Digital PCR Seminar

Lou Ann Bierwert – ITI Center for Molecular Biology

dPCR involves performing PCR with end-point data collection in a large number of separate reaction chambers, or partitions. Results are obtained by counting the number of partitions in which the amplified target sequence is detected (regarded as positive) and the number of partitions in which there is no amplification (regarded as negative). Absolute quantification of the mean number of target sequences per partition is achieved by applying a Poisson correction to the fraction of the positive partitions. This compensates for the fact that more than one copy of template may be present in some partitions.

"Absolute quantification" used in dPCR refers to an estimate derived from the count of the proportion of positive partitions relative to the total number of partitions and their known volume.

Unlike qPCR, in which the quantification cycle (Cq) depends on variable features such as the instrument, fluorescent reporter dye, and assay efficiency, dPCR relies on a simple count of the number of successful amplification reactions. The counting of positive partitions in an ideal dPCR is definitive and does not require a calibration curve to convert Cq to copy number; knowing the partition number and volume is sufficient.

The ability to measure extremely low concentrations of specific DNA sequences, independent of a standard curve, with high precision, in a complex background, is unique to dPCR.

dPCR was initially developed to investigate minority target measurement, for which rare variants are measured in the presence of large numbers of wild-type sequences. Detection and quantification of rare mutations can provide a useful tool in several scenarios such as the diagnosis and staging of cancer.

Digital PCR has many applications, including the detection and quantification of:

- low-level pathogens
- rare genetic sequences
- copy number variations associated with chromosomal rearrangements or gene/chromosomal dosage
- relative gene expression in tissues or single cells
- cDNA concentrations
- New Digital PCR Application for Allele-Specific Copy Number Analysis

Experimental Workflow on the QuantStudioTM 3D Digital PCR System

Instrument reads one chip at a time

Less than a minute to read one chip

 ■Factory calibrated to detect FAM[™], VIC® and ROX® dyes; also compatible with SYBR Green I assays (detects SYBR on the FAM channel and can detect HEX on the VIC channel). ROX is the reference dye in MM so can only singleplex or duplex.

Intuitive touch screen operation

Upload results to cloud for analysis

 Instrument stores results for last ~600 chips (max)

- 20,000 reaction wells per chip
- Minimal sample loss
- One sample per chip
- Simple and consistent loading
- Sealed consumable minimizes contamination
- Each chip identified by unique 2D barcode
- Fixed reaction volume minimizes upfront sample manipulation

- Total reaction volume loaded on chip is~14.5µl
- Reaction volume is an important determinant of sensitivity.
- Partition volume is 755 pL
- Chip surface has hydrophobic coating to enable isolation of independent reactions.

•dPCR only measures the copies that are amplifiable.

•As such there are sequence and sample specific factors to consider prior to your experiment

Factors that affect template amplification

- □ Sequence damage or DNA integrity
- □ Assay inhibition or poor sensitivity of assay (primer design)
- Molecular dropout due to linked targets or secondary structure (RE can help, multiple primer design may be necessary)
- □ Chemical modifications (e.g. formalin crosslinking)
- □ Denaturation state (single vs double stranded)
- □ For RNA templates, reverse transcription efficiency

Preparing DNA Samples

- DNA Quality
 - Use an optimized DNA extraction protocol, preferably ending in water
 - salting-out procedures and crude lysates are not recommended
 - Make sure DNA extracts do not contain PCR inhibitors
 - A and A ratios should be between 1.7 and 1.9 260/230 260/280
 - ~2.0 for RNA
 - Make sure DNA is not degraded
 - E.g. as visualized on an agarose gel
- DNA Quantity
- Thermo recommends the following methods of quantitation:
 - nucleic acid quantitation using the Qubit® 3.0
 - Spectrophotometry (OD260) for quality ratios
- The volume of sample added to a digital PCR reaction depends on the
 - Concentration of genomic or complementary DNA (gDNA or cDNA) present in each sample
 - Number of copies of the target sequence present in the genome or total RNA of your samples.
- If target copy number is unknown, qPCR data can be used if available.
- Note-assays should be tested with regular or qPCR to verify if possible.

• Goal is to dilute the samples so that each partition will contain, on average, ~0.6 to ~1.59 copies of the target sequence.

Example for human gDNA templates

- Human genomic DNA has 3.3 pg/copy of a given gene (*E. coli* 0.004 pg/copy)
- Each partition is 755 pL
- To determine an appropriate copy number per chip:

Low end of range:

0.6 copies / 755 pL x 20,000 partitions = 12,000 copies total-> \sim 795 copies/µL or 2.62 ng/µL in the dPCR reaction mix.

• **High end of range**: 1.59 copies / 755 pL x 20,000 partitions = 31,800 copies total needed-> ~2105 copies/µL or 6.94 ng/µL in the dPCR master mix. (I don't follow these numbers – easier to calculate total DNA needed – 31,800 copies * 3.3pg/copy = 104.9ng in 14.5µl so 104.5/29 half µls = 3.62 so add this to total needed = 104.9 + 3.62 = 108.5ng total in 15µl)

*Highest precision (meaning Poisson stats calculations) is achieved at 1.59 copies per partition

Prepare the digital PCR reactions

Required items

- TaqMan® Assay(s) (\$140-170/200 rxns)
- QuantStudio[™] 3D Digital PCR Master Mix (\$140/200 rxns)
- Pipettes and tips, P10 to P1000
- Reaction tubes
- Molecular grade water
- Microcentrifuge
- Vortex
- Gloves, marker pen, lint-free wipes
- Chips (comes with all loading consumables) - \$52/12 (\$884/200)
- \$5-6 per sample

Material	Volume (µL)	Stock	Final
QuantStudio™ 3D Digital PCR Master Mix, 2X	7.5	2X	1X
TaqMan® Assay, 20X (primer/probe mix)	0.75	20X	1X
Diluted DNA	1.5	23 ng/µL*	2.3 ng/µL*
Water	5.25	-	-
Total volume (sample/1 chip)	15	-	-

* Just an example, it will depend on the application

QuantStudio[™] 3D Workflow with Chip Loader

Wait for chips to reach room temperature.

Set the destination for the imaging data
You may, for example, use a USB memory stick to collect the run data

•Open the chip tray and load the Digital PCR 20K Chip face-up into the bay. Confirm that the Digital PCR 20K Chip is correctly aligned within the chip tray, then close it.

- Orient the chip ID and fill port toward the front of the instrument.
- Confirm that the chip window is clean and correctly aligned to the chip.

Enter a prefix or regret will ensue. You have about 20 seconds.

- •FAM[™] and VIC[®] data will be shown after analysis is complete
- •After reviewing the results of the run, touch Done
- •Further analysis using cloud- or serverbased AnalysisSuite software is recommended

- •You may run the imaged Digital PCR 20K Chip again for up to 1 hour after thermal cycling.
- •If you read multiple Chips in rapid succession, touch the scroll buttons to review the results of the previously imaged chips.
- •The Instrument retains a copy of the analyzed data for the imaged Chip that you can access from the Run History screen

Note: The results will remain in the QuantStudio[™] 3D Instrument cache for up to ~600 readings. After ~600 chips, the instrument removes the oldest data file in the cache to store each new reading

Analyze your data in AnalysisSuite in the cloud

•URL: https://www.thermofisher.com/ca/en/home/life-science/pcr/digital-pcr/guantstudio-3d-digital-pcr-system.html •Alternatively, just go to Thermofisher.com and search "AnalysisSuite"

•All users must create a new login, or use a pre- existing (validated) account username and password (previous Life Technologies accounts would have been transferred to Thermofisher.com and can still be used) Case-sensitive

Make sure to use Google Chrome

Once logged in, you are taken to this page where you can look at and add to old projects or create a new one.

	Project	# of Imported Chips T	Last modified
	Carlsbad Training	7	Dec 31, 2015 12:03 PM
\Box	50 100 ng 2015-12-3	3	Dec 04, 2015 02:28 PM
\Box	Cre LoxP project	2	Nov 30, 2015 01:12 PM
\Box	CMV Standard curve 3 - chip reread	7	Nov 22, 2015 01:12 AM
\Box	RQ Demo Project	5	Nov 12, 2015 03:09 PM
\Box	CNV Demo Kit	6	Nov 12, 2015 03:08 PM
	SIRS samples	12	Nov 12, 2015 11:13 AM
\Box	DilutionCurve	12	Nov 12, 2015 10:48 AM
\Box	Illumina Library Quant. Demo Kit	2	Nov 06, 2015 04:39 PM

Either open an existing project, or at bottom of screen, can import a project/create a new one

Project name you created

RQ Demo Project Edit project name

ies the dye that is used as the numerator in reported ratio results Type into the fields to enter new settings or select the chip(s) and click "Assign settings to multiple chips" "Rare Dye" Actions -What dyes are on your Chip? VIC FAM FAM Delete chip(s) By clicking on "Actions", can import/export Chip T Sample Import Settings 5A_X210250A_130508_163151.eds Sample 1 \Box 'Define Chips' table, or assign settings to Export Settings Sample 2 \Box 5C_X2102409_130508_180829.eds >1 chips simultaneously Assign settings to Sample_3 6C_X210017C_130508_181054.eds \Box multiple chips

Results

Review the results, sort and adjust settings in the table to alter the barchart display as needed. Move the cursor over the image to view more information. Change confidence level, desired precision, and coloring schemes by clicking the "Show settings" button.

As the sample becomes more concentrated, the chance of more than 1 molecule being present within a positive partition increases. However, the distribution of molecules throughout the partitions approximates a Poisson distribution and a Poisson correction is applied. Note how precision skyrockets with few data points. Can't be helped with rare events. Show settings

Filter can be applied to any column with a funnel icon.

Results

Review the results, sort and adjust settings in the table to alter the barchart display as needed. Move the cursor over the image to view more information. Change confidence level, desired precision, and coloring schemes by clicking the "Show settings" button.

Under "Show Settings", you can change the confidence level (90, 95, or 99% - error bars grow with higher confidence desired), precision desired (wide range, 10% standard), and algorithm used (Poisson or Poisson plus).

I	*	Ø	i	<u>lait</u>	<u>t</u> .	
Project Dashboard	Import Data	Define Chips	Review Data	See Results	Export	

Export

Export creates a .csv file. All data are exported in a fixed order and format regardless of the sorts and column organization in the tables below.

Project data as CSV Export data as .csv, further analysis in 3rd party graphing program
 Chip data as XML Export
 Export
 Export

All data are exported in a <u>fixed format</u> that does not reflect column sorting performed in AnalysisSuite[™] prior to export.

Project name	test	Assays	1
User name	lbierwer@smith.edu	Samples	1
Created by	lbierwer@smith.edu	Chips	1
Created on	Jun 03, 2016 10:48	Confidence level	95 %
Last modified on	Jul 05, 2016 15:17	Desired precision	10 %
Application version	3.0.3	Algorithm version	0.22
Project description		Algorithm type	Poisson

Rare Target Results

Assay ~	Sample ~	Target/Total ×	CI Target/Total	Copies/µL (VIC) ~	CI Copies/µL (VIC)	Precision (VIC)	Copies/µL (FAM) ~	CI Copies/µL (FAM)	Precision (FAM)	Chips ~	Recommendation	~
FAMVIC	Sample_1	33.631%	25.414% 44.457%	10.333	8.701 12.271	18.756%	5.236	4.113 6.664	27.285%	1		

Quantification Results

Assay ~	Target ~	Sample ~	Copies/µL ~	Cl Copies/µL ~	Precision ~	Chips ~	Recommendation ~
FAMVIC	FAM	Sample_1	5.236	4.113 6.664	27.285%	1	
FAMVIC	VIC	Sample_1	10.333	8.701 12.271	18.756%	1	

Replicates

Assay ~	Sample ~	Dilution ~	Chip ~	Target/Total ~	CI Target/Total	Copies/Rxn (VIC) 🗠	CI Copies/Rxn (VIC)	Copies/Rxn (FAM) 🗠	CI Copies/Rxn (FAM)	Copies/µL (VIC) $$	CI Copies/µL (
FAMVIC	Sample_1	1	test_160603_104616_C02OS8.eds	33.631%	25.414% 44.457%	7.80E-3	6.57E-3 9.26E-3	3.95E-3	3.11E-3 5.03E-3	10.333	8.701 12.27

Digital calls

Chip ~	Dye ~	# of Neg ~	# qualified by QT \sim	Threshold
test_160603_104616_C02OS8.eds	FAM	16663	16729	1700.03
test_160603_104616_C02OS8.eds	VIC	16599	16729	2073.29

• •	0	ie is so					NHAR Sper	m 060116	export (1)	.csv					R <u>u</u>
2 🖺				X B 🖪	💰 🐼 ·	· 🛛 • 🛛	• 抢 • 🏆 • 🕼) 🕾 🖷	75% -	•		Q.	Search in S	Sheet	
A I	lome	Lay	out	Tables	Charts	SmartArt	Formulas Da	ta Rev	iew						_ ^ ⊉+
Edit			Font			Alignment	-	Numb	ber	Forma	at	Cel	ls	Themes	
P .	Cal	libri (Bo	dy)	▼ 12 ▼		abc▼	📰 🖉 Wrap Text 👻 Gei	neral	•	<u></u>	 * 🗄	8	• •	• <u>Aab</u> • •	' ,
Paste	В		U	<u>∧</u> • <u>A</u> •		₩	Merge 🔻 🕞	• % •	00, 0. \$ 0.\$ 00.	Conditional Formatting	Styles Ins	ert Del	ete Forma	t Themes Aa	
	A78	:	8	🛇 (• fx											-
L Project	Name	A	*****	NHAR Sperm 060116	Assays Samples	D 1	and and the other states and the second states and		G	H			K	L M	
s Create F Create	d by d on			Ibierwer@smith.edu 6/1/16 17:35	Chips Confidence Level	16									
 Last me Applica 	odified on ation versi	ion		7/25/16 11:09 3.0.3	Desired Precision Algorithm version	10%									
Project	t Descripti tification F	ion Results]			Algorithm Type	Poisson									
U Assay ⊥ FAMVI	с			Target FAM	Sample Cti0	Copies/microliter 471.7	CI Copies/microliter 459.05 484.71	Precision 2.76%	Chips 1	Recommendation					
∠ FAMVI 3 FAMVI	c c			FAM	CtI0 CtI1	454.76 159.36	442.38 467.49 152.61 166.4	2.80%	1						
9 FAMVI 5 FAMVI	c c			FAM	Ctl2	0.584 2.101	0.292 1.167 1.37 3.222	99.96% 53.37%	1						
6 FAMVI 7 FAMVI	C C			VIC FAM	Cti2 Cti3	116.2 2.498	109.57 123.23 1.785 3.496	6.05% 39.95%	1						
8 FAMVI 9 FAMVI	C C			VIC FAM	Cti3 Cti5	327.36 199.86	317.29 337.76 192.04 207.99	3.18%	1						
U FAMVI I FAMVI	c c			VIC FAM	CtIS CtINT	7.67E-02 0.291	1.08E-2 0.544 0.109 0.775	609.93% 166.45%	1						
2 FAMVI 3 FAMVI	c c			VIC FAM	CtINT Sample 1	0.218	7.04E-2 0.677 6.805 9.906	210.06% 20.65%	1						
9 FAMVI 5 FAMVI	c c			VIC	Sample 1 Sample 2	121.25 89.015	115.34 127.45 83.977 94.356	5.12%	1						
6 FAMVI 7 FAMVI	c c			VIC	Sample 2 Sample 3	7.61E-02 4.487	1.07E-2 0.54 3.491 5.767	609.93% 28.52%	1						
8 FAMV	c c			VIC	Sample 3 Sample 4	128.12	122.11 134.43 3.847 6.279	4.93%	1						
U FAMVI	c c			VIC	Sample 4 Sample 5	102.35	96.902 108.1 213.71 230.49	5.62% 3.85%	1						
Z FAMVI 3 FAMVI	c c			VIC	Sample 5 Sample 6	1.593	1.038 2.443 143.26 156.81	53.37%	1						
4 FAMVI	ç			VIC	Sample 6 Sample 7	7.53E-02	1.06E-2 0.535 46 27 53 91	609.93%	1						
6 FAMV	č			VIC	Sample 7 Sample 8	0.298	0.112 0.794	166.45%	1						
8 FAMV	č			VIC	Sample 8 Sample 8	8.56E-02	1.21E-2 0.608	609.93%	1						
U FAMVI	č			VIC	Sample 9 Sample 10	7.54E-02	1.06E-2 0.536	609.93%	1						
Z FAMVI	č			VIC	Sample 10 Sample 10	7.63E-02	1.07E-2 0.542	609.93%	1						
4 [Replic > Assay	ates]			Target	Sample	Dilution	Chip	Copies/Rxn	CI Copies/Rxn	Copies/microliter	CI Copies/microliter	# of Neg # g	ualified by QT	of Filled Run Date Con	nment
6 FAMVI	c c			FAM	CtIO CtIO	1	cti0_160601_165350_C034W5 cti0_160601_165350_C034W5	eds 0.356 eds 0.343	0.347 0.366 0.334 0.353	471.7	459.05 484.71 442.38 467.49	12272 12430	17522	18197 6/1/16 16:53 18197 6/1/16 16:53	
8 FAMVI	c c			FAM	CUL	1	ctl1_160601_165459_C037JC.e	ds 0.12 ds 4.41E-04	0.115 0.126 2.20E-4 8.81E-4	159.36	152.61 166.4	16097	18155	18830 6/1/16 16:54 18830 6/1/16 16:54	
U FAMVI	ç			FAM	Ctl2	1	ctl2_160601_165628_C02M7C	eds 1.59E-03	1.03E-3 2.43E-3 8 27E-2 9 30E-2	2.101	1.37 3.222	13230	13251	17625 6/1/16 16:56	
Z FAMV	č			FAM	CtI3	1	ctl3 160601 165716 C02N8K. ctl3 160601 165716 C02N8K.	eds 1.89E-03	1.35E-3 2.64E-3	2.498	1.785 3.496	18013	18047	18806 6/1/16 16:57	
4 FAMV	č			FAM	CtIS CtIS	1	ctl5 160601 165800 C02OG9. ctl5 160601 165800 C02OG9.	eds 0.151	0.145 0.157	199.86	192.04 207.99 1.085-2 0.544	14852	17271	18021 6/1/16 16:58	
6 FAMV	c c			FAM	CUNT	1	ctINT_160601_165245_C02522 ctINT_160601_165245_C02522	.eds 2.20E-04	8.24E-5 5.85E-4 5.31E-5 5.11E-4	0.291	0.109 0.775 7.04E-2 0.677	18208	18212	18853 6/1/16 16:52 18853 6/1/16 16:52	
8 FAMV	č			FAM	Sample 1 Sample 1	1	1_160601_165849_C02WILeds	6.20E-03	5.14E-3 7.48E-3 8.71E-2 9.62E-2	8.21	6.805 9.906	17530	17639	19007 6/1/16 16:58 19007 6/1/16 16:58	
U FAMVI	č			FAM	Sample 2 Sample 2	1	2 160601 165930 C034WH.en	is 6.72E-02	6.34E-2 7.12E-2 8.09E-6 4.09E-4	89.015	83.977 94.356 1.07E-2 0.54	16284	17416	18291 6/1/16 16:59	
Z FAMV	č			FAM	Sample 3 Sample 3	1	3 160601 170022 C031V5.ed	3.39E-03	2.64E-3 4.35E-3 9.22E-2 0.101	4.487	3.491 5.767	17976	18037	18809 6/1/16 17:00 18809 6/1/16 17:00	
4 FAMV	č			FAM	Sample 4 Sample 4	1	4 160601 170118 C03ET5.eds	3.71E-03	2.90E-3 4.74E-3 7.32E-2 8.16E-2	4.915	3.847 6.279	17216	17280	17887 6/1/16 17:01 17887 6/1/16 17:01	
6 FAMV	č			FAM	Sample 5	1	5 160601 170233 C039VA.ed	s 0.168	0.161 0.174	221.94	213.71 230.49	14779	17475	18349 6/1/16 17:02	
8 FAMV	č			FAM	Sample 6 Sample 6	1	6 160601 170323 C039VA.ed	0.113	0.108 0.118	149.88	143.26 156.81 1.06E-2 0.535	15708	17590	18427 6/1/16 17:03	
U FAMV	č			FAM	Sample 7 Sample 7	1	7 160601 170408 C020RY.ed	s 3.77E-02	3.49E-2 4.07E-2	49.944	46.27 - 53.91	17123	17781	18802 6/1/16 17:03	
Z FAMV	č			FAM	Sample 8 Sample 8	1	8 160601 170454 C037J7.eds	0.202	0.195 0.21	267.89	258.19 277.96	12638	15471	19208 6/1/16 17:04 19208 6/1/16 17:04	
4 FAMV	č			FAM	Sample 9 Sample 9	1	9_160601_170546_C02058.ed	3.94E-03	3.11E-3 4.99E-3	5.216	4.12 6.604	17487	17556	18234 6/1/16 17:04	
6 FAMVI	č			FAM	Sample 10 Sample 10	1	10 160601 170540 C02058.ed	ds 0.311	0.302 0.32	411.81	400.08 423.88	12721	17360	18260 6/1/16 17:05	
9 Digita	Call]			VIC	sample 10	1	10_100601_170642_002076.6	us 5.768-05	0.112-0-4.092-4	7.63E-02	1.078-2 0.542	1/359	1/300	10200 0/1/1017:00	
U Chip 1 10_160	0601_170	642_00207	6.eds	Dye FAM	# of Neg 12721	# qualified by QT 17360	Threshold 417	9.56							
z 10 160 s 1 1600	0601_170 501_1658	642 C0207 49 C02WII	6.eds	VIC	17359	17360	301 16	1.31 90.5							
4 1 1600 5 2 1600	501 1658 501 1659	49 C02WII 30 C034W	.eds H.eds	VIC	16096 16284	17639	107	6.61 2.15							
b 2 1600 / 3 1600	501 1659 501 1700	30 C034W	H.eds	VIC	17415	17416	323	3.23 3.17							
8 3 1600 9 4 1600	501 1700 501 1701	22 C031V5	.eds	VIC	16374	18037	120	3.35 8.77							
U 4 1600	501 1701 501 1702	18 CO3ET5 33 CO39VA	.eds	VIC	15995	17280	118	6.89 6.54							
	_	4 > >		HAR Sperm 06	0116_export (1).cs +									
	≝ Nor	rmal Viev	N	Ready						S	um=0	•			1.