

AUTOMATIC MATRIX MODIFICATION for improved analytical quality and sample throughput

THGA GRAPHITE FURNACE AA

The matrix modification technique is a very important feature in the concept of interference-free trace metal determinations. Applying this technique, the chemical forms, and thereby the physical properties, of the element under study and/or the matrix, can be changed by adding a suitable reagent in excess to the sample and standard reference solutions.

Matrix modification

- Decreases the volatility of the analyte element and prevents its loss during thermal pretreatment. This also allows application of higher pretreatment temperatures for better matrix removal.
- Increases the volatility of matrix components and promotes their removal before atomization.

Perkin-Elmer furnace autosamplers feature automatic matrix modification with the ability to apply one or more matrix modifiers sequentially or simultaneously.

The following tables provide detailed information on how to prepare the most common matrix modification solutions.

Table 1. THGA Graphite Furnace: Matrix Modifiers for Routine Applications

Modifier	Major Application	Absolute Mass Required	Stock Reagents Required	Working Solutions (for a 5-µL modifier addition)	
				Preparation	Concentration
Pd + Mg(NO ₃) ₂	Ag, As, Au, Bi, Cd, Cu, Ga, Ge, Hg, In, Mn, Sb, Se, Sn, Te, TI	5 µg Pd + 3µg Mg(NO ₃) ₂	1% (10 g/L) Pd* + 1% (10 g/L) Mg **	Dilute 1 mL of Pd stock solution and 0.1 mL of Mg stock solution to 10 mL with 18 M Ω deionized water.	0.1% (1 g/L) Pd + 0.06% (0.6 g/L) Mg(NO ₃) ₂
Pd + Mg(NO ₃) ₂	Р	20 μg Pd + 5 μg Mg(NO ₃) ₂	1% (10 g/L) Pd* + 1% (10 g/L) Mg **	Dilute 4 mL of Pd stock solution and 0.17 mL of Mg stock solution to 10 mL with 18 M Ω deionized water.	0.4% (4 g/L) Pd + 0.1% (1 g/L) Mg(NO ₃) ₂
Mg(NO ₃) ₂	Al, Be, Co, Cr Fe, Si	15 μg Mg(NO ₃) ₂	1% (10 g/L) Mg*	Dilute 0.5 mL of Mg stock solution to 10 mL with 18 M Ω deionized water.	0.3% (3 g/L) Mg(NO ₃) ₂
Mg(NO ₃) ₂	Zn	5 μg Mg(NO ₃) ₂	1% (10 g/L) Mg*	Dilute 0.17 mL of Mg stock solution to 10 mL with 18 M Ω deionized water.	0.1% (1 g/L) Mg(NO ₃) ₂

(cont'd.)

Table 1. THGA Graphite Furnace: Matrix Modifiers for Routine Applications (cont'd.)

Modifier	Major Application	Absolute Mass Required	Stock Reagents Required	Working Solutions (for a 5-µL modifier addition)	
				Preparation	Concentration
NH ₄ H ₂ PO ₄ + Mg(NO ₃) ₂	Cd, Pb	50 μg NH ₄ H ₂ PO ₄ + 3 μg Mg(NO ₃) ₂	Use either: A: 10% (100 g/L) NH ₄ H ₂ PO ₄ liquid*** + 1% (10 g/L) Mg* or B: solid ultrapure NH ₄ H ₂ PO ₄ + 1% (10 g/L) Mg* Caution: do not use (NH ₄) ₂ HPO ₄	A: Dilute 1 mL of NH $_4$ H $_2$ PO $_4$ stock solution and 0.1 mL of Mg stock solution to 10 mL with 18 M Ω deionized water. or B: Dissolve 10 g NH $_4$ H $_2$ PO $_4$ in 18 M Ω deionized water and make up to 100 mL. Dilute 1 mL of this solution and 0.1 mL of Mg stock solution to 10 mL with 18 M Ω deionized water.	1.0% (10 g/L) NH ₄ H ₂ PO ₄ + 0.06% (0.6 g/L) Mg(NO ₃) ₂

Table 2. THGA Graphite Furnace: Matrix Modifiers for Special Applications

Modifier	Major Application	Absolute Mass Required	Stock Reagents Required	Working Solutions (for a 5-µL modifier addition)	
				Preparation	Concentration
Use either: A: 95% Ar + 5% H ₂ or	Halide matrices (e.g., NaCl)	Used as an alternate internal gas during dry and pyrolysis steps	None		
B: HNO ₃		NA	Ultrapure conc. HNO ₃	To 80 mL 18 M Ω deionized water, add 20 mL conc. HNO $_3$	20% (v/v) HNO ₃
CH ₃ OH HF HNO ₃	Boric acid matrix	10 µL CH ₃ OH + 0.2 µL conc. HF + 0.2 µL conc. HNO ₃	CH ₃ OH + conc. HF + conc. HNO ₃	For a 10-µL modifier addition 10 mL CH ₃ OH + 200 µL conc. HF + 200 µL conc. HNO ₃ and mix a	II

Part No. B019-0635

Note: 1% Mg corresponds to 6% Mg(NO₃)₂ or 10.5% Mg(NO₃)₂•6H₂O 1 μ g Mg(NO₃)₂ corresponds to 0.17 μ g Mg or 1.75 μ g Mg(NO₃)₂·6H₂O

^{**} Part No. B019-0634

^{***} Part No. N930-3445