**Monophyllus Leach, 1821**

Monophyllus Leach, 1821:75. Type species, *Monophyllus redmani* Leach.

**CONTEXT AND CONTENT.** Order Chiroptera, Family Phyllostomatidae, Subfamily Glossophaginae. The genus *Monophyllus* includes two Recent species, *Monophyllus redmani* and *M. plethodon*, a key to which follows:

Upper premolars separated by diastema half or more of length of first premolar, second premolar usually crowded against first molar; distribution restricted to Greater Antilles and southern Bahamas ......... *M. redmani*.

Upper premolars separated by small diastema less than half of length of first premolar, second premolar usually well separated from first molar; modern distribution restricted to Lesser Antilles .......................... *M. plethodon*.

---

**Monophyllus redmani Leach, 1821**

Greater Antillean Long-tongued Bat


**CONTEXT AND CONTENT.** See generic summary above. Three subspecies currently are recognized (Schwartz and Jones, 1967):

- *M. r. redmani* Leach, 1821:76, see above.
- *M. r. portoricensis* Miller, 1900:34, see above.
- *M. r. clinephalus* Miller, 1900:34, see above (*cubanus* Miller, 1902, and *ferreus* Miller, 1918, are synonyms).

**DIAGNOSIS.** Bats of the genus *Monophyllus* are small to medium in size among glossophagines; tail about half as long as femur and projecting beyond border of uropatagium; zygomatic arch complete; upper incisors small, those of the two pairs of essential equal size; lower incisors minute, the inner pair separated by a noticeable gap at midline of lower jaw.

The two species of *Monophyllus* are closely related. *M. redmani* differs from *M. plethodon* principally in having the upper premolars separated by a diastema half or more the length of the first premolar (see figure 1) and in occurring only on the islands of the Greater Antilles. Of the two, *redmani* exhibits considerably more infraspecific variation in size than does *plethodon*. The dental formula of the genus is 1/2, c 1/1, p 2/3, m 3/3, total 34. The skull and lower jaw of *M. redmani* are illustrated in Figure 2.

**GENERAL CHARACTERS.** According to Schwartz and Jones (1967:4), *M. redmani* may be generally characterized by a combination of small to large overall size (for the genus), small hind foot and ear, relatively short forearm, and narrow postorbital area. Color of pelage is brownish, tending generally toward paler shades, to grayish. Marked variation in size is evident among subspecies of the Greater Antillean long-tongued bat, from *redmani* (largest) through *clinephalus* to *portoricensis* (smallest). Ranges in measurements (after Schwartz and Jones, 1967, and Buden, 1975) for individuals of the three races are, respectively: total length, 73 to 80, 58 to 73, 60 to 71 mm; length of tail, 8 to 11, 8 to 11, 7 to 10; length of hind foot, 11 to 14, 9 to 14, 10 to 13; length of ear, 13 to 14, 9 to 14, 10 to 13; length of forearm, 37.6 to 41.0, 35.6 to 42.8, 34.8 to 38.5; greatest length of skull, 22.6 to 23.9, 20.8 to 22.6, 19.0 to 20.4; condylobasal length, 20.5 to 22.6, 19.1 to 21.9, 17.4 to 18.9; zygomatic breadth, 9.1

---

**Figure 1.** Diagrammatic views of upper toothrows of *Monophyllus redmani* (upper) and *M. plethodon* showing difference in size of diastema between premolars and between last premolar and first molar. Illustration by J. A. Homan.

**Figure 2.** Dorsal, ventral, and lateral views of skull, and lateral view of lower jaw of *Monophyllus redmani portoricensis*, male, TTU 9791, from El Yunke National Forest, Puerto Rico. Scale at lower right represents 5 mm. Illustration by J. A. Homan.
to 10.4, 8.6 to 9.8, 7.9 to 8.8; postorbital constriction, 4.1 to 4.6, 3.8 to 4.6, 3.8 to 4.2; mastoid breadth, 9.3 to 10.0, 8.3 to 9.6, 8.0 to 8.8; length of maxillary toothrow, 7.7 to 8.9, 7.0 to 8.3, 6.5 to 7.3. Buden (1975) reported on variation in Bahaman populations. He noted that specimens from the Caicos islands were nearly as large as individuals of redmani from Jamaica and possibly represent an unnamed subspecies.

**DISTRIBUTION.** Monophyllus redmani is known to occur (figure 3) only on Cuba, Hispaniola, and the southern Bahamas (cinedaphus), Jamaica (redmani), and Puerto Rico (porortecensis).

**FOSSIL RECORD.** Monophyllus redmani has been reported from late Pleistocene or Holocene cave deposits from each of the Greater Antillean islands (see especially, Anthony, 1925; Choate and Birney, 1968; Koopman, 1955; Koopman and Rudkin, 1955; Koopman and Williams, 1951; Miller, 1929; Silva Taboada, 1974; Williams, 1952).

**FORM AND FUNCTION.** Little is known of form and function in M. redmani. Silva Taboada (1974) reported sexual dimorphism in Cuban populations as follows: "In females the premaxilla tends to be narrow and projects forward, whereas in males this region is broader and more rounded anteriorly. As a consequence, females average larger in length of skull, and smaller in alveolar width across canines, than males. Moreover, in females the mandible is conspicuously slender and almost straight, whereas in males it is much broader, with a convex lower profile."

Valdivieso et al. (1969) discussed electrophoretic properties of the hemolysin of redmani and other bats from Puerto Rico. A pattern consisting of a single, rapid, anodal band was found in redmani. However, the hemoglobin morphs of *Monophyllus, Erophylla*, Artibeus, and *Stenoderma* were indistinguishable, a fact that Valdivieso et al. judged to reinforce the view "that these taxa represent natural assemblages of closely related genera and species." See also Tamsitt and Valdivieso (1969: table 2). Later, Valdivieso and Tamsitt (1974) compared serum proteins of some Neotropical bats and found those of the single *redmani* available to them to be similar to the proteins of a wide variety of phyllostomids and of certain bats of other families as well.

Phillips (1971) described the dentition of *Monophyllus* in some detail. He noted that upper teeth in *redmani* are rarely lost in life, but that lower incisors are frequently lost (first lower incisors in 21.4% of males examined and 15.4% of females, for example). Macronyssoid mites infesting the oral mucosa of *redmani* caused the loss of an upper premolar in one of 75 specimens examined by Phillips.

**REPRODUCTION.** Buden's (1975) report of pregnant females, each with a single fetus, from one Bahaman island and two in the Greater Antilles is the only information available on reproduction. A female from Middle Caicos, taken on 28 January, carried a fetus that was 20 mm in crown-rump length. Three from Hispaniola, two collected on 3 December and the other on 24 February, had fetuses 16, 18, and 19 mm in length, respectively. One from Puerto Rico was gravid on 5 February.

**ECOLOGY.** *redmani* evidently roosts principally in caves. Near Windsor, Jamaica, specimens were taken well back from the entrance in a moist cave where bats were observed clinging to, and flying just below, the high ceiling (Jones and Schwartz, 1967:6). Miller (1904:344) reported finding *redmani* in a damp cave east of Baracoa, Cuba, which was occupied also by *Natalus microps*, *Mormoops blainvillii*, *Pteronotus parnelli*, *Pteronotus macleayii*, and *Phyllocythereis poeyi*. Haitian specimens of *redmani* were taken "in a large wet cave in a mesic situation in the Montes Cattaches massif" (Schwartz and Jones, 1967:10). Anthony (1925:32) noted large numbers of this species in Cueva de Trujillo Alto, Puerto Rico, "... clustered in masses, hanging in deep crevices, or 'chimneys' in the ceiling of the cave and generally ... segregated by sexes." Eighty of 83 specimens taken there in mid-July were males. Individuals knocked into a stream at the bottom of this cave swam readily to the edge and crawled out. Anthony (1939:637) also recorded a specimen taken "in a cave among the hills" in eastern Cuba.

Buden (1975) found large numbers of bats, including *redmani*, in a well-aerated cave about 50 m deep, 15 to 20 m wide, and about 6 m high near Cripples Hill on Crooked Island in the Bahamas. The cave had at least two large entrances and most bats, including all *redmani* he observed, frequented solution cavities in the roof in one of the darker parts. The solution cavities ranged up to several m in irregular in diameter and less than 1 m in width. Individuals of *redmani* were found alone or in groups of up to 15 to 20 in these depressions. Buden reported these bats to be extremely wary, taking flight when disturbed by the beam of a flashlight. The only *redmani* netted by Buden in the Bahamas was taken in semixeric woods on North Caicos.

*Monophyllus* is easily taken in mist nets, and *redmani* has been netted in various forested situations in recent years. Tamsitt and Valdivieso (1970:124), for example, took this species along with *Stenoderma rufum* in a net stretched across a clearing at the edge of a forest trail in Puerto Rico. They attempted to keep *redmani* alive in the laboratory but were unsuccessful. The bats refused whole and mashed bananas, and sugared water, and died within two days. McNab (1971), Phillips (1971), Radovsky et al. (1971) and other authors have indicated that *Monophyllus* feeds on soft fruit or nectar, and possibly also insects, but there are no firm data on food habits.

Silva Taboada (1974) reported a sex ratio of 55 males to 53 females in a random sample collected over two years from a cave in central Cuba. Using the secondary sexual characters listed in Form and Function above, he identified 46 males and 37 females from fossil deposits in the same area.

Radovsky et al. (1971) described a macronyssid mite, *Radfordiella monophylli*, from *redmani* on the basis of protonymphs found imbedded in the soft palate. Other ectoparasites recorded from this species include the mites *Gamasia roscikeyi* and *Sphaeronychus monophylli*, and the bat fly *Trichobius truncatus* (Dusbaké, 1969; Tamsitt and Fox, 1970; Tamsitt and Valdivieso, 1970). In a study of trematodes of Cuban bats, Gorschka and de la Vallee (1969) found none in five specimens of *M. cinedaphus* examined.

**GENETICS.** *Monophyllus redmani* has a diploid chromosomal complement of 32 and a fundamental number of 60. Autosomes are metacentric or submetacentric; the X chromosome is submetacentric and the Y is a minute element (see figure 4). Baker and Lopez (1970:667) regarded *Monophyllus* as similar to *Erophylla* and *Brachypylla*, but most closely related to *Glossophaga*, on the basis of chromosomal morphology.

**REMARKS.** *Monophyllus redmani* closely resembles *M. pletodon* morphologically, the dental characters used in the foregoing key being the only consistent means by which the two can be separated. The occurrence of both species in the
same layers in cave deposits on Puerto Rico (Anthony, 1917, 1925; Choate and Birney, 1968), however, argues for recognition of two species rather than regarding Monophyllus as monotypic.

Throughout most of the Antillean region, Monophyllus is the only glossophage bat. However, species of another genus, Glossophaga, are known to occur on Jamaica and in the Lesser Antilles as far north as Dominica and may be highly competitive with Monophyllus where both occur together. Varona (1974) recently placed Monophyllus as a subgenus of Glossophaga, but we have not followed his arrangement.

LITERATURE CITED


Principal editor for this account was S. ANDERSON.