10Luca Technologies, Golden, Colorado, USA. 11Howard Hughes Medical Institute, 
Boulder, Colorado, USA. 12These authors contributed equally to this work. 
e-mail: rob.knight@colorado.edu

PUBLISHED ONLINE 11 APRIL 2010; DOI:10.1038/NMETH.F.303

1.	 National Institutes of Health Human Microbiome Project Working Group et al. 
Genome Res. 19, 2317–2323 (2009).

2.	 Hopkin, M. Nature 444, 420–421 (2006).
3.	 Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J. & Knight, R. Nat. Methods 5, 

235–237 (2008).
4.	 Cole, J.R. et al. Nucleic Acids Res. 37, D141–D145 (2009).
5.	 Schloss, P.D. et al. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
6.	 Knight, R. et al. Genome Biol. 8, R171 (2007).

Intensity normalization improves color 
calling in SOLiD sequencing
To the Editor: Applied Biosystems’ SOLiD system1 is a commonly 
used massively parallel DNA sequencing platform for applications 
from genotyping and structural variation analysis1 to transcriptome 
quantification and reconstruction2. Like other sequencing technolo-
gies, it measures fluorescence intensities from dye-labeled molecules to 
determine the sequence of DNA fragments. Ultimately, sequences are 
determined by complicated statistical manipulations of noisy inten-
sity measurements, and systematic biases may mislead downstream 
analysis3. Several proposed methods improve base calling and qual-
ity metrics for other sequencing technologies3–5, and we now present 
Rsolid, software implementing an intensity normalization strategy for 
the SOLiD platform that substantially improves yield and accuracy at 
small computational costs (6% increase in total matches, 13% increase 
in perfect matches, 5% reduced error rate and a substantial reduction 
in false positive single-nucleotide polymorphism (SNP) calls in an 
Escherichia coli genomic DNA sample).

In the SOLiD system, the proportions of color calls across sequenc-
ing cycles are extremely variable (Fig. 1a), even though they should be 
equal across sequencing cycles and proportional to the dinucleotide 
content of the library (Supplementary Methods). This bias can be 
traced to the fluorescence intensity measurements used to make the 
color calls (Supplementary Fig. 1). The distributions of intensities 
are similar across channels in early sequencing cycles, but a color bias 
starts to appear in later cycles. The Rsolid method uses a simple and 
computationally efficient procedure to normalize the color-channel 
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Figure 1 | Effect of normalization on color proportions and SNP calling.  
(a) Color proportions in sample of E. coli genomic DNA on each sequencing 
cycle. Color calls as reported by the SOLiD 2 system (left) and after 
normalization by Rsolid (right). FTX, TXR, Cy3 and Cy5 are dyes used by SOLiD. 
(b) Number of false positive SNPs called in E. coli at various coverage. After 
normalization, fewer SNPs were called even at high coverage (30 M reads 
correspond to ~100-fold coverage).
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