Gene Transfer

- Genetic material is transferred between bacteria
- Donor→Recipient
 - Donor= original source of DNA
- Plasmid or linear DNA
 - Plasmid DNA: can replicate autonomously
 - Linear DNA: can integrate by homologous, nonhomologous or site-specific integration

Mechanisms of gene transfer

- Transformation
- Conjugation
 - Plasmids
 - Conjugative transposons
- Transduction
 - Generalized
 - Specialized

Transformation of linear DNA

N

0

C=Chromosome

Mechanism of transformation in *S. pneumoniae*

Conjugation

Conjugation of F Factor

Site-specific integration of F plasmid

Hfr transfer

Production of F'

De-integration including part of bacterial chromosome

Fig. 13.15

F' conjugation

Pilus connects cells

F' plasmid replicated and transferred

Plasmid types

Table 13.1Major Types of Plasmids

Туре	Representatives	Approximate Size (kbp)	Copy Number (Copies/Chromosome)	Hosts	Phenotypic Features ^a
Fertility Factor ^b	F factor	95–100	1–3	E. coli, Salmonella, Citrobacter	Sex pilus, conjugation
R Plasmids	RP4	54	1–3	Pseudomonas and many other gram-negative bacteria	Sex pilus, conjugation, resistance to Ap, Km, Nm, Tc
	R1	80	1–3	Gram-negative bacteria	Resistance to Ap, Km, Su, Cm, Sm
	R6	98	1–3	E. coli, Proteus mirabilis	Su, Sm, Cm, Tc, Km, Nm
	R100	90	1–3	E. coli, Shigella, Salmonella, Proteus	Cm, Sm, Su, Tc, Hg
	pSH6	21		Staphylococcus aureus	Gm, Tm, Km
	pSJ23a	36		S. aureus	Pn, Asa, Hg, Gm, Km, Nm, Em, etc.
	pAD2	25		Enterococcus faecalis	Em, Km, Sm
Col Plasmids	ColE1	9	10-30	E. coli	Colicin E1 production
	ColE2		10-15	Shigella	Colicin E2
	CloDF13			Enterobacter cloacae	Cloacin DF13
Virulence Plasmids	Ent (P307)	83		E. coli	Enterotoxin production
	K88 plasmid			E. coli	Adherence antigens
	ColV-K30	2		E. coli	Siderophore for iron uptake; resistance to immune mechanisms
	pZA10	56		S. aureus	Enterotoxin B
	Ti	200	ted into it	Agrobacter tumefaciens	Tumor induction
Metabolic Plasmids	CAM	230	ted into it	Pseudomonas	Camphor degradation
	SAL	56		Pseudomonas	Salicylate degradation
	TOL	75		Pseudomonas putida	Toluene degradation
	pJP4			Pseudomonas	2,4-dichlorophenoxyacetic acid degradation
				E. coli, Klebsiella, Salmonella	Lactose degradation
				Providencia	Urease
	sym			Rhizobium	Nitrogen fixation and symbiosis

Mobile elements

Insertion sequence

A composite transposon

A target site for the Tn3 transposon

Transposition

- Inserts randomly into chromosome or into plasmid
- Direct repeats found at ends
- Replicative when transposes
- Relatively stable at site of insertion
- Can cause varying effects due to insertion
- Some are conjugative, those that aren't can be moved by other mechanisms

Properties of Transposons

 Table 13.3
 The Properties of Selected Composite Transposons

Transposon	Length (bp)	Terminal Repeat Length	Terminal Module	Genetic Markers ^a
Tn <i>3</i>	4,957	38		Ар
Tn501	8,200	38		Hg
Tn951	16,500	Unknown		Lactose utilization
Tn5	5,700		IS50	Km
Tn9	2,500		IS <i>1</i>	Cm
Tn10	9,300		IS10	Тс
Tn903	3,100		IS903	Km
Tn1681	2,061		IS1	Heat-stable enterotoxin
Tn2901	11,000		IS1	Arginine biosynthesis

^aAbbreviations for antibiotics and metals same as in table 13.1.

Phage attachment and DNA injection

Fig. 17.3

Lytic and lysogenic viral life cycles

progeny phage

Generalized transduction

Specialized transduction

Specialized transduction

Origin of *E. coli* O157:H7

Mika Grondahl/ The New York Times

Specialized transduction in pathogenesis

•Bacterium

V. cholerae
E. coli
C. botulinum
C.diphtheriae
S. pyogenes

Phage CTX phage

CTX phage lambda phage clostridial phages corynephage beta T12

Gene Product cholera toxin shigalike toxin botulinum toxin diphtheria toxin erythrogenic toxins

Phenotype cholera hemorrhagic diarrhea botulism diphtheria scarlet fever

Pathogenicity Island (PAI)

- Large segment of DNA (30-100 kb)
- Chromosomally encoded
- In pathogenic, but not non-pathogenic genera
- Clusters of virulence genes
- Found in Salmonella, Escherichia, Yersina, Helicobacter, Listeria

The locus of enterocyte effacement (LEE) of E2348/69

Evidence for gene transfer in PAIs

- Similarity in gene sequences for some PAI genes
 Type IV pili, A-B subunit toxins
- GC content different than rest of chromosome
- Often inserted at tRNA loci
 - Phage mediated insertion
 - Phage IR73 inserts at conserved TTCGA
- Contain plasmid and insertion sequence elements