9

MINIMAL GUARD
COVERAGE

9.1. INTRODUCTION

In Chapter 1 it was shown that Fisk’s proof of the art gallery theorem can be
converted into an algorithm that covers a polygon of n vertices with |n/3]
guards in O(n log n) time. Although [r/3] is necessary in some cases, often
this is far more guards than are needed to cover a particular polygon. For
example, convex polygons only require one guard, but Avis and Toussaint’s
algorithm would still place |n/3] guards. It is natural, then, to seek a
placement of a minimal number of guards that cover a given polygon. We
will show, however, that this problem is fundamentally intractable: it is
NP-complete.

Finding the minimal number of guards to cover a polygon is a specific
instance of a general class of problems on which there is now a considerable
literature: polygon decomposition problems. Guards determine star poly-
gons, so minimal guard coverage corresponds to finding a minimal star cover
of a polygon. Polygon decomposition problems can be classified along four
“dimensions”: decomposition type, the shape of the pieces, restrictions on
the boundaries of the pieces, and the shape of the polygon being
decomposed. We will discuss these dimensions briefly before focusing on
our particular case.

(1) Decomposition Type

The term ‘“‘decomposition” is usually understood to encompass two major
types: partition, in which the pieces are not allowed to overlap, and cover,
where overlap is permitted. In both cases, each piece of the decomposition
must be a subset of the original polygon, and the union of the pieces must
be precisely the polygon. Covers can be significantly more efficient than
partitions: Fig. 9.1 shows an example due to Ntafos (1986) that has a star
cover of size 2 but the minimum star partition is of size O(n). Since guard
lines-of-sight can pass through one another freely, the minimum guard
placement problem is a minimal cover problem.

A third type of decomposition, sum-difference decomposition, that

228

9.1. INTRODUCTION 229

b

Fig. 9.1. A polygon that may be covered with 2 stars with kernels at @ and b, but that requires
5 stars in a partition, with kernels at the indicated points.

permits both union and difference of pieces, has not been studied yet to the
same extent as covers and partitions (Woo 1982).

(2) Shape of Component Pieces

The major shape types that have been studied are convex (Pavlidis 1968,
1977; Chazelle 1980; O’Rourke 1982a, 1982b), star (Maruyama 1972; Avis
and Toussaint 1981a), spiral (Feng and Pavlidis 1975; Pavlidis and Feng
1977), monotone (Lee and Preparata 1977), and trapezoidal (Asano,
Asano, and Imai 1986). For orthogonal polygons, both rectangle (Pagli es
al. 1979; Chaiken et al. 1981; Franzblau and Kleitman 1984) and square
(Albertson and O’Keefe 1981) pieces have been examined; L-shaped
partitions were discussed in Sections 2.5 and 2.6. We will only discuss star
pieces.

(3) Restrictions on the Boundaries of the Pieces

In addition to the shape restrictions on the pieces, two further restrictions
that cut across shape types are important. A Steiner point is any point in a
polygon that is not a vertex.! Decompositions are then classified as with
Steiner points permitted, or without Steiner points. The latter are only
permitted to use vertex-to-vertex diagonals to compose the boundaries of
the pieces. In general, decompositions with Steiner points are more
efficient, and harder to find. Figure 9.2 shows a polygon that can be covered
with two convex pieces if Steiner points are permitted, but which requires
three pieces without Steiner points. A minimum convex partition without
Steiner points has no more than four times the number of pieces in a
minimal partition with Steiner points, as is established, for example, by the
Mehlhorn and Hertel triangulation argument mentioned in Section 1.3.2. (It
does not seem to be known if this worst-case bound can be achieved.) The
situation for star pieces is less clear. I know of no results comparing the

1. Steiner used such points to define what is now known as a Steiner tree, a minimal spanning
tree employing points in addition to those being spanned.

230 MINIMAL GUARD COVERAGE

Fig. 9.2. A polygon that may be covered with 2 convex pieces if Steiner points are permitted
(dashed), but requires 3 if not permitted (dotted).

efficiency of partitions or covers of star pieces with and without Steiner
points.

Other restrictions on the boundaries of the component pieces of
decompositions have been considered. The most interesting is to restrict all
edges to be subsets of extensions of the polygon edges through the interior
of the polygon. This was studied by Pavlidis (1968, 1977) and myself
(O’Rourke 1982a,b) for convex partitions, and by Aggarwal et al. (1985) for
star covers. Figure 9.3 shows an example of the latter authors that requires
only two star pieces if diagonals are permitted, but needs three if only edge
extensions are used.

(4) Polygon Restrictions

The two most important classes here are polygons with and without holes.
In at least one case, convex partitions with Steiner points, the polygon
problem can be solved in polynomial time (Section 1.4.2), but permitting
holes changes the complexity to NP-hard (Masek 1979) (O’Rourke and
Supowit 1983). We will discuss both cases for star covers in this chapter.

Of course, many other polygon restrictions can be considered. We will
briefly discuss the restriction to orthogonal polygons.

Our focus in this chapter is minimal star covers with Steiner points. We
show in the next section that this problem is NP-hard for polygons with
holes, and in Section 9.3 it is shown that the problem remains NP-hard for
polygons without holes. Clearly the latter result supersedes the former, but
the proofs are quite different, and we present them in the order in which
they were discovered. Next we look at two restrictions that permit
polynomial-time solutions: guards in “grids,” special orthogonal polygons
(Section 9.4), and minimal star partitions without Steiner points (Section

Fig. 9.3. A polygon that can be covered with 2 stars if diagonal cd is used, but that requires 3
if only edge extensions are used.

9.2. NP-HARD FOR POLYGONS WITH HOLES 231

9.5). The former problem can be solved with a graph matching algorithm,
and the latter with dynamic programming. Several related algorithms and
problems are discussed in the final section.

9.2. NP-HARD FOR POLYGONS WITH HOLES?

Although it would take us too far afield to explain the extensive theory of
NP-completeness, we will sketch enough of the definitions so that the next
two sections can be followed by the uninitiated.

The theory hinges on a division of problems into two complexity classes:
P and NP. Problems in P can be solved in deterministic Polynomial time,
and problems in NP can be solved in Non-deterministic Polynomial time.
The addition of the power of non-determinism seems to widen the class of
problems considerably, but although P = NP follows from the definitions,
no one has been able to prove that P # NP. This is, in fact, the major open
problem in computer science today. Despite this uncertainty, the hardest
problems in NP, the NP-complete problems, seem fundamentally intrac-
table: although over 1000 NP-complete problems have been identified, no
polynomial algorithm is known for any of them.

The “hardness’ partial order is established by the notion of polynomial
reducibility. If problem A can be transformed in polynomial time to an
instance of problem B such that the solution to B yields a solution to A,
then A is said to be polynomial reducible, or just reducible, to B. If A is
reducible to B, then B is at least as hard as A, for if B can be solved in
polynomial time, so can A. A problem B e NP to which all problems
A € NP can be reduced is called NP-complete: it is at least as hard as any
problem in NP. If an NP-complete problem B is reducible to a problem C,
then C is called NP-hard: it is at least as hard as an NP-complete problem.
The distinction between NP-complete and NP-hard problems is that the
former are members of NP but the latter need not be.

As the classes P and NP are defined for decisiorn problems—that is, those
that output only “yes” or “no”’—we will phrase the minimum guard cover
problems as decision questions also. Since it is important to identify clearly
the size of the input, we will specify the problems in Garey and Johnson’s
instance-question format (Garey and Johnson 1979). Our proofs of NP-
hardness will start from a known NP-complete problem, Boolean 3-
Satisfiability. It may be stated as follows.

Boolean 3-Satisfiability (3SAT)

INSTANCE: A set U={uy, u,,...,u,} of Boolean variables and a
collection C = {cy, ¢3, . .., ¢} Of clauses over U such that each c;eCis a
disjunction of precisely three literals.

2. This section is the result of joint work with Ken Supowit; an earlier version appeared in
O’Rourke and Supowit (1983), © 1983 IEEE.

232 MINIMAL GUARD COVERAGE

QUESTION: Is there a satisfying truth assignment for C, that is, is there a
truth assignment to the n variables in U such that the conjunctive normal
form ¢, - ¢, - - ¢, is true?

The minimum guard cover problem is formally stated as follows.

Minimum Star (or Guard) Cover of a Polygon with Holes (StarCH)

INSTANCE: A set of lists of integer-coordinate vertices representing a
polygonal region P with holes, and a positive integer bound K.

QUESTION: Is there a cover of P with K or fewer star subsets of P, i.e.,
do there exist star polygons S, S, ..., S with k = K such that $;US,U
S U Sk = P?

The goal is now to polynomially transform a given instance of 3SAT into a
polygonal region that has a star cover of K or fewer pieces iff the 3SAT
instance is satisfiable. The proof proceeds along lines similar to proofs of
NP-completeness by Fowler et al. on the “box-cover” problem (Fowler et al.
1981), and by Supowit on point and disk coverage problems (Supowit 1981).

The usual first step in a proof of NP-completeness is to show that the
problem is a member of the class of NP problems, that is, solvable via a
non-deterministic algorithm in polynomial time (Garey and Johnson 1979).
Often this is easy, merely requiring a demonstration that a solution
“guessed” by a non-deterministic program can be checked in polynomial
time. With the integer-lattice geometric objects used in our constructions,
however, it is unclear how to establish this. In the absence of a proof that
StarCH is a member of NP, the argument presented below will establish
that StarCH is NP-hard rather than NP-complete.

We will now show that 3SAT is polynomially transformable to StarCH.
The goal is to accept an instance of 3SAT as input and construct, in
polynomial time, a polygonal region that has a cover with a certain number
K or fewer star polygons iff the given set of clauses is satisfiable. As with
other 3SAT transformations (Garey and Johnson 1979; Fowler et al. 1981;
Supowit 1981), the construction forces a truth assignment with n “truth-
setting components” that simulate the Boolean variables, and ensures
satisfaction with m “‘clause components” that correspond to the disjunctive
clauses.

Truth-Setting Components

The truth-setting components are polygonal regions of a repetitive staircase
pattern that have just two distinct minimum star covers; see Fig. 9.4. One of
the minimum covers is associated with the truth assignment frue and the
other with false. There are certain distinguished points associated with each
pattern, labeled with integers in the figures. These points are not part of the
construction; they are used in the proof that the polygon constructed has the
appropriate cover iff the clause is satisfiable. Note that two of the

9.2. NP-HARD FOR POLYGONS WITH HOLES 233

TRUE FALSE

Fig. 9.4. The truth-setting component has two distinct minimum covers corresponding to
assignments rrue and false.

distinguished points can be covered by one star polygon iff the two points
are consecutive in numerical sequence.

The truth-setting patterns are bent (see Lemma 9.2 below) to form closed
loops, called variable loops. There will be one such loop per Boolean
variable i, in the final construction.

By the above remarks, each minimum star cover for a variable loop
contains exactly 7,/2 stars, where r, is the number of distinguished points in
the variable loop corresponding to u,. We call such a cover true if it
contains distinguished points i and i + 1 for all even i (taken modulo r,), and
we call it false if it contains distinguished points j and j+ 1 for all odd j.
Define the bound K used in the definition of the StarCH problem as equal
to 3 Xi1 e

The main properties of variable loops are stated somewhat informally as
follows (the proofs, being straightforward, are either omitted or sketched):

LEMMA 9.1. Each minimum star cover is either a true cover or a false
cover.

In constructing the polygonal region P, it will be necessary to cross
variable loops over one another, and “bend” them 45°, without these

234 MINIMAL GUARD COVERAGE

Fig. 9.5. Variable loop 45° bend.

modifications affecting the truth of Lemma 9.1 for any variable loop. The
ability to bend a variable loop effectively gives us what is sometimes called
an “inverter” in other NP-completeness constructions (Masek 1979).

LEMMA 9.2. The variable loops may bend 45° without affecting their
properties.

Proof. See Fig. 9.5. Note that it is not difficult to make all vertices have
integer coordinates. [

LEMMA 9.3, Two variable loops may cross over one another without
affecting their independent coverage properties. More precisely, if two
unconnected variable loops require k&, and k, stars in a minimum cover,
then one can cross over the other in such a manner that the resulting
(connected) polygonal region requires k, + k, star pieces in a minimum
cover, and without altering the type of coverage (true/false) within either
variable loop.

Proof. The construction is shown in Fig. 9.6. It would not be difficult to
show that it preserves the desired properties were it not for the possibility
that distinguished points i and j may be covered by a single star-shaped
polygon Q (shown in shaded in the figure). We can, however, arrange the
crossovers to ensure that at each crossover in the complete construction, i
and j are both odd. We will argue that this arrangement ensures that each
covering that contains no more than K pieces (if there are any) is a
true[false covering.

Define a cross star to be a star polygon containing at least one
distinguished point of each of two variable loops—for example, the polygon
Q in Fig. 9.6. Since the points i and j are both odd at every crossover, each
cross star contains exactly two distinguished points, both of which are odd.
Since no star-shaped polygon can contain more than one even distinguished
point, and since there are K even distinguished points, every cover must
contain K stars to cover the even distinguished points. Therefore, if a cover

9.2. NP-HARD FOR POLYGONS WITH HOLES 235

0oDoD|e
L
EVEN
0DD
ﬁ‘
Q
o|EVEN e
00DIy
/] 7L
A o|[EVEN
oodj 000
-
*
EVEN
DD [e

Fig. 9.6. Variable loop crossover. Star Q contains two odd distinguished points.

also includes one or more cross stars, then it must have more than K
elements. A similar argument was used in (Supowit 1981).> O

Clause Junctions

In a minimum cover of a particular variable loop, small triangular areas
near the kernels of the star pieces can be added that could be covered
“free” (without increasing the number of pieces) if the coverage is of type
true (say), but that cannot be covered free if the coverage is of type false
(see Fig. 9.7). This is the key idea in the formation of the clause junctions.

The heart of a clause junction is an isosceles triangle whose equal sides
both slope at 45°. (The shape of this triangle is not critical, but it is easier to
keep to integer coordinates if its sides slope at 45°.) Arms of three different
variable loops are brought to the junction, one for each side of the triangle.
Suppose the clause represented by the junction is ¢ =u;+u; +u,. Then
variable loop j is arranged so that a setting of frue will permit the triangle to
be covered free, and variable loops i and k are placed so that a setting of
false will result in free coverage. The result is that the triangle at the clause
junction will be covered free iff the clause is satisfied by the truth
assignment established by the truth-setting components.

3. Use of “planar 3SAT” (Lichtenstein 1982a) apparently obviates the need for this lemma,
but it introduces other complications.

236 MINIMAL GUARD COVERAGE

Y4

ANNNNNRNN

Fig. 9.7. The triangular region is covered free when the truth assignment covers the shaded
distinguished points.

The details of clause junction construction are shown in Fig. 9.8. The
three important claims concerning the clause junctions are contained in the
following proposition.

LEMMA 9.4, The clause junction illustrated in Fig. 9.8 possesses the
following properties:

(1) All vertex coordinates are integers.

(2) The central triangle is covered free iff the clause is satisfied.

(3) The junction does not affect the independent coverage properties of
the participating variable loops.

Proof. That all vertex coordinates are integers follows from the method of
constructing the bends and the use of 45° angles in the clause triangles.
Figure 9.7 establishes that the central triangle can be covered free if the
clause is satisfied. On the other hand, if the clause is not satisfied, then the
construction of the clause junction prevents any piece covering a distin-
guished point of one of the variable loops to also completely cover the
central triangle. Finally, no two distinguished points belonging to different
varible loops can be covered by a single piece. Since every piece in a
minimum cover must include two distinguished points, there is no inter-
ference in their independent coverage properties. [

9.2. NP-HARD FOR POLYGONS WITH HOLES 237

a

/!

Fig. 9.8. A clause junction. The central triangle is covered free iff the corresponding clause is
satisfied.

Complete Construction

The overall structure of the polygonal region constructed for a given
instance of 3SAT consists of n variable loops arranged in parallel slanting
columns, one for each Boolean variable in U, with m clause junctions
placed to the right, one for each clause in C. Arms of the three variable
loops corresponding to the three literals that participate in a clause are
brought across the other loops to the right, bent in 45° increments until they
are oriented properly for the chosen triangle side and according to their
complemented/uncomplemented status in the clause, brought to the clause
triangle as illustrated previously, and finally returned to their proper
slanting columns. A schematic example is shown in Fig. 9.9.

Although the details are complicated, the entire construction can clearly
be performed mechanically using the bend, crossover, and clause junction
patterns shown previously. The construction requires no more than O(m)
bends, O(mn) crossovers, and O(m) clause junctions, so the execution time
of the entire procedure is polynomial bounded by O(mn). Note again that

238 MINIMAL GUARD COVERAGE

/Clouse Junction

Fig. 9.9. Arrangement of variable loops and a clause junction.

since all of the patterns use integer coordinates, the vertices of the final
polygon region will all have integer coordinates. These observations imply
the following proposition.

LEMMA 9.5. The construction of the polygonal region requires only
polynomial time.

Recall that the bound K was defined to be half the total number of
distinguished points. Our argument to this point has shown the following.

LEMMA 9.6. A given set of clauses is satisfiable iff there is a star cover of
the constructed polygonal region into K or fewer pieces. (Actually, there
can never be fewer than K pieces.)

We may finally state the main result of this section.

THEOREM 9.1 [O’Rourke and Supowit 1982]. The problem StarCH is
NP-hard.

9.3. NP-HARD FOR POLYGONS WITHOUT HOLES 239

Proof. Lemmas 9.5 and 9.6 establish that 3SAT is polynomial transfor-
mable to StarCH. Since 3SAT is known to be NP-complete, StarCH is
NP-hard. O

COROLLARY. StarCH without Steiner points is NP-hard.

Proof. No Steiner points are needed in any of the constructions. (I

9.3. NP-HARD FOR POLYGONS WITHOUT HOLES

The proof in the preceding section constructs a polygonal region with at
least n holes, one per variable loop. To prove NP-hardness for polygons
with no holes requires, then, a different approach. Recall that for minimum
convex covers, the problem is NP-hard with holes but polynomial without,
suggesting the same might be true for star covers. But recently Lee and Lin
found a clever reduction from 3SAT to a polygon of no holes, proving that
finding a minimal star cover (problem StarC) is NP-hard even without holes
(Lee and Lin 1986). We present their proof in this section. The proof is
simpler if guards are restricted to vertices, that is, if the star kernels always
include a vertex; this restriction can be removed later.

The coupling between a variable and its appearance in a clause junction
was rather direct in the proof in the previous section: a variable loop is
connected to the junction almost as if it were a wire carrying “true” or
“false” charge. For a simple polygon construction, the coupling is neces-
sarily more subtle, effected by lines of sight. The truth-setting components
of the previous section becomes two distinct components here: a literal
pattern, and a variable pattern. The literal patterns appear in clause
junctions, and the consistency of the true/false settings of the literals are
enforced by the variable pattern.

Literal Pattern

A literal pattern is shown in Fig. 9.10. The distinguished point p shown is
visible from vertex ¢ or f. The polygon will be arranged so that no other
vertex can see p. As the labels suggest, vertex ¢ will be assigned a guard
when the truth value of the literal is true, and f when false.

Fig. 9.10. A literal pattern. The distinguished point p is visible only to ¢ and f.

240 MINIMAL GUARD COVERAGE

Fig. 9.11. A clause junction. The shaded triangle can be seen only by £, i=1, 2, 3.

Clause Junction

A clause junction is shown in Fig. 9.11. Coverage of the three distinguished
points in the three literals requires one of {¢, f;} to be assigned a guard for
i=1,2,3. At least one of {t;, t,, t3} must be assigned a guard in order to
cover the shaded triangle. Thus at least one literal must be true for coverage
of the junction, which will force each clause to be satisfied.

Variable Pattern

The purpose of a variable pattern is to force all truth assignments of literals
of a particular variable to be consistent with one another. This is
accomplished with the pattern illustrated in Fig. 9.12. It consists of two
“wells,” with a vertex at the top of the left well labeled F, and a vertex at
the corresponding position on the right well labeled T. In addition each well
has s thin spikes, where s is the number of clauses in which the variable u
participates, aligned with the F and T vertices and vertices in the clause
junctions. One of the two vertices labeled T and F will require a guard in a
minimum cover in order to see the distinguished point ¢ illustrated. No
other guards will be needed to see the remainder of the variable pattern if
all the literals for this variable are assigned truth values consistently. This
will only become apparent when we examine an example.

Complete Construction

A three variable (n = 3), two clause (m =2) example is shown in Fig. 9.13.
Here the two clauses are (u;+u;+us3) and (¥, +u,+ u;). Each variable

Fig. 9.12. A variable pattern. The distinguished point g can be seen only by T and F.

9.3, NP-HARD FOR POLYGONS WITHOUT HOLES 241

Fig. 9.13. The complete polygon for (i, + i, + us) - (uy + 1y + Us).

pattern has two spikes, one per well, for each literal in a clause junction that
uses that variable. Let u be a variable with distinguished vertices T and F,
and let / be a literal in {u, 4} with distinguished vertices ¢ and f. A spike in
the left well of the variable pattern for u is collinear with F and ¢ if / = u,
and with F and fif [= &i. A spike in the right well is collinear with T and f if
{=u, and with T and ¢ if / = . The consequence of these alignments is that
a guard placed at F sees down all the spikes of the left well, and a guard
placed at T sees down all the spikes of the right well. As mentioned
previously, a guard is needed at either T or F to see the distinguished point
associated with the variable pattern. Suppose a guard is placed at T,
covering all spikes in the right well. Because all spikes in the left well are
aligned with F and ¢,, where ¢, , t,,, . . . are the ¢-vertices defined in Fig. 9.11
for all literals using u, and aligned with f,, where f,f,,... are the
f-vertices for all literals @, all spikes in the left well will be covered if guards
are placed at #,,¢,, ... and f;,f,,.... This means that if the literals
involving u are assigned truth values consistent with u = true, then a guard
at the F vertex of the u variable pattern is not needed to cover the spikes of
the left well, but a guard will be needed at the T vertex. An opposite
conclusion is reached for u = false. This is the key idea motivating the
construction. Thus in Fig. 9.13, u, is “‘set” false by the guard at F,, and the
spikes in the right well of the u, variable pattern are covered by a guards at
the f-vertex of the u, literal in the first clause, and the t-vertex of the u,
literal in the second clause.

The total number of distinguished points is 3m + n: 3 in each of m clause
junctions, and 1 in each of n variable patterns.

242 MINIMAL GUARD COVERAGE

LEMMA 9.7. A given set of clauses is satisfiable iff the constructed
polygon may be covered with K =3m +n + 1 vertex guards.

Proof. 1f the set of clauses is satisfiable, then there exists a truth
assignment to the variables such that each clause is true. Placing a guard at
the appropraite ¢ or f vertices of the literal patterns in each clause junction
necessarily covers the clause junction, because at least one ¢ vertex will be
assigned a guard. By the argument presented above, placing a guard at the
T vertex of the variable pattern for u if the satisfying truth assignment
assigns u true, and at F if false, covers all the spikes as well as the
distinguished point of the pattern for u. Finally, a guard at the vertex x in
Fig. 9.13 covers all the wells of all the variable patterns. Thus complete
coverage is achieved with K vertex guards.

Suppose there is a cover with K vertex guards. One guard must be at x,
otherwise K would not suffice. The remaining 3m + n guards are needed to
cover the 3m +n distinguished points. Each literal pattern must have a
guard at either its ¢ or f vertex, and each variable pattern must have a guard
at its T or F vertex. Each clause junction will be covered by these guards
only if at least one literal pattern has a guard at its ¢ vertex, which implies
that each clause will be satisfied. Each variable pattern will be covered by
one guard at T or F only if all literals using that variable are assigned
consistently, by our previous remarks. But then the guard placement
determines a consistent truth assignment that satisfies the given instance of
3SAT. O

THEOREM 9.2 [Lee and Lin 1984]. The minimum vertex guard problem
for polygons (StarC) is NP-complete.

Aggarwal extended the argument to obtain the same result for point
guards, guards not restricted to vertices (Aggarwal 1984).

COROLLARY [Aggarwal 1984]. The problem of finding a minimum star
cover, with Steiner points permitted, for a polygon without holes, is
NP-hard.

9.4. GUARDS IN GRIDS

The negative results in the two preceding sections are not the last word on
minimal star covers, as there are many interesting special cases that may be
tractable. We present two such positive results in this and the following
section.

In this section we study a special restricted class of polygons introduced
by Ntafos called “grids” (Ntafos 1986); in fact the restriction is so extreme
that they are not even polygons. A grid P is a connected union of vertical
and horizontal line segments. An example is shown in Fig. 9.14. A grid can
be thought of as an orthogonal polygon with holes, consisting of very thin
corridors. Visibility retains its usual definition: a guard at x can see point y if

9.4. GUARDS IN GRIDS 243

| IOT
8

Fig. 9.14. A grid covered by 6 guards (dots).

xy is a subset of P. Of course in a grid all lines of sight are either vertical or
horizontal, so star polygons are crosses. Although grids are an extreme
specialization of polygonal regions with holes, note that a large portion (but
not all) of the constructions used to prove Theorem 9.1 could be
accomplished with a grid.

Ntafos offered the following simple algorithm for finding a minimal cover
by guards in a grid. A guard must be located in each line segment of a grid.
Let G be the intersection graph of the grid: each node of G corresponds to a
line segment, and two nodes are connected by an arc iff their corresponding
segments cross. Figure 9.15 shows the intersection graph for the grid in Fig.
9.14. A matching in a graph is a collection of edges M such that every node
is incident to at most one edge of M. A maximum matching is a matching of
maximum cardinality. Notice that a matching in our intersection graph is a
collection of intersections that cover pairs of vertical and horizontal
segments of the grid. A maximum matching can be found in O(V*°) time
for an arbitrary graph of V vertices (Even 1979). The graph G is, however,
not arbitrary: it is bipartite, since only intersections between vertical and
horizontal segments can occur; two vertical or two horizontal segments are
parallel and cannot intersect. The problem of finding a maximum matching
in a bipartite graph is known as the “marriage problem”; one can be found
in O(VY?E) time, where V is the number of vertices and E the number of
edges of the bipartite graph (Even 1979). For a grid of n segments, V =n

Fig. 9.15. The intersection graph for the grid in Fig. 9.14. The 6 guards are shown as solid
lines.

244 MINIMAL GUARD COVERAGE

and E = O(n?), so both the general algorithm and the bipartite algorithm
lead to O(n*°) worst-case complexity.

For complete coverage of a grid, each line segment requires a guard, and
since only two line segments cross at an intersection, a guard can cover at
most two segments. Thus for a grid of n segments, at least [n/2] guards are
necessary. If the intersection graph has a perfect matching, a matching of
size [n/2], then [n/2] guards suffice: place a guard at each intersection of
the grid corresponding to an edge of the matching. If a maximum matching
has size m, then placing guards at the corresponding intersections covers 2m
segments. The remaining n — 2m segments can be covered with one guard
each, resulting in total coverage by m + n — 2m = n — m guards. Indeed this
is a minimal cover: if fewer than n — m guards suffice, more than m guards
must cover two segments each that are not covered by any other guards,
yielding a matching of size larger than m.

This argument establishes the following theorem.

THEOREM 9.3 [Ntafos 1985]. A minimum cover for a grid of # segments
has n —m guards, where m is the size of the maximum matching in the
intersection graph of the segments, and may be found in O(n*®) time.

The dividing line between polynomial and NP-hard problems often seems
to fall between problem parameters 2 and 3: 3SAT is NP-complete but
2SAT is polynomial, three-dimensional matching is NP-complete but graph
matching is polynomial, vertex cover in graphs of degree at most 3 is
NP-complete but polynomial if the degrees are at most 2. And Ntafos
showed that minimal coverage of three-dimensional grids is NP-complete in
contrast to the above theorem for two-dimensional grids. We now turn to
this result.

The proof is by reduction from the vertex cover problem in graphs of
degree at most three, a known NP-complete problem (Garey and Johnson
1979).

Vertex Cover

INSTANCE. A graph G =(V, E) with all nodes of degree three or less; a
positive integer K <|V|.

QUESTION. Is there a vertex cover for G of size at most K? That is, is
there a set of vertices C of size K or less such that each edge of G is incident
on at least one vertex of C?

The goal is to construct a three-dimensional grid P such that there is a
cover by less than or equal to g guards (the value of g will be specified later)
iff there is a vertex cover of G with less than or equal to K vertices. The
basic idea is simple. Label the vertices of G 1, 2, ..., n=|V|. The vertices
of G are assigned to lattice points along the diagonal line through (0, 0, 0)
and (1,1,1): each vertex labeled i is assigned the lattice point v, =
(3i, 3i, 3i). Edges of G are represented by grid paths between the lattice

9.4. GUARDS IN GRIDS 245

points corresponding to the endpoint vertices of the edges. Because each
vertex of G is of degree 3 or less, each incident edge can be assigned one of
the three orthogonal directions without conflict.

We now describe the construction of the grid P from the given graph G.
Suppose all edges incident to vertices 1, ..., i — 1 of G have been assigned
paths in P, and consider an edge (i, j) of G, with i <j. We will use the
convention that paths from v; to v; with i <j will leave v; along the positive
rays +x, +y, and +z, and approach v; along the negative rays —x, —y, and
—z. Because vertex i has at most degree three, one of the three rays in the
directions +x, +y, or +z emanating from (3i, 3i, 3i) must contain no
segments of P. Assume that the +x ray is unoccupied. Then connect
v; = (3i, 3i, 3i) to v; = (3, 3j, 3j) with these three grid segments, as long as
they do not overlap with any previously constructed segments of P:

(34, 34, 30))— (3), 3i, 30),
(3), 3i, 3i)— (3, 3j, 30),
(), 3j, 31)— (3, 3, 3y).

The path moves in the +x, +y, and +z directions in sequence, as illustrated
in Fig. 9.16a. If the +x direction is occupied but +y is free at v,, then the
path moves +y, +z, and +x in sequence. If only the +z ray is unoccupied
at v;, the path follows +z, +x, and +y to reach v;. These alternative paths
are illustrated in Figs. 9.16b and 9.16c. Note that each of the three
alternative paths lies in a distinct plane containing v; and a distinct plane
containing v;.

Now assume the attempted connection from v; to v; overlaps a segment of
P containing v;, due to an earlier connection from v, to v;, kK <i <j. Let the
overlap occur on the —z ray from v;. Then at least one of the rays —x or —y
from v; must be unoccupied. If the —x ray is unoccupied, modify the (v, v;)
path as shown in Fig. 9.17a; if the —y ray is unoccupied, modify as shown in
Fig. 9.17b. In both cases the overlap on —z is avoided, and the (v, v;) path
approaches v; along the unoccupied ray. Note that the bent path now
consists of nine edges. Similar modifications are made if the path overlaps
along the —x or —y rays at v;. Because v; can have at most three incident
paths in P, one of the rays —z, —y, —x is always unoccupied when a
connection is made, so overlap can always be avoided. It may be that a path
that is already bent to avoid overlap, will have to bend again to avoid

s E

o] b C

Fig. 9.16. Three paths from v; (the origin) to v;.

246 MINIMAL GUARD COVERAGE

Y i

a b

Fig. 9.17. Bending a path to avoid overlap on the —z ray, to enter along the —x ray (a) or the
—y ray (b).

overlap with the third incident edge, which would change the 9 segment
path into one of 15 segments.*

After complete construction, the e edges of G will be embedded as e;
paths of 3 segments each (when no overlap is encountered), e, paths of 9
segments each (when overlap forces bending as in Fig. 9.17), and e,s paths
of 15 segments each (when overlap occurs twice), where e = e; + e + €;5.

LEMMA 9.8. There is a vertex cover of size K of G iff there is a cover of
the grid P whose construction is described above with g = K + e; + 4eg +
7e,5 guards.

Proof. Suppose there is a vertex cover C of G of size K. Then assign a
guard to each intersection in the grid P that corresponds to a vertex in C.
Let p, be a 3-segment path in P between v; and v;. Then because C is a
vertex cover, at least one of v; or v; is assigned a guard; therefore one
additional guard suffices to cover ps;. Let p, be a 9-segment path in P
between v; and v;. Again one of v; or v; must be assigned a guard, so that p,
can be covered with four additional guards, one on every other corner.
Similar reasoning show that a 15 segment path requires seven additional
guards. The result is complete coverage by K + e; + 4eg + 7e,5 guards.
Suppose P may be covered by K + e; + 4eg + 7e,5 guards. Each 3-segment
path requires one guard on an internal corner—that is, not at a grid point
corresponding to some vertex of G. Similarly each 9-segment path requires
four guards on internal corners, and each 15-segment path requires seven
such guards. This accounts for e; + 4ey + 7e,5 guards. Thus at most K guards
may be located at grid points corresponding to vertices of G. Suppose the
guards assigned to these grid points do znot correspond to a vertex cover of
G. Then some edge (i, j) of G is not incident to a vertex of the cover, which
means that its associated path in P does not have a guard at v; nor at v;. But
then, if the path is a 3-segment path, the one guard at an internal corner
does not suffice to cover the path, since this guard can only cover two of the
three segments. Similarly, if the path is a 9-segment or 15-segment path, the
four or seven guards at internal vertices cover at most 8 or 14 of the 9 or 15
segments, respectively. Thus if the K guards do not correspond to a vertex
cover, coverage of the grid P cannot be achieved with K + e; + dey + 7e,5

4. T have modified Ntafos’s argument somewhat.

9.5. PARTITIONS WITHOUT STEINER POINTS 247

guards. Thus those K guards must correspond to a vertex cover of at most
size K. O

THEOREM 9.4 [Ntafos 1985]. Minimal guard coverage of a three-
dimensional grid is NP-complete.

Proof. The problem is clearly in NP, as guards need only be located at
corners or junctions, and an optimal placement may be guessed and
checked in polynomial time. The reduction from Vertex Cover establishes
that the problem is NP-complete. [

9.5. PARTITIONS WITHOUT STEINER POINTS

The previous section showed how a version of the minimal guard coverage
problem that is solvable in polynomial time can be obtained by severely
restricting the class of polygons covered. Another problem solvable in
polynomial time can be obtained by restricting the pieces of the decomposi-
tion rather than restricting the shape of the polygon being decomposed. Keil
showed that the problem of finding a minimal partition of an arbitrary
simple polygon into star pieces without Steiner points can be solved in
O(n" logn) time (Keil 1984, 1985b). We showed in Section 9.1 that the
number of pieces in a minimal partition into stars can be much larger than
the number of guards required for coverage: a partition is quite different
from a cover. But it is precisely the restriction to partitions that permits a
polynomial algorithm to find the minimum. Consider a diagonal d that lies
on the boundary of a star in a minimal star partition of P. P is partitioned
into two polygons by d, P, and P,. The crucial observation is that the
minimum partition of P is the union of the minimal partitions of P, and P,.
Note that this additive property does not hold for covers as d might be
overlapped by a piece in a cover. But the fact that the pieces of a partition
do not overlap permits a dynamic programming algorithm to build up a
minimal partition for P from minimal partitions of subpolygons in P. We
now proceed with the details, which are a bit complicated.

Let the vertices of the polygon P to be partitioned be labeled from 1 to n
counterclockwise. Let P; be the subpolygon composed of the boundary of P
from i to j, and the diagonal (j, i). P;is defined only if i <j —1 and i can see
j. A minimum partition of F; will be constructed from minimal partitions of
P,, and P,; for i <m <j. The diagonal (i, j) is called the base of P;, and for
any minimal partition M of P;, S;(M), the base star of M, is the star
polygon in M that includes (i, j). Finally, T, is the triangle whose base is
(i, j) and whose apex is m. These definitions are illustrated in Fig. 9.18. The
basic idea of the dynamic programming algorithm is to build a minimal
partition M of P; by merging T, with the minimal partitions A of P, and B
of P,,;. If S;,,(A) U T, is a star polygon, then T, is said to single merge with
partition A; if Sim(A)U T,,,; U S,,;(B) is a star, then T, is said to double
merge with partitions A and B.

248 MINIMAL GUARD COVERAGE

Fig. 9.18. The subpolygon F; and associated regions.

We now concentrate on defining the states of the dynamic programming
algorithm. First observe that a state cannot be represented by just one
minimal partition of a subpolygon. Consider Fig. 9.19. P, is minimally
partitioned into two pieces with either diagonal @ or b (or others). If
diagonal a is used to partition P,,, then T, can single merge with the base
star of the partition, while if b is used, the merge produces a non-star
polygon. This suggests that each minimal partition of a subpolygon must be
a separate state. There are two difficulties with this approach. The first is
that there can be an exponential number of distinct minimal partitions: the
polygon shown in Fig. 9.20 has 2! distinct partitions into k stars, where
k =@(n) is the number of steps of the staircase, since there are two
independent choices for the diagonal separating adjacent stars. In the
figure, k = 4. The second difficulty is that sometimes a minimal partition of
P; cannot be constructed from single or double merges. Consider Fig. 9.21.
Here P; is a star, but since the kernel of P; lies inside every T, for
i<m<j, the subpolygons F,, and P,; are not both stars. Thus their
minimal partitions will contain more than one piece, and simple merges with
T.; will never result in the true minimal partition of P;.

Keil solved these problems by introducing the notion of a pseudo-star. A
pseudo-star polygon PS;; based on (i, j) is a polygon such that there exists a
point x in P but not in PS; such that x can see all of PS; through (i, j). Thus
PS; is a portion of a star polygon whose kernel lies on the other side of
(i, j). For example, P, in Fig. 9.21 is a pseudo-star based on (i, m).
Extending minimal partitions to permit a pseudo-star polygon on the base
solves the second difficulty mentioned above.

Fig. 9.19. T, cannot merge with every minimal partition of P,.

9.5. PARTITIONS WITHOUT STEINER POINTS 249

]

Fig. 9.20. A polygon with 8 distinct partitions into 4 stars.

We now reconsider the first difficulty, the exponentially many partitions
of a subpolygon. Although it is not possible to save just one minimal
partition for a subpolygon, as Fig. 9.19 showed, only variations in the base
star (or pseudo-star) are relevant for merging, as merging only occurs at the
base. Thus we need to identify all possible base pseudo-stars. This goal
motivates the following definition.

Let L be the set of all maximal line segments internal to P determined by
two vertices of P, at least one of which is reflex. Define K to be the vertices
of P unioned with the set of all intersection points between the lines of L
with each other and with the edges of P. L has size O(rn) for a polygon of n
vertices r of which are reflex, and therefore K has size O(r*n?). This set K
reduces the pseudo-star kernel points to a polynomial-size set of
possibilities.

LEMMA 9.9. The kernel of any base star polygon of a minimal partition
of a subpolygon F; contains a point in K.

Proof. Let M be a minimal partition of P;, and let S;(M) be its base star.
If S; is convex, then vertex i is in its kernel and in K. If §; is not convex,
then its kernel is a proper subset of §;. The kernel is the intersection of all

kernel

Fig. 9.21. A simple merge of 7},,,,- and minimal partitions of the remaining subpolygons will
not yield a single star.

250 MINIMAL GUARD COVERAGE

the half planes defined by edges of S;. At least one of the half-planes that
form part of the boundary of the kernel must be determined by an edge
with a reflex vertex as endpoint; for edges with two convex endpoints
extend exterior rather than interior to the polygon. Thus at least one edge
of the kernel is determined by a line segment / in L, the set of line segments
defined above. If the intersection of / with P lies in the kernel, then the
lemma is established since this point is in K. If not, then another line I
containing an edge of the kernel must intersect /. Since /' must be defined
by an edge with a reflex endpoint, the intersection of / and /' is in K. O

Since the kernel of any base star must contain a point in K, we only need
consider pseudo-stars visible from the points in K. Let M, be a minimal
partition of P; with a base pseudo-star PS; visible from x. Although there
may be exponentially many such M, for a given x, we need only retain one
representative. This representative is a state for the dynamic programming
algorithm. Although we must store M, for all x € K, K is of polynomial size.
Thus the exponential explosion has been circumvented.

We may finally specify the algorithm.

Preprocessing

(1) Compute the set K . [O(r*n?)]

(2) Compute the visibility graph of P. [O(n?)]

(3) Construct the subpolygons and sort by number of vertices.
[O(n* log n)]

(4) Form a list of all base triangles T, . [O(n’)]

Dynamic Programming

for each P; (in order of increasing size) do
for each T, do [O(n®)]
for each x € K do [O(r’n?)]

double merge:
if both M, of P, and M, of P, exist
then T,,,; can merge with both

single merge:
else if M, of P,, exists and j sees x
then T, can merge with P,

no merge:
else if x € T,,,,; or x sees T, through (i, j)
then candidate M, for P;

A smallest partition of F,, the last subpolygon to be considered, is a
minimal partition for P. A careful accounting shows that the algorithm runs
in O(r*n®logn)=0(n"logn) time (Keil 1985b). Because of this high
complexity, it is difficult to illustrate the algorithm by example. We will
settle for showing just the final step on a small example.

Let P be the 11 vertex polygon shown in Fig. 9.22, and consider the status
of the algorithm when i=1, j=11, and m =35, Py is a star, and so its

9.5. PARTITIONS WITHOUT STEINER POINTS 251

4

Fig. 9.22. An example of the star partitioning algorithm: the polygon may be partitioned into
two stars.

minimal partition is A={(1,2, 3, 4,5)}. Several pseudo-star partitions
would have been computed for P,s by the algorithm, including A, =
{(1,2,3,4,5)}, since Py is visible from 1. Ps,, is not a star. Its only
minimal partition has three pieces: B={(56,7), (7,89, 10, 11),
(5,7, 11)}. However, it has several more efficient pseudo-star partitions,
including By, = {(5, 6, 7, 8, 9, 10, 11)}, where 0 is the intersection of the line
containing edge (8,9) with the boundary of P, since all of Ps,, is visible
from O through (5, 11). Many other pseudo-star partitions exist for P; 4,
including B, = {(5, 6, 7, 8, 11), (8, 9, 10, 11)}, where all of (5,6,7.8,11) is
visible from 1 through (5, 11). Now consider the attempt to merge T s,
with the partitions of P, 5 and Ps ;. First let x =1 € K. Then since both A,
and B, exist, a double merge is possible. The result is the partition
M={(1,2345,6,7,68,611)8,9,10,11)}. Second, let x=0eKk.
Although B, exists, A, does not, since no pseudo-star based on (1, 5) is
visible from 0. Thus no double merge is possible. However, since B, exists
and 1 can see 0, a single merge is possible, resulting in M;=
{(1,5,6,7,8,9,10, 11)(1, 2, 3, 4, 5)}. Both M, and M, are minimal parti-
tions of P.

Although we have emphasized that the minimum partition problem is
polynomial because it admits a dynamic programming algorithm, whereas
the NP-complete minimum cover problem does not, Lingas showed that the
proof in Section 9.2 can be modified to establish that minimum partition is
NP-complete for polygons with holes (Lingas 1982b). He observed that the
stars in the decomposition need only overlap at the crossovers, and that
Lichtenstein established that planar 3SAT is NP-complete (Lingas 1982a).
Thus Keil’s dynamic programming approach cannot work for polygons with
holes. Intuitively this is because a diagonal in a multiply-connected polygon
P does not necessarily cut it into two pieces, and therefore merging is not
confined to one base edge, but must in the worst case be considered along
the entire boundary of a subpolygon.

252

MINIMAL GUARD COVERAGE

9.6. DISCUSSION

The results discussed in this chapter are summarized, together with two
results not yet discussed, in Table 9.1. The results on monotone orthogonal
polygons were obtained by Keil (cover) and Liu and Ntafos (partition) (Keil
1985a; Liu and Ntafos 1985). Several interesting open questions remain:

1)

)

€)

(4)

Can a variant of Keil’s dynamic programming approach be used to
find star partitions permitting Steiner points? Chazelle was able to
achieve O(n*) for minimum convex partition with Steiner points via
a very complex dynamic programming algorithm (Chazelle 1980),
but star partitions seem even more complicated.

What are the complexities of the various problems when restricted
to orthogonal polygons? As the table indicates, the first inroads have
already been made for monotone orthogonal polygons. It does not
seem to be straightforward to extend these results to general
orthogonal polygons, however.

Are there other natural restrictions on the pieces that result in
polynomially solvable problems? Aggarwal et al. investigated star
covers where the boundary of the pieces are formed by extensions of
the edges of the polygon (Aggarwal et al. 1985). They claim that Lee
and Lin’s algorithm can be modified to establish that this restricted
problem is also NP-complete.

Given that most of the interesting problems seem to be intractable,
it is natural to seek approximation algorithms that achieve decom-
positions with, say, no more than a constant times the optimal
number of pieces. Such approximation algorithms are just beginning
to be explored.

Table 9.1

Decomposition—> Cover Partition

w. Steiner w/o Steiner w. Steiner w/o Steiner

simple polygons NP-hard ~ NP-complete ? O(n"logn)

polygons with holes NP-hard NP-complete NP-hard NP-complete

monotone orthogonal
polygons on? o)
two-dimensional grids O(n*%) ,

three-dimensional grids NP-complete NP-complete

