
RNAseq Analysis
GCAT-SEEK workshop

Mark Peterson

2014/June/2-6

Table of Contents

1 Computer setup1 Computer setup . 4
1.1 Background1.1 Background 4
1.2 Chapter goals1.2 Chapter goals 4
1.3 Vision and Change Competencies addressed1.3 Vision and Change Competencies addressed 5
1.4 Sign on to Mason1.4 Sign on to Mason 5
1.5 Linux tutorial1.5 Linux tutorial 5
1.6 Loading data1.6 Loading data 6
1.7 Where to go for help1.7 Where to go for help 6
1.8 Further Reading1.8 Further Reading 7

2 Sequence processing and quality control2 Sequence processing and quality control . 8
2.1 Background2.1 Background 8
2.2 Chapter goals2.2 Chapter goals 8
2.3 Vision and Change Competencies addressed2.3 Vision and Change Competencies addressed 8
2.4 Checking data quality2.4 Checking data quality 9
2.5 Setting up fastqc2.5 Setting up fastqc 9
2.6 Running FastQC2.6 Running FastQC 10
2.7 Trimming bad data2.7 Trimming bad data 10
2.8 Where to go for help2.8 Where to go for help 12
2.9 Further Reading2.9 Further Reading 12

3 Read Mapping3 Read Mapping . 13
3.1 Background3.1 Background 13
3.2 Chapter goals3.2 Chapter goals 13
3.3 Vision and Change Competencies addressed3.3 Vision and Change Competencies addressed 14
3.4 Choosing an aligner3.4 Choosing an aligner 14
3.5 Installing RSEM3.5 Installing RSEM 14
3.6 Prepare for alignment3.6 Prepare for alignment 15
3.7 Run the alignment3.7 Run the alignment 15
3.8 Where to go for help3.8 Where to go for help 16
3.9 Further Reading3.9 Further Reading 17

4 Differential Expression4 Differential Expression . 18
4.1 Background4.1 Background 18
4.2 Chapter goals4.2 Chapter goals 20
4.3 Vision and Change Competencies addressed4.3 Vision and Change Competencies addressed 20
4.4 Download data4.4 Download data 20
4.5 DESeq4.5 DESeq 20
4.6 Interpreting differential expression analysis4.6 Interpreting differential expression analysis 23
4.7 Where to go for help4.7 Where to go for help 24
4.8 Further Reading4.8 Further Reading 25

2

TABLE OF CONTENTS

5 Variant Detection5 Variant Detection . 26
5.1 Background5.1 Background 26
5.2 Chapter goals5.2 Chapter goals 26
5.3 Vision and Change Competencies addressed5.3 Vision and Change Competencies addressed 27
5.4 Set up the software5.4 Set up the software 27
5.5 Prepare the alignment file5.5 Prepare the alignment file 27
5.6 Run VarScan5.6 Run VarScan 28
5.7 Run a more complete analysis5.7 Run a more complete analysis 28
5.8 Where to go for help5.8 Where to go for help 29
5.9 Further Reading5.9 Further Reading 29

6 De Novo Assembly6 De Novo Assembly . 30
6.1 Background6.1 Background 30
6.2 Chapter goals6.2 Chapter goals 30
6.3 Vision and Change Competencies addressed6.3 Vision and Change Competencies addressed 31
6.4 Getting the data together6.4 Getting the data together 31
6.5 Set up the assembly script6.5 Set up the assembly script 31
6.6 Where to go for help6.6 Where to go for help 32
6.7 Further Reading6.7 Further Reading 32

7 Simple in-class options7 Simple in-class options . 33
7.1 Background7.1 Background 33
7.2 Chapter goals7.2 Chapter goals 33
7.3 Vision and Change Competencies addressed7.3 Vision and Change Competencies addressed 33
7.4 Galaxy7.4 Galaxy 34
7.5 iPlant7.5 iPlant 35
7.6 Accelerating Comparative Genomics7.6 Accelerating Comparative Genomics 36
7.7 Commercial Software7.7 Commercial Software 36
7.8 Further Reading7.8 Further Reading 37

8 Lab Work8 Lab Work . 38
8.1 Background8.1 Background 38
8.2 Chapter goals8.2 Chapter goals 39
8.3 Vision and Change Competencies addressed8.3 Vision and Change Competencies addressed 39
8.4 Sample collection8.4 Sample collection 39
8.5 RNA extraction8.5 RNA extraction 39
8.6 rRNA removal8.6 rRNA removal 39
8.7 Library Preparation8.7 Library Preparation 40
8.8 Where to go for help8.8 Where to go for help 40

3

Chapter 1:

Computer setup
1.1. Background

RNA-seq analysis requires a lot of computer resources to handle the large datasets that are
generated. Even a simple experiment can quickly run up near terabytes of data, and handling
this data requires specially designed programs. Most of these programs can be run on your own
computer, but they often take a very long time and slow your computer down to the point of no
longer being usable. One simple solution to this problem is to run your analyses on a different
computer, such as a Linux-based computer-cluster/supercomputer. In this module, we will walk
through the process of using Linux for sequence analysis. In a later chapter, we will introduce a
few alternatives, including web based platforms (See chapter 77).

One important thing to keep in mind: these tools are constantly changing as next-generation
sequencing is still an emerging field. The instructions here will include details for the specific
platforms and programs that will be used here, but will also explain what is happening, so
that you can generalize to other applications. In general, remember that “Google is your friend”
(GIYF) —someone else has almost always encountered problems similar to yours, and answers
to their questions are usually available online with a little Google-fu. Second, most of these pro-
grams and computer resources come with extensive documentation that can walk you through
many of the basic steps. When in doubt, “read the manual” (RTFM) and many of your questions
may be addressed. All users, even advanced users, often do not remember the correct commands,
but are just better at searching for the answer:

Figure 1.1: xkcd.com/1168xkcd.com/1168

1.2. Chapter goals

• Learn how to access a computer cluster or supercomputer

• Learn how to install necessary software

• Learn how to transfer data to and from these systems

• Understand a basic Linux command line interface

• Troubleshoot simple computer system problems

4

http://xkcd.com/1168

Computer setup

1.3. Vision and Change Competencies addressed

• Ability to communicate and collaborate with other disciplines

• Ability to use modeling and simulation

1.4. Sign on to Mason

Signing into a computer cluster or supercomputer is a bit more complicated than signing into
your own computer. However, once mastered, it is straight forward to accomplish. You first need
a system capable of “SSH” (Secure Shell) connecting. On windows, you would need to install
PuTTY to be able to gain access (search for “putty ssh” and follow the directions to install select-
ing “Windows installer for everything except PuTTYtel”). In Unix or Mac, the terminal comes
pre-installed with this ability, just open a terminal window (Ctrl+Alt+t in Ubuntu, Applications
→ Utilities→ “Terminal” in Mac). The basic command, which can be adapted to fill in the PuTTY
screen is then:

ssh user@hostname

where “user” is your assigned user name on the system, and “hostname” is the address you
are attempting to connect with: either an address or an IP address. Thus, for our system it will
look like:

ssh user@mason.indiana.edu

You will then be asked for your password. Enter it here (the cursor will not move as you
type), and you should be granted access to the system. The first time you log on to Mason, it will
ask you to select your shell. There is substantial debate about the “best” shell, but they will all
function similarly for your needs. All of the examples in this workshop will use the BASH shell,
so please select that one.

1.5. Linux tutorial

You will now have a command line prompt, and will be able to navigate as you would on any
Linux system. We will go through detailed commands as we go through these modules, however,
to get a feel for the Linux system, please work through this (wonderful) online tutorial:
http://www.ee.surrey.ac.uk/Teaching/Unix/http://www.ee.surrey.ac.uk/Teaching/Unix/. A few notes on this tutorial:

• Some of the commands are specific to that University’s file system, but they offer clear ways
to work around that. For example, you may need to use the following to download one of
the files:

wget http://www.ee.surrey.ac.uk/Teaching/Unix/science.txt

• They are using a a different shell (tcsh instead of bash), which leads to a few small differ-
ences (e.g., the prompt in bash is ’>’ instead of ’%’ and in 8.4, the files they are referring to
are called ’ /.profile’ and ’ .bashrc’ instead of login and cshrc. Just a thing to be aware of.

• They suggest using ’nedit’ to modify text files. But, it doesn’t come standard on Linux. For
this tutorial, replace ‘nedit’ with ‘nano’, which runs from the command line. Use Ctrl+o to
save (for “out”), and Ctrl+x to exit.

5

http://www.ee.surrey.ac.uk/Teaching/Unix/

Computer setup

1.6. Loading data

There are three basic ways we are going to get data on to Mason for this class: scp, wget, and
copying from things I already loaded. First, let’s try loading something from your local machine
using scp (Secure Copy). Open a second terminal window on your computer. You will then need
to move (using “cd folderName\verb”) to a folder that contains the data you wish to upload,
then enter the scp command. For example:

cd folderName
scp myFile.txt user@mason.indiana.edu

In Windows, the command structure is a bit different. Access a terminal window by hitting
Ctrl+ESC, typing “R”, typing “cmd” and then hitting Enter. From here, cd to the appropriate
folder, as above, then enter the command.

"C:\Program Files\PuTTY\pscp.exe" myFile.txt user@mason.indiana.edu

In all places where you are told to use scp, you will have to use this full path instead. The path
to the “pscp.exe” file must match the location of your installation (the folder you installed PuTTY
into), so double-check the path if you get an error (and make sure you are using backslashes here,
but only in Windows as they have not adopted the standard convention). You can also add that
path to your “path” Environmental Variable to avoid having to retype it every time, but that is
outside the scope of this module.

Note that quotation marks are necessary if there is a space in the directory name for any of
the paths you are using (e.g. “Program Files” or “GCAT Workshop”), which is one (of many)
reasons to avoid spaces in file and directory names. The tilde (~) in the command is where you
can type the directory that you want the file to go to, for example “~/sequences” with the tilde
representing your home directory on the remote system.

Alternatively, you can use wget to download a file. The format is similar to cp and scp, just
with a url in place of the source file and that the source file name is kept (but stored in your
current directory). This command works with any download-able file, as you saw when working
through the tutorial. We will use it most often for downloading programs to install, but it is also
a nice way to download some data.

Finally, all of you have access to a shared directory, which we will be using extensively, named
‘/N/dc2/projects/GCAT/workshop’. Copy the file ’testFile.txt’ into your own home directory,
using cd and cp as necessary.

1.7. Where to go for help

The great thing about Linux is that there is a large community, so every problem you en-
counter has likely been faced (and solved) by other users who are happy to share their solutions.
In addition, nearly every package comes with (at least) one of two simple ways to pull up more
information:

man packageName
packageName --help

These two commands will pull up a lot of information about the syntax and options available
for that software, often with usage examples. At the very least, it may identify the option you
need help with: a great way to target your search for more information.

6

Computer setup

1.8. Further Reading

More information related to these topics can be found in:

• Any Unix/Linux guidebook, including great online resources

• The man and help pages of the package(s) you are interested in

7

Chapter 2:

Sequence processing and quality control
2.1. Background

After sending off your RNA for sequencing (or downloading it from SRA) and waiting pa-
tiently, you finally have data! . . . Now what? The files you have received contain billions of bases
of sequence with information on quality, but where to begin? This module is the first step in that
processing, and the first time we will be working directly at the command line interface with
our data. Next generation sequencing platforms, by virtue of their large outputs, are bound to
produce some errors. The goal of this module is to identify and remove many of these errors.

Figure 2.1: dilbert.com/strips/comic/2008-05-10/dilbert.com/strips/comic/2008-05-10/

2.2. Chapter goals

• Learn about sequencing quality scores

• Learn how to identify potential problems in sequencing data

• Learn how to handle and remove these potential errors

• Understand the indicators of quality sequence data

• Manage a large dataset with out terror

2.3. Vision and Change Competencies addressed

• Ability to apply the process of science

• Ability to use quantitative reasoning

• Ability to use modeling and simulation

• Ability to tap into the interdisciplinary nature of science

8

http://dilbert.com/strips/comic/2008-05-10/

Sequence processing and quality control

2.4. Checking data quality

The first step of the process of data filtering is simply to see what you have. The data are pro-
vided to us in a format called “fastq” that includes a quality score, which provides information
on how confident the sequencer is in its base calls. We will talk about this more in class, but the
basic idea is that for Illumina runs, the score (Q) is calculated as:

Q = −10 ∗ log10P (2.1)

Where ‘P’ is the probability that the base call is incorrect. Thus, a larger Q score indicates
greater confidence in the base call. These scores are encoded along with the sequence information
using the ASCII values corresponding to various characters with some offset to avoid the non-
printing characters at the low end of ASCII values. As a general rule, scores over 20 suggest high
quality data, while lower scores may be a cause for some concern. The steps below will walk us
through how to identify those scores in a useful way.

First, lets just look at one of the sequence files. Move to the project directory, then use the
command less to display the sequence file. Can you interpret those quality scores? Neither can
I, so we will need to use some programs to help us visualize it.

2.5. Setting up fastqc

Running this from the command line the first time takes a few extra steps. Primarily because
both java and fastqc will need to be installed. Both are slightly odd programs in that they do not
require an “installation” but only require loading the program and adding a few variables to call
them. First, we will install fastqc. All software that we download will be added to a directory
named “opt” (for optional), which we must create.

mkdir ~/opt

Now, we will move into that directory and download the code for fastqc. We will then unpack
(de-compress) it and delete the zip file. Finally, we need to set the permissions on the file to allow
us to run the program.

Please note here that rm works rather differently than you may be used to. There is no “Trash”
and there is no going back. Once you delete something with rm it is gone. So, it is generally good
practice to use the “-i” flag, which stands for “interactive” and will ask you to confirm that you
want to delete a file.

cd ~/opt
wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
unzip fastqc_v0.10.1.zip
rm -i fastqc_v0.10.1.zip

cd FastQC
chmod u+x fastqc

For java, copy the file “jre-7u51-linux-i586.tar.gz” from the shared directory into ‘opt’. You
will then extract the file and remove the tar file. We will then unpack (de-compress) it and delete
the zip file. Remember that tab autocompletion is a huge time and head-ache saver.

cd ~/opt
cp /N/dc2/projects/GCAT/workshop/jre-7u51-linux-i586.tar.gz .

9

Sequence processing and quality control

tar -zxvf jre-7u51-linux-i586.tar.gz
rm jre-7u51-linux-i586.tar.gz

Now, we need to make it easier to run the program. Right now, it will only run if we type the
full pathway, which is a pain. Instead, we are going to add the path to an “Environmental Vari-
able” named PATH that tells the computer where to look for programs that you call. Importantly,
it searches these directories in order, so if you have two identically named programs, it will only
call the first one it finds. This also means we need to be careful not to accidentally remove part
of the path. The easiest way to do this is to add the paths that we want to our variable, without
deleting anything else.

export PATH=$PATH:$HOME/opt/FastQC:$HOME/opt/jre1.7.0_51/bin
echo 'export PATH=$PATH:$HOME/opt/FastQC:$HOME/opt/jre1.7.0_51/bin' >> ~/.bashrc

The first line adds fastqc and java to our path for this session, but that will be forgotten when
we next log out. The second line adds that command to a file named “.bashrc” in your home
directory, which is run every time you log on. Thus, from now on, FastQC and java will be in
your PATH.

2.6. Running FastQC

Now, we are ready to analyze our data. Move into the ‘seqData’ directory in the project folder,
this will keep all of our results together, instead of each running it in our own home folder. I will
assign each of you to a sequence pair (forward and reverse), then you will execute the following:

fastqc fileName

For each assigned file. Once this has completed, it will place a folder named “fileName_fastqc”
and a zipped version into the sequenceData directory. From a terminal window, download the
directory via scp by using the commands discussed in the “Computer Setup” module (See chap-
ter 11). Note the period at the end of the line, which tells the computer “save the file right here
with the same name. You can replace the ”.“ with a different name for the file, or even a path to
a different location, if you want.

scp -r user@mason.indiana.edu:/N/dc2/projects/GCAT/workshop/seqData/file_fastqc .

You can then open the results in a web browser by opening the directory and clicking on the
file “fastqc_report.html”. Look at the file, and see if there is anything you think needs to be done
to clean up the data. Compare the results to others around you, and we will discuss them as a
group.

2.7. Trimming bad data

There are two ways of filtering data: trimming ends that may have very low quality, or remov-
ing reads that are low quality. In general, short-read sequence aligners take quality information
into account, and so conservative trimming and filtering is not necessary. However, if you have
a run with very low quality ends, trimming those ends can help your analysis, especially if you
are assembly a de novo transcriptome (see chapter 66 for more info). This program suite will likely
be used later, and you will want it installed.

There are a number of tools designed to help you control read quality, each with their own
benefits. For today, we will use a program called ’Trimmomatic’ because it does a great job of

10

Sequence processing and quality control

explicitly handling paired-end data like these. This program requires java, which we already
loaded, but follow those directions if you need to start from this point. Set up the program with
the following:

cd ~/opt/
wget http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.32.zip
unzip Trimmomatic-0.32.zip
rm -i Trimmomatic-0.32.zip

To call this, we will use java, and simply pass the arguments we want to use. For more detail
on each option, open the programs website: http://www.usadellab.org/cms/?page=trimmomatichttp://www.usadellab.org/cms/?page=trimmomatic.
One note: paired-end data requires two outputs for each file, one for those that match the op-
posite direction read, and one for those that don’t. The code below is an example that may be
a helpful starting point; note that the ‘\’ at the end of each line means ‘put this all on one line;
don’t hit return yet’ and can either be copied in directly (and interpreted by the console), or
omitted to put everything on one line (interpreted by you).

Do not run this directly from the command line on the sequence files we have been using. The
files we are using are large enough that you need to use a different system (a script submitted
via qsub), which we will introduce in the next chapter (see section 3.73.7). If you would really like
to use this, make sure to run the top few lines first to create a sample subset of the data (or, later,
submit it as a script via qsub).

cd /N/dc2/projects/GCAT/workshop/seqData

head -n 4000 file_1.fq > smallExamples/subset_file_1.fq
head -n 4000 file_2.fq > smallExamples/subset_file_2.fq

cd smallExamples

java -jar ~/opt/Trimmomatic-0.32/trimmomatic-0.32.jar \
PE -phred64 subset_file_1.fq subset_file_2.fq \
trim_file_1paired.fq trim_file_1unpaired.fq \
trim_file_2paired.fq trim_file_2unpaired.fq \
CROP:85 HEADCROP:4 \
LEADING:3 TRAILING:3 \
SLIDINGWINDOW:4:15 MINLEN:30

By line, these commands:

• Call the program

• The input data and information

– ‘PE’ for paired end

– the offset of the quality scores

– the two sequence files

• The outputs for the first sequence file (paired and unpaired)

• The outputs for the second sequence file (paired and unpaired)

• Tell the program to keep the first 85 bases then cut the first 4 bases

• Cut the first (then last) bases, if the quality is below 3

11

http://www.usadellab.org/cms/?page=trimmomatic

Sequence processing and quality control

• Check windows of 4 bases and cut the sequence when the average score goes below 15;
only keep reads that are at least 30 bases long

We could then use these outputs in our downstream analyses.

2.8. Where to go for help

Most, if not all, of the programs that we use here have good webpages with substantial
information on the usage of their programs (linked below). In addition, sites like “seqAnswers”
and “BioStars” address many of the common issues that users encounter. Searches for these sites
(or just general questions) will often lead you to individuals that have already addressed, and
solved, the same challenges that you are facing.

2.9. Further Reading

More information related to these topics can be found in:

• http://www.usadellab.org/cms/?page=trimmomatichttp://www.usadellab.org/cms/?page=trimmomatic.

• http://www.bioinformatics.babraham.ac.uk/projects/fastqc/http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

12

http://www.usadellab.org/cms/?page=trimmomatic
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Chapter 3:

Read Mapping

3.1. Background

RNA-seq read mapping is the process of aligning reads against a genome (or transcriptome)
in order to identify the position from which the RNA originated. This is another computationally
intensive task, as it is generally attempting to align millions of reads against thousands of genes
(or a full genome). In the case of alignment to a genome, the problem is further complicated
by the fact that the sequenced RNA contains only exons, while in the genome these exons are
substantially split by large introns. Even against transcriptomes, alternative splicing, skipped
exons, and a number of processing steps can complicate the process.

Thus, many of the standard alignment tools that were developed for pairwise sequence align-
ment (e.g. Blast) are not suitable for this task. However, many alignment tools are emerging
specifically designed to handle RNA alignment to genomes or transcriptomes. These tools use
much shorter alignment matches and are designed to detect splicing and gene graphs. They work
on similar principles to traditional alignment tools, and we will discuss them more as a group.

Figure 3.1: xkcd.com/676xkcd.com/676

3.2. Chapter goals

• Learn about RNA alignment

• Learn the basics of read mapping

• Understand the basic principles of RNA mapping

• Understand how to utilize various mapping tools

13

http://xkcd.com/1168

Read Mapping

3.3. Vision and Change Competencies addressed

• Ability to apply the process of science

• Ability to use quantitative reasoning

• Ability to use modeling and simulation

3.4. Choosing an aligner

There are several mapping tools available, and many are being developed specifically with
short, and/or paired RNA reads in mind, such as bowtie and tophat from the tuxedo package.
Bowtie is a fast read aligner, though it does not handle splicing explicitly. For aligning to a
genome, Tophat uses initial bowtie reads to predict splice sites, and then aligns more reads across
those junctions. Alternative, if the transcripts are already known (through either transcriptome
sequencing, like with our sample data, or gene prediction), bowtie can be used to align directly
against known splice forms.

In this chapter, we will use a program called RSEM (RNA-Seq by Expectation-Maximization)
that uses the bowtie alignment of reads to known transcripts. The program offers alternatives,
including using the output from any aligner instead of using bowtie, that are discussed more
thoroughly in the documentation linked below.

3.5. Installing RSEM

The RSEM package is a simple one to install, but requires several other programs (dependen-
cies) to run completely. This installation will be broken into two parts, installing RSEM and in-
stalling those dependencies. First, move the directory in which you would like to install (~/opt),
then follow these commands, which may be starting to look familiar now. The addition of the
“make” command is necessary because RSEM needs to be compiled for the system’s architecture.
After running make, we add the path to our environment.

cd ~/opt
wget http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.12.tar.gz
tar -zxvf rsem-1.2.12.tar.gz
rm -i rsem-1.2.12.tar.gz

cd rsem-1.2.12
make

export PATH=$PATH:$HOME/opt/rsem-1.2.12
echo 'export PATH=$PATH:$HOME/opt/rsem-1.2.12' >> ~/.bashrc

Next, we can add bowtie to our environment using a “module”. This is a method that is
slightly different than we used before, and it’s specific implementation will depend on the system
you are working in. The basic idea is that updates to shared software (software available to all
users) will be implemented more seamlessly this way. It is not available on all systems, but is a
nice feature of Mason, as it will automatically load the program, and add it to our path, for us.
As before, we are going to add the command to a profile to ensure that they are loaded every
time instead of manually loading each time we sign in (or run a script).

14

Read Mapping

module load bowtie
echo 'module load bowtie' >> ~/.modules

3.6. Prepare for alignment

We now have all of the software we need set to go, and can begin working on the process that
will run the actual alignments. First, we need to generate our reference (either a transcriptome
or genome) so that the program has something to align against. This should only take a couple
minutes, so we could run it directly from the command line. Move into the new shared directory,
make a directory named ‘ref’ if it doesn’t exist, and one of us will run the following. Please, do
not run this in the workshop unless told to – having multiple iterations of this run simultaneously
leads to corrupted files.

rsem-prepare-reference --transcript-to-gene-map isotig_gene_map.txt \
--no-polyA refUnformatted.fa gcatRef

The files ‘refUnformatted.fa’ and ‘isotig_gene_map.txt’, contain the transcriptome in FASTA
format and the list of isoform to gene mappings. The ‘gene_map’ tells the program which tran-
scripts belong to the same gene, which will allow us to analyze splice variants. The flag ‘--no-
polyA’ tells the program not to append poly-A tails to the transcripts. This is used because some
of these transcripts may be partial, and should not include such tails. Finally, the last input
’gcatRef’ tells the program where to write this file.

3.7. Run the alignment

The alignment we are going to run today will take several hours to complete (possibly days)
when running on full size files. None of you likely wants to sit here with your computer con-
nected for that long, despite how much you love this class. In addition, the Mason system will
only allow jobs submitted from the command line to run for 20 minutes before it aborts them.
This is done, in part, to make sure that large jobs are balanced on the machine. So, today we will
introduce a new method for running commands on Mason: a script and qsub. A script is just a
series of commands to be executed (a simple computer program), and qsub is the system that is
used to control the running of those jobs.

Remember that we are lazy efficient; so we are going to start by copying and modifying a
sample script. Copy the file ‘sampleScript.sh’ from the project directory to your home directory.
Run less to see what is in the file. It should look something like this:

@ job_type = serial
@ class = NORMAL
@ account_no = NONE
#PBS -m e -l vmem=10gb,walltime=1:00:00
@ notification = always
@ output = batch.$(cluster).out
@ error = batch.$(Cluster).err
@ queue

The top three lines give information on how the job should be run and charged, and aren’t
anything we need to worry about. The line with ‘PBS’ give several commands to the qsub pro-
gram, including to email you when the job is done (the -m e), how much RAM to let you use, and
how long to let the job run. The vmem and walltime commands are required, as this is what the

15

Read Mapping

system uses to balance the jobs that are submitted. The rest of the information tells the system
how to save your outputs, and that the job should go to the queue.

Below this, we are going to insert our commands. These can be anything that you would sub-
mit in the terminal, and the same syntax and rules apply, including spelling and capitalization,
so be careful. To add these commands, we are going to use a word processing program: ‘nano’.
Run the command ‘nano’ followed by the name of your script. It will open the document for
editing in a simple editor.

The instructions at the bottom of the screen tell you how to run the program, but it is similar
to notepad, just without the click-able menus. To save a file, type ‘Ctrl+o’, name the file (or accept
the current name) and hit enter. To close the program, type ‘Ctrl+x’. Move to the bottom of the
file (the mouse won’t work) and add the following commands:

cd /N/dc2/projects/GCAT/workshop/seqData

rsem-calculate-expression --paired-end --phred64-quals \
file_1.fq file_2.fq \
transcriptome/gcatRef align/file

The second line (wrapped above) calls the aligner, tells it the files are paired-end and have
an offset of 33, then feeds it the two files. We then tell it which reference to use (the one we
created above), and finally the output name, which includes the directory where we want to save
it. Note that we are working in a slightly different directory from the last chapter: this one has
larger sequence files, which means the alignment will take longer, but that we will also get more
complete information. This directory should include a directory named ‘align’ to ensure that
your outputs are saved in the correct place (create it using mkdir if it doesn’t exist). Save the file
(Ctrl+o) and exit (Ctrl+x).

Now, we will submit the job with this command:

qsub scriptFile.sh

and now we wait. We can see the progress (if any), by calling ‘qstat’ which shows all running
and queued jobs. If your run:

qstat -u userName

You will see only your submitted jobs. Run ls in your home directory to see if there are any
output files yet, and use less to view them. They should be similar to the outputs you would
expect to see in the terminal.

3.8. Where to go for help

Many computer systems use a very similar job manager, and so a search for most of the key-
words we have used in this chapter may help solve the problem that you are facing. In addition,
the man pages for ‘qsub’ and ‘qstat’ contain a great deal of information on the submission of
jobs. Finally, the ‘Further Reading’ includes the websites for each of the programs we used today,
and they have extended discussions of many available options.

16

Read Mapping

3.9. Further Reading

More information related to these topics can be found in:

• http://tophat.cbcb.umd.edu/manual.shtmlhttp://tophat.cbcb.umd.edu/manual.shtml

• http://bowtie-bio.sourceforge.net/index.shtmlhttp://bowtie-bio.sourceforge.net/index.shtml

• http://bowtie-bio.sourceforge.net/manual.shtmlhttp://bowtie-bio.sourceforge.net/manual.shtml

• http://cufflinks.cbcb.umd.edu/http://cufflinks.cbcb.umd.edu/

• http://deweylab.biostat.wisc.edu/rsem/http://deweylab.biostat.wisc.edu/rsem/

• http://deweylab.biostat.wisc.edu/rsem/README.htmlhttp://deweylab.biostat.wisc.edu/rsem/README.html

17

http://tophat.cbcb.umd.edu/manual.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/manual.shtml
http://cufflinks.cbcb.umd.edu/
http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/README.html

Chapter 4:

Differential Expression

4.1. Background

Now that the reads have been quality checked, assembled, and aligned, there is finally a bit of
biology that can be directly addressed. In this module, we will start by examining differences in
gene expression between our sample groups. The analysis today will use just one of the programs
currently available to assess gene expression differences (and more are constantly emerging). We
will discuss a few of the fundamental principle of gene expression and use this program as
an example. However, you may find that you like the interface (or assumptions) of a different
program better. There are plenty of options available.

The commonality to all of these approaches is that they all attempt some form of normalizing
for read count (we accomplished this once already by calculating fpkm along with raw read
counts) and then use a combination of modeling and basic statistics to determine if two groups
differ in expression. This raises a very large problem of multiple testing: with a p-value of 0.05,
we expect 5 in every 100 tests to be false positives. Obviously, when dealing with thousands of
genes, that number overwhelms the real results. There are a number of proposed corrections
(choosing the top X most-significant genes a priori, setting a stricter p-value a priori, etc.), but
we are going to focus today on the False Discovery Rate (FDR). FDR calculates an acceptable rate
of false/ to true/positives in a data set, rather than relying on raw p-values. It uses the p-values
strike this balance, usually at 0.05, or 1 in 20 positives expected to be false-positives.

Figure 4.1: xkcd.com/1132xkcd.com/1132

18

http://xkcd.com/1132

Differential Expression

Figure 4.2: xkcd.com/882xkcd.com/882

19

http://xkcd.com/882

Differential Expression

4.2. Chapter goals

• Discuss the concepts behind gene expression analysis

• Discuss statistical balance between false/positives and false/rejection

• Learn the basics of (at least) one differential expression analysis program

• Understand the basic principles managing large datasets

• Understand the statistical principals of large datasets

4.3. Vision and Change Competencies addressed

• Ability to apply the process of science

• Ability to use quantitative reasoning

• Ability to use modeling and simulation

4.4. Download data

Many of the tools for differential expression can be run directly from the command line,
including the steps that we are going to run below. However, it is often easier, especially when
first running analyses, to run them on your local machine. Here, we will download the count
data, and start running some basic analyses on differential expression. To do this, first move
all of the results of interest (here, the “genes.results” files) into a single directory, to make the
download easier. Because we will be analyzing all of the samples, this only needs to be run once,
not by each participant.

cd /N/dc2/projects/GCAT/workshop/seqData
mkdir allGenesResults
cp align/*genes* allGenesResults/

This copies all of the files containing the word “genes” from the “align” directory into our
newly created “allGenesResults” directory‘. Now, on your local machine, move (cd) to a directory
for this workshop, then download that entire directory with:

cd /path/to/your/directory/
scp -r user@mason.indiana.edu:/N/dc2/projects/GCAT/workshop/seqData/allGenesResults .

Which will download our “allGenesResults” directory to where you are (note the “.” which
again tells scp “right here”).

4.5. DESeq

Several alternatives exist, including other command line options, such as RSEM, cuffdiff, and
a number of packages in R, including limma, cummeRbund, EBSeq, and DESeq. In this section,
we will focus on the R Bioconductor package DESeq, which is fast, flexible, and which I have
used extensively. DESeq utilizes a negative binomial distribution and offers several alternative
approaches for significance testing. Covering the theoretical background of this package, espe-
cially in contrast to others, is beyond the scope of this workshop. Instead, please refer to the
publication describing DESeq and comparing it to other methods (see section 4.84.8).

20

Differential Expression

The general steps of the DESeq pipeline are:

• Combine count data (such as from RSEM) into a single file

• Normalize the read counts to account for sequencing depth differences

• Estimate variance (called dispersion) for each gene

• Compare expression between groups, and

• Calculate significance

Each of these steps are relatively common, though there is some discussion over the best way
to handle dispersion and significance. For a more detailed description of these steps, and the
underlying theory, please refer to the vignette for DESeq (see section 4.84.8). For this workshop,
along with other projects, I have written an R package, rnaseqWrapper, that wraps these steps
into a single function, with sensible defaults. For those of you accessing these materials from
outside of the workshop, please contact me directly for the most updated version of the package.

4.5.1. Install rnaseqWrapper

To install this R package, download the tarball I provided (rnaseqWrapper_1.0.tar.gz), open
RStudio (this will also work in R directly) and follow these steps (only necessary the first time
you install it, or if you update it):

Install R dependencies
install.packages(c("ecodist","gplots","seqinr","gdata"))

Install DESeq from Bioconductor
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq")

Install MPP's new package
Note: you MUST run setwd() to the directory containing the tar.gz file first
install.packages('rnaseqWrapper_1.0.tar.gz',repos=NULL,type='source')

To check if installed correctly (usually loaded lower)
library(rnaseqWrapper)

4.5.2. Running DESeq with rnaseqWrapper

As before, we need to start by loading in our expression data, using the outputs from RSEM.
So, download the individual files (using scp in the terminal), and use setwd() to navigate to
the directory in which you saved them. You will likely want your working directory to be (at
least) one level above the directory where you saved the data, largely to make it simpler to
create analysis output directories, but that is just personal preference of mine. Once the data
are downloaded, the following function (part of my rnaseqWrapper package) will automatically
read in and merge the files together. Read the help file for more information if you are interested
(?mergeCountFiles).

21

Differential Expression

Load the data
Note, you will likely have saved
the outputs in a different directory
countData <- mergeCountFiles("data/")

View the data
head(countData)

As you can see, the files are now merged, and we can work with them together. Now, DESeq
expects count data, as it’s internal normalization, and the method it uses to determine signifi-
cance, rely on raw counts. The SEM column “expected_count” is roughly raw counts, with just
a small amount of uncertainty given for the assignment of reads. As such, we can use those
columns for DESeq, but we need to let DESeq know that they are counts by rounding the data to
integers. To extract those columns, we will use the function grep() which searches for matches
between it’s first argument (e.g. “expected_count” below) in it’s second argument (e.g. the names
of the columns) and returns the index (position) of the matches. I also like to remove the common
portion of the column names, using gsub(), which adds an argument to replace the matched por-
tion of the text. Both accept regular expressions, which makes them very powerful, but also a lot
more confusing. For now, just know that gsub() is a nice way to systematically change things,
and that you can replace the empty quotes (“”) with different text if you just want to change the
names (e.g. to “_reads”).

Extract just the read counts, and round them
myCountData <- round(countData[,grep(".expected_count",names(countData))],0)

Trim the names to make the plots a bit nicer:
names(myCountData) <- gsub(".expected_count","",names(myCountData))

head(myCountData)

Finally, we can run DESeq on these rounded data. For now, the basic defaults will work just
fine, but read the help documentation for more information on how you might tune this for your
own project.

Run DESeq
deOut <- DESeqWrapper(myCountData, # Our count data to use

conditions=c("male","female"), # the conditions to compare
outNamePrefix="DESeqTest/") # Where to save the outputs

This function goes through all of the basic steps of DESeq, with sensible defaults, many of
which can be modified in the function. Occasionally, especially with very small or low-count
data, this function will throw an error stating that the dispersion method failed. This means
that the default included did not work, and may indicate problems with the underlying data. In
the future, the package may offer alternatives for this step, but for now, you will have to work
through each step separately, in order to solve this problem.

The function saves the outputs in a few different, useful, formats:

• A series of pdf plots that show some basic characteristics of the data

• Tab-delimited output of the differential expression test

• Tab-delimited output of the normalized read counts (if requested), and

22

Differential Expression

• An R object which we can directly manipulate.

The first few items are all useful for record keeping and visual inspection. Open up the
directory where you saved the data, and look at the plots it generated. The last item holds all
of the generated data (but not plots) in a single object, which allows us to explore our results in
more depth. So, we will save it now to make it easier to reload in the future (instead of having to
use read.table() for each element) when you start analyzing our data. Use the below code to
save the R object.

Save the DESeq R object:
save(deOut,file="DESeqTest/deOut.Rdata")

Before exiting R, spend a few minutes playing with the data you have just generated. Make
some plots, see what is available, and just generally fiddle. As you read the next section, and we
discuss it, play with the data you have, and think about what you might do with it to meet the
objectives of your study.

One place to consider starting is by generating a heat map, one of the standards in gene ex-
pression analysis. R makes this very easy to do, and the rnaseqWrapper package includes a wrap-
per to make it (somewhat easier). A similar plot is automatically generated by DESeqWrapper()
and saved in the pdf output, but this will give you the power to tweak the plot to your purposes.

Save oval for easier use
myPvals <- deOut$deOutputs$malevsfemale$pval

Limit data to interesting genes
toPlot <- as.matrix(myCountData[myPvals < 0.05 & !is.na(myPvals),])

Make a heatmap
heatmap.mark(toPlot)

Add color and a legend to show more of the options
heatmap.mark(toPlot,

cexCol=.9, # make column labels smaller
ColSideColors = rep(c("red","blue"),each=8), # match column order
scaleLabel="") # turn off label to leave room

legend(x="topleft",inset=c(-.01,.13), # where the label should go
bty="n", cex=.5, # no box around it, and set the size
legend=c("female","male"), # What should be there
fill=c("red","blue"), # Colors to use
title="Conditions") #Label for the legend

4.6. Interpreting differential expression analysis

This section provides a thin background on differential expression analysis that will be used
to guide our in class discussion. Hopefully, the details in this section will help to guide your
decision making for your own data interpretation.

There are a plethora of gene expression analysis tools, and there seem to be more emerging
every week. Some of these are just small tweaks to increase speed or user/friendliness, but some
make major changes to the underlying assumptions and math. In particular, different differen-
tial expression tools rely on different mathematical models (e.g. normal vs. negative binomial

23

Differential Expression

distributions) to estimate the probability that identified differences are real. The choice of which
program is best for you and your data is unique, and must address ease of use, mathemati-
cal assumptions, the details of your project, and what you are attempting to achieve. For most
analyses, the results will be relatively similar, and there are few bad choices.

All of these programs, and likely all of the ones still to come, will give outputs in a similar
fashion. A table with each analyzed gene as a row. The columns will represent the basic statistics
and may include: average expression level (for each group or for the two combined), difference
between the two (fold-difference, or log-fold-difference), a statistical test, and the FDR level of
significance. No matter what your specific project, focusing on the significant genes (those below
an a priori FDR cutoff) and the direction of their difference is likely to be most fruitful. Many
programs will write just these genes to a separate file to make this analysis easier.

From here, there are many options to progress. One is Gene Ontology (GO) analysis. If your
species annotation includes GO terms, you can determine which GO terms are over/represented.
As above, there are many programs for doing just this and they all work on similar principles.
The idea is to find GO terms that are more common among significant genes than among the full
set of annotated genes. That is, a GO term that is present 5 times among significant genes (that
is, 5 of the significant genes are annotated with that GO term) is more likely to be meaningful
if there are only 5 genes with that annotation in the full set, than if there are 50 genes with that
annotation. GO analysis provides a nice snapshot of what is being regulated differently between
your two groups.

Alternatively, you can focus on individual genes that are differentially expressed. This is
particularly fruitful if you have an a priori reason to expect a gene to vary. For example, if your
sample groups are a model for a disease or developmental state, you may expect known marker-
genes to differ between the groups. Identifying such differences can help to confirm the validity
of your experimental set up. In addition, you can search through the gene lists for genes that may
play interesting and related functions. Identifying these genes may help to guide future research
projects or to connect your findings to those of other research systems.

These approaches are neither exhaustive, nor mutually exclusive. The simplest answer to
“what should I do now?” is to play with your data and see what emerges. You may be surprised
to find a set of key genes from another system (another disease, for example) differentially ex-
pressed between your groups. Breaking down the gene lists (e.g., by GO term, by pathway, or
even randomly) will allow students a great deal of autonomy and may lead to some surprising
and insightful conclusions as they dig deeply into a subset of your analysis.

4.7. Where to go for help

Differential expression analysis, despite being studied for a long time now (qPCR, microar-
rays, Northern blots, etc.), is still an unsettled field. Especially as datasets grow (now analyzing
tens of thousands of genes simultaneously), there is great debate over many basic questions. How
can we best control for known and unknown sources of error? How should multiple-testing be
corrected? How can we ensure we don’t reject too many true differences? Does fold-change mat-
ter?

The downside is that there are many open questions and there are rarely simple answers. You
may need to analyze your data in several different fashions in order to figure out what works
best for your system, questions, and needs. The upside is that there is not one “right” way to
do things, which allows both you and your students substantial leeway to explore your data in
novel ways. Who knows, your approach may even revolutionize the field.

All this is to say: the answers for how to best analyze your data probably lie in your data,
not with someone else. Answers to simple questions abound on places like SeqAnswers, and in
the documentation to your programs of choice. However, you may need to try several different
approaches before the answers you get seem to completely address the questions you started

24

Differential Expression

with. List-serves and outside guidance are great to make sure that we are not fooling ourselves,
and should be utilized whenever possible. Just, don’t expect a clean answer.

As a final note, it is easy with large datasets to fool yourself. It is important to get critical
external feedback to your methods. Simulating your data analysis can also be a great way to make
sure that your results are not just a product of some unseen bias. I came three days away from
submitting (in a revision no less) an analysis that was, quite frankly, completely wrong. I had
simulated at a downstream step, and missed an underlying artifact in my data. The conclusion,
around which I had based most of that paper and several talks, was just flat wrong. It was an
artifact and did not represent anything meaningful. Be careful in your analyses, and always listen
when others raise concerns about your approach.

4.8. Further Reading

More information on the DESeq package, including the full package vignette and a link to
the full paper (available open access at the link below) can be found at:

• http://www.bioconductor.org/packages/release/bioc/html/DESeq.htmlhttp://www.bioconductor.org/packages/release/bioc/html/DESeq.html

• http://genomebiology.com/2010/11/10/R106/http://genomebiology.com/2010/11/10/R106/

25

http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://genomebiology.com/2010/11/10/R106/

Chapter 5:

Variant Detection
5.1. Background

Everything before this chapter could have been done using microarrays. There is debate in
the literature about when RNA-seq and microarrays are more accurate; however, there is one area
in which there is a clear winner. RNA-seq analysis adds the ability to detect genetic differences.
This added benefit provides a whole new world to explore.

This chapter will work through the very basic levels of genetic analysis of RNAseq data.
Where you take it from there is up to you. With the small sample sizes of most of the groups
here, population genomic tests may be out of reach. It may, however, be possible to focus on
genes of interest (e.g., those in known pathways or those identified as differentially expressed)
to add an intriguing layer to your classroom analysis. In addition, with model systems, the role
of many of these genetic variants may be known already. For now, we will simply focus on the
tools that are available, and the analyses that are possible. There are many different options for
the tools to use, but many rely on the same bowtie outputs generated for expression analysis.
Today we will use just one of the downstream options.

This chapter is likely to contain less detail than others on the process, and I strongly encourage
you to read the documentation included in “Further Reading” before applying these approaches
to your project. Like differential expression, genetic variant detection is suffering from a crisis of
statistics. The datasets are far larger than can be handled by many of the early variant detectors
(or population genetics methods), and new methods are lagging behind the increases in sequence
production. The biggest problem is differentiating between sequencing/alignment errors and
true variants.

Figure 5.1: xkcd.com/1168xkcd.com/1168

5.2. Chapter goals

• Discuss the concepts of SNP detection

• Discuss statistical questions surrounding genetic variants

26

http://xkcd.com/1168

Variant Detection

• Learn the basics of SNP detection and ideas for where to go next

• Understand the basic principles managing large datasets

• Understand the statistical principals of large datasets

5.3. Vision and Change Competencies addressed

• Ability to apply the process of science

• Ability to use quantitative reasoning

• Ability to use modeling and simulation

5.4. Set up the software

We are going to be using a tool named VarScan in this chapter, which requires the samtools
package as support. Samtools is available as a module on Mason, and VarScan is a simple java file
(like Trimmomatic). Recall that we have previously installed and loaded java, but if you missed
that step, you will need java to run the below (see section 2.52.5). To install these tools, use the
following commands, which first download VarScan, then load samtoools, then set samtools to
load automatically.

cd ~/opt
wget http://downloads.sourceforge.net/project/varscan/VarScan.v2.3.6.jar

module load samtools
echo 'module load samtools' >> ~/.modules

5.5. Prepare the alignment file

For this example, we will create an alignment file from a small subset of our read files. To
run this for a more complete analysis, it would be necessary to run both this step (preparing the
mpileup file) and the next step (analyzing the output) in a script submitted via qsub.

Move into the directory with the sample sequence files, then each of you will analyze a couple
of the samples (the sample you were assigned previously, plus one other of your choice). Note
that we are using the same reference as what we used for REM, but we need to call the FASTA
file directly.

samtools mpileup -f ref/ref.transcripts.fa \
align/file.transcript.sorted.bam \
align/file2.transcript.sorted.bam \
> tempData_yourName.mpileup

This creates an encoded file containing a lot of information about the aligned sequence file.
Use less to take a look at it. As you can see, we need something to help us interpret it. That is
where VarScan comes in.

27

Variant Detection

5.6. Run VarScan

VarScan is written as a java file, which means we call it by calling java for the command of
interest and passing the options we want. Below, we call the mpileup file we just created, pass it
a threshold p-value of interest, then use the redirect (‘>’) to save the output. We are accepting all
of the defaults from mpileup2snp, but we could set several options to control the exact output.
Look at the documentation linked in “Further Reading” (section 5.95.9) for more details and to
understand the output.

java -jar ~/opt/VarScan.v2.3.6.jar mpileup2snp \
tempData_yourName.mpileup \
-p-value 0.01 > tempVarScan_yourName.txt

Use less to look at the file. Remember here that we only have a small number of reads and
samples, so the data are likely to be less than complete. To explore these data more fully, down-
load the output file (using scp) and load it into R using read.table(). From here, there are
several functions in the rnaseqWrapper package that might help you explore the data, though
many of these assume that the reference contains only an in-frame coding sequence (e.g., pre-
dicted cds), which we don’t have for these data (the fasta reference is not necessarily in-frame,
and frequently includes un-translated regions). However, for your projects, these may be useful:

parseVarScan Separates the columns of varScan output format, which improves some us-
ability. This step is not needed for downstream use, but may still prove helpful for other
applications.

kaksFromVariants Calculate Ka/Ks ratios using the identified variants

nSynNonSites Calculate the number of synonymous and non-synonymous sites in genes
from a reference. Useful to complement the Ka/Ks output for genes with no identified
variants.

determineSynonymous Determines whether each variant is synonymous or non-synonymous
compared to the reference position. Also calculates dN/dS (wihout respect to sites).

calculateThirdPosBias Calculate the portion of variants (in each gene) at each codon posi-
tion. A nominal proxy for Ka/Ks and dN/dS, if needed. When no reference is used, it
assumes the most common variant position is the third position.

5.7. Run a more complete analysis

Now, to put all of these together, I ran the commands below to create a single file to analyze.
Note that the ‘?’ indicates any single character match, so, it will match all six of the temp sequence
files in the directory. This is just one more reason why you should be extra careful to be consistent
in file naming conventions.

samtools mpileup -f ref/ref.transcripts.fa \
align/*.transcript.sorted.bam > tempData.mpileup

java -jar ~/opt/VarScan.v2.3.6.jar mpileup2snp \
tempData.mpileup -p-value 0.01 > tempVarScan_defaultOptions.txt

This created a file with all of the samples analyzed, and may be more interesting to analyze.

28

Variant Detection

5.8. Where to go for help

My background is (definitely) not in population genetics, and my research has focused largely
on gene expression analysis. However, I have gotten good at reading programmatic documen-
tation, and in time you will too. So, when you start your project, start with the manuals and
documentation, and go from there. In addition, there are a lot of really helpful examples online,
including answers to other people that faced issues similar to what we are likely to encounter.

5.9. Further Reading

More information related to these topics can be found in:

• http://varscan.sourceforge.net/using-varscan.htmlhttp://varscan.sourceforge.net/using-varscan.html

• http://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notationhttp://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notation

29

http://varscan.sourceforge.net/using-varscan.html
http://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notation

Chapter 6:

De Novo Assembly

6.1. Background

One of the most computationally difficult processes in RNA-seq is aligning all of the reads
together into transcripts. This can be eased by aligning them against a reference genome or
transcriptome, but sometimes references are not available. Only a small number of eukaryotes,
and even fewer animals, have had their genomes sequenced. This means that analyzing any
non-model system will often require assembling the sequences with just themselves (de novo).

This process is a major computational task, often requiring days or even weeks to run. Quite
simply: this is not something you want to run on your local machine. Even many online tools
don’t allow users to run assembly due to the computational cost.

There are a growing number of assembly programs, and each has unique benefits and draw-
backs. Below, we will just touch on some of the basics of these assemblers and set up a de novo
assembly to run with the cleaned reads that everyone has worked with. We will likely not cover
this section in the workshop, but it is here for your edification and benefit.

This module is going to focus on running a simple RNA assembly from the command line,
We will walk through each step in the process, leading to a single job with input from all of
the samples. The focus in these written instructions will be on running the program, rather than
on what the program is doing. For further information on what each assembler does, why you
might choose a particular assembler, and what parameters may need tweaking, please see the
documentation for these projects, and the links below (see section 6.76.7).

Figure 6.1: Drew Sheneman – The Newark Star Ledger

6.2. Chapter goals

• Learn the basics of starting an RNA assembly

• Understand the basics of Linux command line scripting

• Understand the basics of what Trinity, or a similar short read assembler, does

30

De Novo Assembly

6.3. Vision and Change Competencies addressed

• Ability to apply the process of science

• Ability to use quantitative reasoning

• Ability to use modeling and simulation

6.4. Getting the data together

For this assembly, we will need to get all of the sequence data combined into a single (very
large) file. For that, we will use the cat (concatenate) command, and create a new file for each
the left and right reads. The code below will combine the listed files together. Replace the dots
and the last file with the remaining files to concatenate, and this will create a single file for all
of the reads. If you trimmed your sequence data, you should use the trimmed versions here.
Low quality sequence data is a much larger hindrance to assembly than it is to gene expression
analysis.

cat file1_1.fq file2_1.fq ... fileN_1.fq > new_left.fq
cat file1_2.fq file2_2.fq ... fileN_2.fq > new_right.fq

This command combines all of the named files together, and then writes them to a new
file. Be careful with the single “>” as it will overwrite a file of the same name. Using “>>”
will append the new information to an existing file, but can cause problems with accidentally
duplicating information in a file unless care is taken. That was a lot of typing, and introduces
several opportunities for error. The problem only gets worse with more files (these sample data
came from a set with 90 samples). Luckily there is a lazier more efficient and safer solution using
the wild card character (*):

cat *_1.fq > new_left.fq
cat *_2.fq > new_right.fq

Which will match any of the files ending with “_1” or “_2” respectively.

6.5. Set up the assembly script

Copy one of your old qsub scripts, then open it with nano (or, edit it on your machine,
and then scp it up). Set the required memory to 300 GB (vmem=300gb), and the time to 6 days
(walltime=144:00:00). Yes, assembly really can take that long; sometimes even longer, espe-
cially if you have more sequence data. This is why you need dedicated computing resources to
run this, unless you have a PC with 300 GB of RAM that you don’t need for the next week.

Now, we need to add the programs that we will be running. Luckily for us, all of the programs
we need are already available on Mason (Trinity, samtools, java, and bowtie). A current list of
software available on Mason is kept at ncgas.org/software.phpncgas.org/software.php, or can be found by running the
command “module avail” on Mason. Because the system knows that samtools, java, and bowtie
are required by Trinity (they are “dependencies”) the system will automatically load them when
we tell it to load Trinity. To do this, add the following line to your script:

module load trinityrnaseq

Note that you can also run this from the command line, if you want to use Trinity directly
from the command line; though the time limits mean you are unlikely to be able to accomplish

31

ncgas.org/software.php

De Novo Assembly

anything. If you want to load Trinity (or any other module) every time you log on to Mason, you
can add the above line to the file “.modules” in your home directory.

Next, set the working directory for the script to the directory holding our sequence data.

cd /path/to/sequenceData

We are now ready to add the call to Trinity itself to the script. There are many, many options
for Trinity, but we will stick with the simplest of them for this assembly. For more details on
options, look at the web documentation for Trinity linked below (section 6.76.7). Trinity is a Perl
script, hence the “.pl” extension. The available options, and a usage example, can be found by
calling “Trinity.pl --help” Below are some very basic approaches, which should give you the
idea. Add this to your script:

Trinity.pl --seqType fq --JM 300G --CPU 1 --output GCAT_Trinity \
--left new_left.fq --right new_right.fq

These commands call Trinity. It sets the “seqType” to fastq format. Allows the computer to
use up to 300 GB of RAM (also needs to be set at the top of the script) on one CPU. It will create a
new directory named “GCAT_Trinity” for the output, and will use the sequence files we created
just above (after we tell it which is left and right). This one line will run the full assembly for us.
Finally, as before, set the job to run with qsub, and wait.

6.6. Where to go for help

Assembly is one of the largest challenges in bioinformatics right now. Fortunately, many new
approaches are emerging, based on both theoretical and practical exploration. Unfortunately, that
means that by the time you get around to looking for help, everything will have changed since I
wrote this. Using this module as a starting point will likely get you very far, as Trinity is one of
the better assemblers at the moment. If (read: when) you run into problems, ask around to see if
it is a common problem, and test out your Google-fu to see if others have already solved it.

6.7. Further Reading

More information related to this topic can be found at:

• trinityrnaseq.sourceforge.net/trinityrnaseq.sourceforge.net/

32

trinityrnaseq.sourceforge.net/

Chapter 7:

Simple in-class options

7.1. Background

The ways we have covered so far, focusing on R and the Linux command-line, are the most
robust way to do RNAseq analysis, especially for research purposes. However, if you have a four-
hour lab available to cover “bioinformatics” for freshman, spending your time teaching them R
and Linux may not be fruitful. (Aside: If you have longer, and your goal it to train students to
actually do the analysis, it is almost certainly worth your time.) In these cases, you may wish
to opt for a simpler approach, with click-able menus, and fewer places for students to wander
off-track. In this chapter, I will present a (very) brief introduction to a few of these options. Each
lowers the bar to entry into bioinformatics, but generally at the cost of in-depth understanding,
flexibility, power, and/or expense.

Many of these tools also ease the entry to research questions as well. However, while they
will get you started, they are rarely enough to finish an analysis, and you will likely (eventually)
find yourself pulled back to R and the command line.

Figure 7.1: Staples easy button

7.2. Chapter goals

• Introduce simple alternatives

• Understand the utility and disadvantages of various trade-offs

• Explore ways to expose students to bioinformatics

7.3. Vision and Change Competencies addressed

• Ability to communicate and collaborate with other disciplines

33

Simple in-class options

7.4. Galaxy

Galaxy is one of several implementations of a “workflow system.” These systems generally
include a graphical user interface that makes it easier for those new to bioinformatic analyses
(such as students in a class) to begin making progress. The available programs are limited, and
default parameters are often set to ease the load on the computers. This makes completing tasks
easier, but leaves many decisions out of the investigator or students’ hands. The instructions here
are specifically for Galaxy, but common sense and Google will allow you to use these as a guide
to enter other systems as well. Because I have more (though still limited) experience with Galaxy,
this section will be much more thorough than the others in this chapter.

7.4.1. Get access

There are many implementations of Galaxy that are run by various groups across the country
(GCAT-SEEK may be getting one). However, the process for signing up will be similar no matter
where you are joining. Google for “galaxy” and look for the Penn State implementation (the
url is usegalaxy.orgusegalaxy.org, but Google and one-click will be faster than remembering that). You may
wish to bookmark this page to make it easier to get back to it. Click on “user” at the top, and
select “Register.” Follow the on-screen instructions to get an account. Make sure to remember or
save the password you select. Each time you want to sign on, go to the Galaxy main-page. Click
“User” at the top, and select “login”, and your saved sessions should be available to you.

7.4.2. Load data

There are several ways to load data into Galaxy. Here, we will focus on loading data directly
from your computer. However, it is also possible to load in data from other sites on the internet
(such as UCSC, BioMart, and several organism specific repositories). All of these methods start
with clicking “Get Data” at the top of the left-hand options from any page in Galaxy, then
selecting one of the options.

The simplest approach to get data into Galaxy is to load it through the browser. After se-
lecting “Get Data,” click “Upload File.” Leave the top set to “Auto-detect” to make sure it reads
your data appropriately. Browse for your file under “Choose File” and click “Execute.” The file
should upload and become available in your “History” panel on the right-hand side of the screen.
However, this will likely fail for large files.

There are two alternatives to upload larger files. First, you can load the files online somewhere
(e.g. Dropbox, Google Drive, etc.) where the file can be downloaded directly. Simply put the file
on your sharing site of choice, set the sharing settings to get a url, then paste the url into the box
labeled “URL” and click “Execute.” You can also upload the files using ftp. Connect to the ftp
server listed on the page (it may vary), sign in using your Galaxy credentials, and load the file.
Any ftp program will work for this. The file(s) will then be listed on the page – click the box next
to the files you want to load and click “Execute.“

7.4.3. Install programs

Do nothing. One of the benefits of using this kind of platform is that you (usually) don’t have
to install programs at all. Everything is already done for you. However, this also means that it
is very difficult to add programs, if what you want to use is not present. Further, each instance
of Galaxy has a slightly different suite of tools, so it may be worth looking at other options (e.g.,
Indiana University has a Galaxy instance with a few more tools than the main instance). To run
the program you are interested in, find it in the list on the left hand side of the screen, select it,
and follow the on-screen prompts.

34

https://usegalaxy.org/

Simple in-class options

7.4.4. Where to go for help

Galaxy is set up with a large number of options for help, including a wiki, video tutorials,
a ”Support“ page, and a lot of input from the community. Simply click ”Help“ at the top, and
select one of the options. Alternatively, Googling for ”in Galaxy how do I ...“ followed by your
problem is likely to bring up some great advice as well. When in doubt, reach out to someone
that may be able to help you, either directly or by suggesting good terms for your search.

7.5. iPlant

iPlant is a set of tools for next-gen sequence analysis. Originally developed for use on plant
genomics, the tools are not unique by study system, and so this resource was opened to other
species as well. The three tools described below (DNA Subway, Discovery Environment, and
Atmosphere) are linked by their use of the ”Data Store,“ a repository for uploaded data, which
holds your own data along with publicly available data. My experience with these tools is very
limited, so what follows is a very brief discussion of what each does. For the DNA Subway and
Discovery Environment, the on-screen prompts, and linked help, combined with your knowledge
from this workshop, should get you well started. For Atmosphere, your Linux knowledge will
serve you quite well.

To get access to these tools, go to http://www.iplantcollaborative.org/http://www.iplantcollaborative.org/, the main site de-
scribing the iPlant initiative. Select ”User Portal“, then ”Register“ and follow the on-screen in-
structions. In the future, log-in through the same ”User Portal“ page, then select the tool you
want to use.

7.5.1. DNA Subway

The simplest of the tools is the DNA Subway, and the ”Green line“ allows very basic RNAseq
analysis. This tool’s benefits are also its drawbacks. It is a very simple tool to click through a
basic analysis, particularly when using their sample data. However, this also means that there
is very little flexibility (inhibiting research), and very little interaction (limiting what students
actually learn). Similarly, it is limited to small datasets, and only works against a very small list
of genomes. This ensures consistent results, but means that your organism of interest is unlikely
to be available and that the data you are collecting this summer are likely too much for it to
handle. In short, this is a great tool for a low-level introduction of the steps and concepts of
RNAseq analysis, but is not well suited to deeper analysis or research.

7.5.2. Discovery Environment

The Discovery Environment, on the other hand, is much more similar to Galaxy. The user
interface is different, as is the set of tools available. However, many of the programs you may
be interested in using will be available, and you can use your own data (via the Data Store),
following simple on-screen prompts, much like in other workflow systems. Like Galaxy, this can
ease the transition into bioinformatics for students, though likely will not be able to take you all
the way through to your research goals. The major benefit over Galaxy is that, through it’s use of
the data store, it is easier to transfer the data to a more complete system, specifically Atmosphere.

7.5.3. Atmosphere

Atmosphere is, essentially, a tool to access Linux environments with various programs al-
ready installed. Launching an Atmosphere instance will start up a Linux command line with very
good connection to the Data Store, easing file saving/loading problems. The benefits here are the
consistent environments possible by creating (or using) a specific instance, which will reduce

35

http://www.iplantcollaborative.org/

Simple in-class options

some of the early hurdles, and the connection to the Data Store. Unfortunately, Atmosphere cur-
rently seems under-powered, and it is often crashing. In addition, while using a created instance
is simple, it can be difficult to build one with exactly the tools you want for a class, especially
if the program you want has many dependencies. This is especially true for long processes, as a
separate instance may be required for each step in the analysis.

7.6. Accelerating Comparative Genomics

Accelerating Comparative Genomics (CoGe) is another online tool with a click-able user inter-
face. CoGe is geared towards genomic comparisons (hence the name), but has a few tools which
may also be useful for RNAseq analysis. CoGe also integrates with the Data Store, which may
make it an especially great tool if you are also interested in using pieces of the iPlant collabora-
tive. I encourage you to look through their help for general information, as well as to refer to the
modules written by Dr. Vincent Buonaccorsi for his GCAT-SEEK breakout session on Eukaryotic
Genomics, for more information on what is possible in CoGe.

For RNAseq, there appears to be only one tool, which is described here: youtu.be/3fNyHGB02dMyoutu.be/3fNyHGB02dM.
While the tutorial takes only a few minutes, please note that they are using an incredibly small
data file. In addition, there is no room for modifying parameters, and the information it outputs
may not be what you are interested in. The tool is built for gene annotation, and as such, has
no support for differential expression, or any of the other (often primary) interests of RNAseq.
However, it may still be a nice tool to demonstrate some of the basic concepts in short class time
or extend your basic genetic analyses.

7.7. Commercial Software

Up until now, all of the programs that I have described are free and open-source. This means
that they are free-as-in-beer (they cost nothing) and free-as-in-speech (you can see all of the code,
and do what you want with it). However, not all software falls into this category. There are a num-
ber of software packages available for a cost. These systems generally have very clean, attractive,
and intuitive graphical user interfaces (GUIs) that make working with them simple. In addition,
they generally package all of the tools you may want together; giving you a single installation,
rather than the multitude we have used here. If you have the money, and the inclination, such
software can make the entry into bioinformatics more pleasant.

These systems come with downsides, including lack of transparency, lack of community sup-
port, and cost. First, because the software is proprietary, you don’t know exactly what it is do-
ing with your data, which can make interpreting the outcomes very difficult, and makes trou-
bleshooting nearly impossible in some cases. Second, the proprietary nature means that there
is, generally, far less community support for the software. This limits the number of help posts
you are likely to find, and also means that new features aren’t emerging from the field. In con-
trast, new packages and software are constantly emerging to extend open-source software to
accomplish new things (such as the R packages we used here). Finally, these programs can be
very expensive. Licenses (which last a limited time) can run well into the thousands of dollars,
quickly reaching prohibitive levels for most labs.

That said, many of the users of these commercial programs swear by them. If you haven’t
noticed yet from the size of my soap box, I am both too cheap and too devoted to open-source
to have much experience with these tools. However, below is an incomplete list of software that
you may be interested in pursuing.

• Avidis NGS

• CLC Genomics Workbench

36

https://youtu.be/3fNyHGB02dM

Simple in-class options

• DNAnexus

• DNASTAR QSeq

• Partek Genomics Suite

• OmicsOffice for NGS

• NextGENe

7.8. Further Reading

For completeness, here is a list of open-source bioinformatics software:
http://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_softwarehttp://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_software and a gen-
eral list of RNAseq tools available, including both open-source and commercial options, sorted
by step: http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_toolshttp://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

37

http://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_software
http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

Chapter 8:

Lab Work

8.1. Background

Most of the work for next-generation sequencing, especially RNA-seq, comes after all of the
sequencing is done and centers around ACTG’s in the computer. However, to get to that point
(where we have spent the rest of this manual), many laboratory steps must be completed. These
steps are not, generally, difficult, but they require a great deal of caution as the finished product
(RNA in this case) is often unstable and subject to contamination.

Here, we will walk through the basics of the laboratory steps required for RNA-seq: RNA-
extraction, rRNA removal (if necessary), library preparation, and sequencing. Often several of
the steps may be performed by a core facility for a fee. This fee is often a convenience fee, though
it reduces the need to develop substantial infrastructure for individual investigators, and reduces
the likelihood of errors caused by doing something for the first time.

This module will walk through the basics of the lab work necessary for RNA-seq analysis. It
will not, however, go into great detail about any of these steps. The simplest approach to each
of these steps is to buy a kit and follow those specific directions as exactly as possible. There
are a number of less expensive routes, that involve a series of chemicals rather than proprietary
kits. These are often much easier to scale for different volumes or applications, but require a bit
more up-front expenditure on infrastructure. For this year’s workshop, we are lucky enough to
be using a protocol, developed by Dr. Arthur Hunt, to make in-expensive librarires ourselves.
This protocol will be distributed separately.

Figure 8.1: xkcd.com/699/xkcd.com/699/

38

http://xkcd.com/699

Lab Work

8.2. Chapter goals

• Learn how to extract RNA

• Learn how to prepare a sequencing library

• Make informed decisions about lab techniques and kits

• Understand the process that goes into lab work for RNA-seq

8.3. Vision and Change Competencies addressed

• Ability to communicate and collaborate with other disciplines

• Ability to apply the process of science

8.4. Sample collection

This process is entirely system, species, and question dependent. There are, however, a few
standard rules-of-thumb. First, be fast. Whatever technique you are using, you want it to affect
your tissue/cells as little as possible. Therefore, move quickly but not in haste. However, some
studies suggest that animal tissues can be processed several hours after death (Cheviron et al.,
2011). Second, get things cold (fast). Dry ice, liquid nitrogen, or a -80 C freezer will stop much
of the RNA degradation, and can often be used as a preservative even without any sort of buffer
(depending on your system). Some alternatives rely on chemical preservation rather than cold
temperature. Finally, be consistent between samples. One of the biggest worries is accidentally (or
by design) treating samples from experimental groups differently, which could easily cause false
differences to be detected. With consistency, there is some leeway from the first two rules. Even
if there is some RNA loss, if it is consistent across groups, the stats should catch any problems.

8.5. RNA extraction

RNA extraction for RNA-seq is essentially identical to RNA extraction for other applications,
such as microarray processing. Everyone has a preferred method of extraction, generally a kit
designed for their species, and most of these methods appear to yield relatively similar results.
The basic concept is to rupture the cell, releasing RNA (and other cell contents, such as DNA
and protein) in a solution that will protect the RNA from degradation. Most kits are designed to
only collect RNA (the RNA sticks to a filter, and is later removed - “eluted”) after it is cleaned.
Some applications, such as phenol-chloroform extraction with TRIzol, are designed to allow for
the collection of genomic DNA, protein, and RNA all a the same time (if desired). This is ac-
complished by separating the cellular contents int o layers that can then be collected, rather than
relying on a single filter. A detailed protocol for this is available from me if you are interested.

8.6. rRNA removal

Ribosomal RNA (rRNA) makes up around 80% of cellular RNA, depending on species and
estimate. Unfortunately, this means that a large portion of RNA sequenced will be rRNA, which
makes it much more difficult to identify the coding sequences of interest. For eukaryotic samples,
rRNA removal can be skipped if the library preparation (see next section) uses poly-a isolation.
For prokaryotic samples, however, it is necessary to remove rRNA before library prep, unless
they are of specific interest to the project.

39

Lab Work

8.7. Library Preparation

The final step before sequencing is library preparation. RNA must be converted to cDNA and
ligated to adapters for sequencing. For most preparations, this will involve breaking the material
into smaller pieces and selecting a very specific size fraction. For paired-end sequencing, this
selection is what allows you to know how much space lies between the two sequence pairs âĂŞ
a necessity for accurate assembly and analysis.

Library preparation can require a substantial investment in infrastructure (largely for break-
ing and size-selecting the RNA and having primers on hand) as well as attention to detail that
may be difficult to achieve for students or first - time investigators without substantial oversight.
Depending on your available time, infrastructure, guidance, expertise, and money, it is often sim-
pler (and more reliable) and occasionally less expensive, to pay for a core laboratory to perform
this step. This reduces errors and allows them to use their infrastructure (often including robots)
to reduce time and individual investigatory investment in equipment.

8.8. Where to go for help

The best source for help on lab work is the kit directions and manufacturers themselves.
In addition, many common questions have been asked and answered in online forums such as
seqanswers.com. A bit of searching may turn up an answer, or at least direct you to somebody
(or a forum) that may be able to answer your questions.

40

	1 Computer setup
	1.1 Background
	1.2 Chapter goals
	1.3 Vision and Change Competencies addressed
	1.4 Sign on to Mason
	1.5 Linux tutorial
	1.6 Loading data
	1.7 Where to go for help
	1.8 Further Reading

	2 Sequence processing and quality control
	2.1 Background
	2.2 Chapter goals
	2.3 Vision and Change Competencies addressed
	2.4 Checking data quality
	2.5 Setting up fastqc
	2.6 Running FastQC
	2.7 Trimming bad data
	2.8 Where to go for help
	2.9 Further Reading

	3 Read Mapping
	3.1 Background
	3.2 Chapter goals
	3.3 Vision and Change Competencies addressed
	3.4 Choosing an aligner
	3.5 Installing RSEM
	3.6 Prepare for alignment
	3.7 Run the alignment
	3.8 Where to go for help
	3.9 Further Reading

	4 Differential Expression
	4.1 Background
	4.2 Chapter goals
	4.3 Vision and Change Competencies addressed
	4.4 Download data
	4.5 DESeq
	4.6 Interpreting differential expression analysis
	4.7 Where to go for help
	4.8 Further Reading

	5 Variant Detection
	5.1 Background
	5.2 Chapter goals
	5.3 Vision and Change Competencies addressed
	5.4 Set up the software
	5.5 Prepare the alignment file
	5.6 Run VarScan
	5.7 Run a more complete analysis
	5.8 Where to go for help
	5.9 Further Reading

	6 De Novo Assembly
	6.1 Background
	6.2 Chapter goals
	6.3 Vision and Change Competencies addressed
	6.4 Getting the data together
	6.5 Set up the assembly script
	6.6 Where to go for help
	6.7 Further Reading

	7 Simple in-class options
	7.1 Background
	7.2 Chapter goals
	7.3 Vision and Change Competencies addressed
	7.4 Galaxy
	7.5 iPlant
	7.6 Accelerating Comparative Genomics
	7.7 Commercial Software
	7.8 Further Reading

	8 Lab Work
	8.1 Background
	8.2 Chapter goals
	8.3 Vision and Change Competencies addressed
	8.4 Sample collection
	8.5 RNA extraction
	8.6 rRNA removal
	8.7 Library Preparation
	8.8 Where to go for help

