1

POLYGON PARTITIONS

1.1. INTRODUCTION

In 1973, Victor Klee posed the problem of determining the minimum
number of guards sufficient to cover the interior of an n-wall art gallery
room (Honsberger 1976). He posed this question extemporaneously in
response to a request from Vasek Chvital (at a conference at Stanford in
August) for an interesting geometric problem, and Chvital soon established
what has become known as “Chvital’'s Art Gallery Theorem” (or some-
times, “watchman theorem”): |n/3| guards are occasionally necessary and
always sufficient to cover a polygon of n vertices (Chvital 1975). This simple
and beautiful theorem has since been extended by mathematicians in several
directions, and has been further developed by computer scientists studying
partitioning algorithms. Now, a little more than a decade after Klee posed
his question, there are enough related results to fill a book. By no means do
all these results flow directly from Klee’s problem, but there is a cohesion in
the material presented here that is consistent with the spirit of his question.

This chapter examines the original art gallery theorem and its associated
algorithm. The algorithm leads to a discussion of triangulation, and a
reexamination of the problem brings us to convex partitioning. The
common theme throughout the chapter is polygon partitioning. Subsequent
chapters branch off into specializations and generalizations of the original
art gallery theorem and related algorithmic issues.

1.2. THE ORIGINAL ART GALLERY THEOREM AND
ALGORITHM

1.2.1. The Theorem

Problem Definition

A polygon P is usually defined as a collection of n vertices vy, v, ..., v,
and n edges v Vz, Uyvs, ..., VU, 1U,, VU, such that no pair of non-
consecutive edges share a point. We deviate from the usual practice by

1

2 POLYGON PARTITIONS

defining a polygon as the closed finite connected region of the plane
bounded by these vertices and edges. The collection of vertices and edges
will be referred to as the boundary of P, denoted by 3P; note that 3P < P.
The term “polygon” is often modified by “simple” to distinguish it from
polygons that cross themselves, but in this book all polygons are simple, so
we will drop the redundant modifier. The boundary of a polygon is a
“Jordan curve”: it separates the plane into two disjoint regions, the interior
and the exterior of the polygon. A polygon of n vertices will sometimes be
called an n-gon.

Let us say that a point x € P sees or covers a point y € P if the line
segment xy is a subset of P:xy c P. Note that xy may touch GP at one or
more points; that is, line-of-sight is not blocked by grazing contact with the
boundary. For any polygon P, define G(P) to be the minimum number of
points of P that cover all of P: the minimum & such that there is a set of
points in P, {x, ..., x;}, so that, for any y € P, some x;, 1 =i =k, covers
y. Finally, define g(n) to be the maximum value of G(P) over all polygons
of n vertices.

Klee’s original art gallery problem was to determine g(n): the covering
points are guards who can survey 360° about their fixed position, and the art
gallery room is a polygon. The function g(n) represents the maximum
number of guards that are ever needed for an n-gon: g(n) guards always
suffice, and g(n) guards are necessary for at least one polygon of n vertices.
We will phrase this as: g(n) guards are occasionally necessary and always
sufficient, or just necessary and sufficient.

Necessity

A little experimentation with small # quickly establishes a lower bound on
g(n). Clearly a triangle needs exactly one guard, so g(3)=1. Even a
non-convex quadrilateral can be covered by a single guard, so g(4)=1. Itis
slightly less obvious that g(5) =1, but there are only three distinct *“shapes”
of pentagons possible: those with 0, 1, or 2 reflex vertices (those with
interior angle larger than 180°), and all three can be covered with one
guard; see Fig. 1.1. For n =6, there are two shapes (also shown in Fig. 1.1)
that need two guards, so g(6) = 2. The second shape easily generalizes to a
“comb” of k prongs and n =3k edges that requires k guards (Fig. 1.2)
(Chvdtal 1975). This establishes that g(n) = {n/3].

This situation is typical of the art gallery theorems that we will examine
later: it is often easy to establish a lower bound through a generic example
that settles the ‘“‘necessity’”’ of a particular formula. The difficult part is
establishing sufficiency, as this needs an argument that holds for all
polygons. Before showing our first sufficiency proof, we will briefly explore
a few approaches that do not work.

False Starts

The formula g(n) = |n/3] could be interpreted as: one guard is needed for
every three vertices. Phrased in this simple form, it is natural to wonder if

1.2. THE ORIGINAL ART GALLERY THEOREM AND ALGORITHM 3

n=3 A

Fig. 1.1. Polygons with 5 or fewer vertices can be covered by a single guard, but some
6-vertex polygons require two guards.

perhaps a guard on every third vertex is sufficient. Figure 1.3 shows that
such a simple strategy will not suffice: x,, in the figure will not be covered if
guards are placed on all vertices { with i = m(mod 3).

A second natural approach is to reduce visibility of the interior to
visibility of the boundary: if guards are placed such that they can see all the
paintings on the walls, does that imply that they can see the interior? Not
necessarily, as Fig. 1.4 shows: guards at vertices a, b, and ¢ cover the entire
boundary but miss the internal triangle Q.

A third natural reduction is to restrict the guards to be stationed only at
vertices. Define a vertex guard to be a guard located at a vertex; in contrast,
guards who have no restriction on their location will be called point guards.
Define g,(n) to be the number of vertex guards necessary and sufficient to
cover an n-gon. Is g,(n)=g(n)? Certainly there are particular polygons
where the restriction to vertices weakens the guards’ power: Fig. 1.5 shows
one that needs two vertex guards but a single point guard placed at x suffices

PANNAN

Fig. 1.2. Each prong of the comb requires its own guard, Here n =15 and 5 guards are
needed.

4 POLYGON PARTITIONS

Fig. 1.3. Guards on every third vertex will not cover one of the points xo, x;, Or X,.

to cover the entire polygon. But g(n) summarizes information about all
polygons, so this particular case has no more impact on our question than
does the existence of n-gons needing only one guard have on the value of
g(n). It turns out that in fact g,(n)=g(n) and that the reduction is
appropriate. Its validity will fall out of the sufficiency proofs presented
below, so we will not establish it independently. The reader is forewarned,
however, that we will encounter many problems later for which the
reduction to vertex guards is a true restriction and changes the problem in a
fundamental way.

Fisk’s Proof

We will step out of chronological order to sketch Fisk’s sufficiency proof,
which came three years after Chvatal’s original proof (Fisk 1978; Honsber-
ger 1981). Fisk’s proof is remarkably simple, occupying just a single journal
page. Its explication will introduce several concepts to which we will return
later.

The first step in Fisk’s proof is to “triangulate” the polygon P by adding
internal diagonals between vertices until no more can be added. It is not
obvious that a polygon can always be partitioned into triangles without
adding new vertices this way; it is even less obvious how to perform the
partition with an efficient algorithm. Triangulation is an important topic,

Fig. 1.4. Guards at a, b, and ¢ cover the boundary but not the interior of the polygon.

1.2. THE ORIGINAL ART GALLERY THEOREM AND ALGORITHM 5

Fig. 1.5. Point guards are more powerful than vertex guards.

and will be covered in depth in Section 1.3. For now we will just assume
that a triangulation always exists.

The second step is to “recall” that the graph of a triangulated polygon can
be 3-colored. A k-coloring of a graph is an assignment of colors to the
nodes, one color per node, using no more than k colors, such that no two
adjacent nodes are assigned the same color. The nodes of the triangulation
graph correspond to the vertices of the polygon, and the arcs correspond to
the original polygon’s edges plus the diagonals added during triangulation.
Because a triangulation graph is planar, it is 4-colorable by the celebrated
Four Color Theorem (Appel and Haken 1977). We will have to wait for the
discussion of triangulation to formally prove that triangulation graphs of
polygons are 3-colorable. Let us here just make the claim at least plausible
via an example.

Consider the triangulation shown in Fig. 1.6a. Pick an arbitrary triangle,
say acg, and 3-color it as shown with the colors 1, 2, and 3. The three
diagonals ac, cg, and ga force the nodes b, e, and i to be colored 3, 1, and 2,
respectively. Now diagonals involving the just-colored nodes force other
colorings, and so on. The result is the coloring shown in Fig. 1.6b, which is
unique given the initial arbitrary coloring of the first triangle: every “move”
is forced after that, and since the polygon has no holes, the coloring never
wraps around and causes a conflict. This argument will be formalized in
Section 1.3.1.

Let us assume that the triangulation graph of a simple polygon can be
3-colored, and finish Fisk’s proof.

The third step is to note that one of the three colors must be used no
more than 1/3 of the time. Although this is obvious, let me be explicit since

Fig. 1.6. Three-coloring of a triangulation graph starting from acg.

6 POLYGON PARTITIONS

variants of this argument are used throughout the book. Let 4, b, and ¢ be
the number of occurrences of the three colors in a coloring, with a<=b =c.
The total number of nodes is n, so a + b + ¢ = n. If a > n/3, then the sum of
all three would be larger than n. Therefore, a < |n/3] (since a must be an
integer).

Let the least frequently used color be red. The fourth and final step is to
place guards at every red node. Since a triangle is the complete graph on
three nodes, each triangle has all three colors at its vertices. Thus every
triangle has a red node and thus a guard in one of its corners. Moreover,
since the triangles form a partition of P, every point in the polygon is inside
some triangle, and since triangles are convex, every point is covered by a
red guard. Thus the guards cover the entire polygon, and there are at most
|n/3] of them.

This establishes that |n/3] guards are sufficient to cover the interior of an
arbitrary polygon. Together with the necessity proved earlier, we have that

g(n)=|n/3].
Chvatal’s Proof

The first proof of Chvatal’s Art Gallery Theorem was of course given by
Chvital, in 1975 (Chvital 1975). His proof starts with a triangulation of the
polygon, as does Fisk’s, but does not use graph coloring. Rather the
theorem is proven directly by induction. Although Chvétal’s proof is not as
concise as Fisk’s, it reveals aspects of the problem that are not brought to
light by the coloring argument, and we will see in Chapter 3 that Chvatal’s
argument generalizes in cases where Fisk’s does not.

Define a fan as a triangulation with one vertex (the fan center) shared by
all triangles. Chvital took as his induction hypothesis this statement:

Induction Hypothesis: Every triangulation of an n-gon can be parti-
tioned into g < |n/3] fans.

For the basis, note that n = 3 since we start with an r-gon, and that there is
just a single triangulation possible when n =3, 4, and 5, each of which is a
fan; see Fig. 1.7. Thus the induction hypothesis holds for n < 6.

Given a triangulation with n =6, our approach will be to remove part of
the triangulation, apply the induction hypothesis, and then put back the
deleted piece. We will see in the next section that there is always a diagonal
(in fact, there are always at least two) that partitions off a single triangle.
But note that this only reduces n by 1, and if we were unlucky enough to
start with n =1 or 2 (mod) 3, then the induction hypothesis partitions into
g =|(n—1)/3] = [n/3] fans, and we will in general end up with g + 1 fans

AN AN

Fig. 1.7. Triangulations of up to five vertices are necessarily fans.

1.2. THE ORIGINAL ART GALLERY THEOREM AND ALGORITHM 7

Fig. 1.8. No diagonal of this triangulation cuts off exactly three vertices.

when we put back the removed triangle. The moral is that, in order to make
induction work with the formula |n/3], we have to reduce r by at least 3 so
the induction hypothesis will yield less than g fans, allowing the grouping of
the removed triangles into a fan.

So the question naturally arises: does there always exist a diagonal that
partitions off 4 edges of the polygon, and therefore reduces n by 3?7 The
answer is no, as established by Fig. 1.8 (this is not the smallest coun-
terexample). Chvital’s brilliant stroke was to realize that there is always a
diagonal that cuts off 4 or 5 or 6 edges:

LEMMA 1.1 [Chvital 1975]. For any triangulation of an n-gon with n =6,
there always exists a diagonal d that cuts off exactly 4, 5 or 6 edges.

Proof. Choose d to be a diagonal that separates off a minimum number of
polygon edges that is at least 4. Let £ =4 be the minimum number, and
label the vertices of the polygon 0,1, ..., n —1 such that d is (0, k); see
Fig. 1.9. d must support a triangle 7 whose apex is at some vertex ¢ with
O0=t=k. Since (0,¢) and (k, t) each cut off fewer than k edges, by the
minimality of £ we have t=3 and k —¢=3. Adding these two inequalities
yields k=6. O

Now the plan is to apply the induction hypothesis to the portion on the
other side of the special diagonal d. Let G, be the triangulation partitioned
off by d; it has k + 1 boundary edges and hence is a (k + 1)-gon (see Fig.

G
n-2 k+2
n—-1 k+1
o) k
| k-1
2 k-2

G

Fig. 1.9. Diagonal 4 cuts off k vertices in G,.

8 POLYGON PARTITIONS

Fig. 1.10. G; is a hexagon.

1.9). Let G, be the remainder of the original triangulation, sharing 4; it has
n — k + 1 vertices. The induction hypothesis says that G, may be partitioned
into g'=|(n—k+1)/3| fans. Since k=4, g'=<|(n—-3)/3] = |n/3] - 1.
Thus, in order to establish the theorem, we have to show that G; need only
add one more fan to the partition. We will consider each possible value of &
in turn.

Case 1 (k=4). G, is a 5-gon. We already observed (Fig. 1.7) that every
pentagon is a fan. Therefore, G has been partitioned into |n/3] —1+1=
|n/3] fans.

Case 2 (k=5). G is an 6-gon. Consider the triangle T of G, supported by
d, with its apex at t. We cannot have t=1 or t =4, as then the diagonals
(0, 1) or (5, ¢) [respectively] would cut off just 4 edges, violating the assumed
minimality of k =5. The cases t =2 and ¢ =3 are clearly symmetrical, so
assume without loss of generality that r=2; see Fig. 1.10. Now the
quadrilateral (2, 3, 4, 5) can be triangulated in two ways:

Case 2a. The diagonal (2, 4) is present (Fig. 1.10a). Then G, is a fan, and
we are finished.

Case 2b. The diagonal (3, 5) is present (Fig. 1.10b). Form the graph G, as
the union of G, and T. G, has n—5+1+1=n—3 edges. Apply the
induction hypothesis to it, partitioning it into g’ = |[(n —3)/3] = |n/3] -1
fans. Now 7 must be part of a fan F in the partition of G,, and the center of
F must be at one of T’s vertices:

Case 2b.1. F is centered at 0 or 2. Then merge (0, 1, 2) into F, and make
(2,3,4,5) its own fan. Now all of G is covered with g’ + 1 = |n/3] fans.

Case 2b.2. Fis centered at 5. Merge both (2, 3,5) and (3, 4, 5) into F, and
make (0, 1,2) a separate fan. The result is g’ + 1 fans.

Case 3 (k=6). Gy is a 7-gon. The tip ¢ of the triangle T supported by 4
cannot be at 1, 2, 4, or 5, as then a diagonal would exist that cuts off
4 < k < 6 edges, contradicting the minimality of k. Thus t =3. Each of the
two quadrilaterals (0, 1,2, 3) and (3, 4, 5, 6) has two possible triangulations,
leading to four subcases.

Case 3a. The diagonals (3, 1) and (3, 5) are present (Fig. 1.11a). Then G,
is a fan centered at 3, and we are finished.

1.2. THE ORIGINAL ART GALLERY THEOREM AND ALGORITHM 9

Fig. 1.11. G, is a heptagon.

Case 3b. The diagonals (0, 2) and (3, 5) are present (Fig. 1.11b). Join the
quadrilateral (0,2, 3,6) to G, to form a polygon G, with n —6+1+2=
n — 3 vertices, which by the induction hypothesis can be partitioned into
g' = |n/3] —1 fans. Let F be the fan of this partition to which the triangle
(0,2, 3) belongs. The center of F must be at one of its vertices:

Case 3b.1. F is centered at 0 or 2. Merge (0,1,2) into F and make
(3,4, 5, 6) a separate fan.

Case 3b.2. F is centered at 3. Merge (3,4, 3, 6) into F, and make (0, 1,2)
a separate fan.

In all cases, G is partitioned into g’ + 1= |n/3] fans.

Case 3c. The diagonals (1,3) and (4, 6) are present. This is the mirror
image of Case 3b.

Case 3d. The diagonals (0,2) and (4, 6) are present (Fig. 1.11c). Merge T
with G, to form a polygon G, of n — 6+ 1+ 1=n — 4 vertices. Applying the
induction hypothesis partitions G, into g'= |[(n —4)/3| < [n/3] — 1 fans.
Let F be the fan of the partition containing T.

Case 3d.1. F is centered at 0. Merge the quadrilateral (0, 1,2, 3) into F,
and make (3, 4,5, 6) a separate fan.

Case 3d.2. F is centered at 3. Since all of G, is behind the d = (0, 6)
diagonal, it is clear that we can just as well consider F to be centered at 0,
falling into Case 3d.1.

Case 3d.3. Fis centered at 6. This is the mirror image of Case 3d.1.

In all cases, G is partitioned into g’ + 1= |n/3] fans.
This completes the proof. Placing guards at the fan centers establishes the
theorem:

THEOREM 1.1 [Chvital’s Art Gallery Theorem 1975]. |n/3] guards are
occasionally necessary and always sufficient to see the entire interior of a
polygon of n edges.

Note that both Chvatal’s and Fisk’s proofs incidentally establish by
construction that the guards can be chosen to be vertex guards. We now
turn to designing an algorithm to perform the stationing of the guards.

10 POLYGON PARTITIONS

1.2.2. The Algorithm of Avis and Toussaint

A naive implementation of the construction used in Chvital’s proof would
lead to an algorithm that is quadratic at best: O(n) searches for the special
diagonal d would cost O(n?). However, Avis and Toussaint mimicked Fisk’s
proof rather directly to obtain an O(n log n) algorithm (Avis and Toussaint
1981a).

Their algorithm follows the main steps of the proof:

Algorithm 1.1.
(1) Triangulate P, obtaining a graph G.
(2) Three-color the nodes of G.
(3) Place guards at the nodes assigned the least-frequently used color.

Step (1) is a very difficult problem, the topic of the next section. We will see
that it can be accomplished in O(n loglogn) time. Step (2) is easy if you
assume that complete triangle adjacency information is contained in the
data structure for G output from Step (1). As the triangulation algorithm
papers were unconcerned with this issue, Avis and Toussaint assume only
that a list of the diagonals of the triangulation is available. Under these
minimal assumptions, 3-coloring is not so trivial.

They propose to 3-color by a divide-and-conquer strategy. Their divide
step partitions the polygon into two pieces, each of at least [n/4] vertices.
Recursively assuming that each piece is 3-colored, the merge step makes a
3-coloring of the whole by relabeling if necessary. Both the divide and the
merge steps require only O(n) time, leading to the familiar recurrence
equation T(n) =2T(n/2) + O(n), whose solution is T(n) = O(n log n).

We now describe the division step.

LEMMA 1.2 [Avis and Toussaint 1981]. Any triangulation of a polygon P
of n vertices contains a diagonal d that partitions it into two pieces each
containing at least |n/4] vertices.

Proof. Label the vertices of P 1,..., n. Partition the vertices into four
chains C;, C,, Cs, C,, each of length at least |n/4]: chain C; consists of
vertices (i —1)|n/4] + 1 through i|n/4] for i=1,2,3, and C, consists of
3|n/4] + 1 through n.

First note that there must exist an i and j, i #, such that a vertex in C; is
connected by a diagonal to a vertex in C;. Otherwise an interior region
would be bound by at least four diagonals, contradicting the assumption
that the diagonals form a triangulation.

If there exists such an ¢ and j with | —j| =2, the lemma is established by
the following argument. Let i =1 and j =3 without loss of generality, and
let d be a diagonal from C; to C;. Then C, is on one side of d and C, on the
other; thus each piece is of size at least |n/4].

Finally, suppose there do not exist such an i and j with |i —j|=2. Leti=1
and j = 2 without loss of generality. Let v, be the lowest numbered vertex in
C, that connects to a vertex in C,, and let v, be the highest numbered

1.3. TRIANGULATION 11

[n/4]

»
3 [n/4]
Fig. 1.12. The apex ¢ of the triangle v,v,t must lie in either C; or C,.

vertex in C, that connects to a vertex in C,. Clearly v,v, is a diagonal of the
triangulation; see Fig. 1.12. Let ¢ be the apex of the triangle supported by
v, outside of the indices in the range [v,, v,]. f cannot be in either C; or
C,, as that would contradict the extremality of either v, or v, in their
chains. If ¢ is in C;, then vy¢ connects C; to C,; if ¢ is in C,4, then vyt
connects C, to C,. Both cases contradict our assumptions, showing that this
last case cannot occur. [

We will encounter a significant extension of this lemma in the next section.

Now that we have established the existence of an appropriate dividing
diagonal, it is easy to see how to find one in linear time. Simply check each
of the n — 3 diagonals (see Theorem 1.2 following) and see if its endpoints
lie in either C; and C; or C, and C,.

Finally, we consider the merge step. After recursively applying the
algorithm, we have a 3-coloring of G, and G,, the two graphs whose union
is G. If the shared diagonal d is colored the same in each part, then no
action is necessary. If the diagonal endpoints are assigned different colors in
G, and G,, simply relabel the colors in G, to accord with G;’s assignment to
d. This relabeling will take O(n) time, the size of G..

Step (3) of the algorithm clearly takes just linear time, resulting in an
O(n log n) algorithm overall.

1.3. TRIANGULATION

We have encountered triangulations several times, and the concept will be
used throughout the book: as the most basic polygon partition possible, its
role in the field is analogous to the role of prime factorization in number
theory. In this section we will first prove that triangulations exist, and then
examine a series of algorithms for constructing a triangulation.

12 POLYGON PARTITIONS

1.3.1. Theorems

When first confronted with the question, ‘“Must all polygons admit a
triangulation?,” a natural reaction is, “How could they not?” Indeed, they
cannot not, but this is still a fact in need of proof; a simple inductive proof
follows.

THEOREM 1.2 (Triangulation Theorem). A polygon of n vertices may
be partitioned into n—2 triangles by the addition of n—3 internal
diagonals.

Proof. The proof is by induction on n. The theorem is trivially true for
n =3. Let P be a polygon of n = 4 vertices. Let v, be a convex vertex of P,
and consider the three consecutive vertices vy, v,, v3. (We take it as
obvious that there must be at least one convex vertex.) We seek an internal
diagonal d.

If the segment v,v; is completely interior to P (i.e., does not intersect
8P), then let d = v v;. Otherwise the closed triangle v,v,v; must contain at
least one vertex of P. Let x be the vertex of P closest to v,, where distance
is measured perpendicular to v,v; (see Fig. 1.13), and let d = v,x.

In either case, d divides P into two smaller polygons P, and P,. If P, has n;
vertices, i =1, 2, then s, + n, =n + 2 since both endpoints of d are shared
between P, and B,. Clearly n; =3, i = 1,2, which implies that n, <n, i =1, 2.
Applying the induction hypothesis to each polygon resuilts in a triangulation
for P of (n,—2)+ (n,—2)=n—2 triangles, and (n; —3)+(n,~3)+1=
n — 3 diagonals, includingd. O

COROLLARY. The sum of the interior angles of a polygon is (n — 2)x.

Proof. Each of the n—2 triangles consumes & of the total interior
angle. O

Next, we make an important observation about the way the triangles in a
triangulation fit together.

LEMMA 1.3. The dual graph of a triangulation of a polygon, with a node
for each triangle and an arc connecting two nodes whose triangles share a
diagonal, is a tree with each node of degree at most 3.

Proof. That each node has degree no greater than 3 is immediate from the

Fig. 1.13. The line segment xv, is an internal diagonal.

1.3. TRIANGULATION 13

\‘”A \
%V

Fig. 1.14. The dual of a polygon triangulation is a tree.

fact that a triangle has 3 sides. Suppose the graph is not a tree. Then it must
have a cycle. This cycle encloses some vertices of the polygon, and therefore
it encloses points exterior to the polygon. This contradicts the definition of a
polygon. O

Nodes of degree 1 are the leaves of the tree, nodes of degree 2 are parts
of a path, and nodes of degree 3 are the binary branch points of a tree; see
Fig. 1.14. We will see in Chapter 5 that Theorem 1.2 extends to polygons
with holes (Lemma 5.1), but Lemma 1.3 does not.

The technical term for the dual used in the above lemma is ‘“weak dual,”
weak because no node is assigned to the exterior face—that is, the exterior
of the polygon. Throughout this book we will use weak duals but call them
duals.

Lemma 1.3 yields an easy proof of the “two ears theorem” of Meister
(1975). Three consecutive vertices v, v,, v; form an ear of a polygon P at
v, if the segment v,v; is completely interior to P. Two ears are
non-overlapping if the triangle interiors are disjoint.

THEOREM 1.3 [Meister’s Two Ears Theorem 1975]. Every polygon of
n =4 vertices has at least two non-overlapping ears.

Proof. Leaves in the dual of a triangulation correspond to ears, and every
tree of two or more nodes must have at least two leaves. [

This theorem in turn leads to a straightforward proof of the 3-colorability
of a polygon triangulation graph by induction: cut off an ear triangle from
the graph, 3-color the remainder by induction, and put back the removed
triangle, coloring its degree 2 tip vertex the color not used on the cut
diagonal.

Finally, we should note that in general a polygon has several distinct
triangulations; only in special cases is the triangulation unique.

14 POLYGON PARTITIONS

1.3.2. Algorithms

As is often the case, the proof of the existence theorem for triangulations
leads directly to an algorithm for constructing one; and, as is again often the
case, the algorithm is rather slow. Consider a naive implementation of the
proof of Theorem 1.2. Determining whether a given diagonal is interior to
the polygon requires O(n) time. The chosen diagonal may partition the
polygon into a small and a large piece; in the worst case the smaller piece
could be a single triangle. Assuming the worst case at each step, complete
triangulation requires

kg O(k) = O(n?).

Obtaining an optimal algorithm for triangulation is perhaps the outstand-
ing open problem in computational geometry. To 1986, the best algorithms
required O(n log n) time. The number and variety of these algorithms attest
to the effort researchers expended on the problem. As this book was being
revised, Tarjan and Van Wyk announced a breakthrough: an O(n loglogn)
algorithm. Whether a linear-time algorithm is possible still remains open at
this writing. In this section we will present several O(n log n) triangulation
algorithms before sketching the latest algorithm.

The first O(n log n) algorithm developed proceeds in two stages: it first
partitions the polygon into monotone pieces, and then triangulates each
monotone piece individually. Thus we must first discuss monotone polygons
and partitions, important topics in their own right.

Monotone Polygons

The concept of a monotone polygon was introduced in Lee and Preparata
(1977) and has since proved to be a very fertile idea; it will be used at
several critical junctures throughout this book. Let p,,...,p, be a
polygonal path or a chain. A chain is called monotone with respect to a line
L if the projections of p,, ..., p, onto L are ordered the same as in the
chain; that is, there is no “doubling back” in the projection as the chain is
traversed. Two adjacent vertices p; and p,,; may project to the same point
on L without destroying monotonicity. A chain is called monotone if it is
monotone with respect to at least one line. We will use the convention that
the line of monotonicity is the y-axis. A polygon is monotone if it can be
partitioned into two chains monotone with respect to the same line. We will
call them the left and right chains; see Fig. 1.15.

Lee and Preparata’s monotone partitioning algorithm depends on an
“obvious” characterization of monotone polygons, which, like so many such
obvious statements, requires a careful proof. Define an interior cusp of a
polygon as a reflex vertex v whose adjacent vertices either do not both have
larger or do not both have smaller y-coordinates than v; picturesquely,
interior cusps are stalacitites or stalagmites. The following is proved in
(Garey et al. 1978).

1.3. TRIANGULATION 15

Fig. 1.15. The vertices of a monotone polygon project onto a line in a monotonically
increasing sequence.

LEMMA 1.4 [Garey et al. 1978]. If a polygon P has no interior cusp, then
it is monotone with respect to the y-axis.

Proof. We will prove the contrapositive. Assume therefore that P is not
monotone with respect to the y-axis. Then at least one of its two chains, say
the right one, is not monotone. Let the vertices of the right chain be
D1, - - - » Dr from top to bottom, and let p; be the first vertex of this chain
such that the y-coordinate of p,,, is greater than that of p;; p, must exist
since the chain is not monotone. If p;., is to the right of the line p;p;_,,
then p; is an interior cusp and we are finished. So assume that p,., is to the
left of p;p.—;. Now connect p; to p, with line L as shown in Fig. 1.16. Let p;
be a vertex of largest y-coordinate in the chain from p; to p, before it
crosses L. Then p; is an interior cusp: it is reflex since it is a local maximum
in the y direction with the polygon interior above it, and netther of its
adjacent vertices can have larger y-coordinate. [

Lee and Preparata’s algorithm removes all interior cusps by the addition
of internal diagonals. It uses a general technique called “plane sweep”

Fig. 1.16. If p; is not an interior cusp, then p; is.

16 POLYGON PARTITIONS

(Nievergelt and Preparata 1982), which we will have occasion to use
repeatedly in this book. The vertices are sorted by decreasing height and
labeled vy, . . . , v,, with v, highest. We will assume for simplicity that no
two points have the same y-coordinate. A horizontal line L is now
(conceptually) swept over the polygon from top to bottom. At all times a
data structure is maintained reflecting the structure of the polygon in the
vicinity of L. Each time a vertex is encountered, the data structure is
updated, and perhaps some output is produced.

The data structure S is a list of [edge, vertex] pairs. Let line L intersect
the interior of edges ey, . . . , € in that order from left to right. Then S is the
list

leo, wol, [e1, wil, - - 5 [€ Wi),

where w, is a vertex of minimum y-coordinate between e; and e;,,—that is,
within the trapezoid bounded by L, e, e;;, and the line parallel to L
through the lower of the upper endpoints of e; and e;,, (w; could be this
lower endpoint). An example is shown in Fig. 1.17. The point of this data
structure is that, when L encounters an upward-pointing interior cusp such
as v; in Fig. 1.17, it must lie between two edge ¢; and e;.,, and v, can then
be connected with a diagonal to w.
The algorithm has the following overall structure:

Algorithm 1.2. Monotone Partitioning Algorithm

(1) Sort vertices by decreasing height: vy, ..., v,.
(2) {Descending pass}
fori=1tondo
Remove upward-pointing interior cusps.
(3) {Ascending pass}
for i =n —1 downto 0 do
Remove downward-pointing interior cusps.

We will only describe the descending pass, step (2). An artificial edge e,
corresponding to the line x = —o is used to bound the list S from the left.
The algorithm is best described by a mixture of pseudo-code and pictures.
The definitions of the symbols will be found in the corresponding figures.

| / WY
| / \/\ /7 L\ek -

€,
0 e

Fig. 1.17. When the sweep line L encounters v;, the diagonal (v;, w,) is output.

1.3. TRIANGULATION 17

Fig. 1.18. Notation and sweep line events for monotone partitioning algorithm.

{Descending pass}
S «—[eq, Vo]
fori=1ton—1do
begin

j «<—smallest index such that v, is between ¢; and e;,, or on e;,; {See Fig.
1.18a}
{Let I be the number of edges incident to v; from above.}
{Sora="""- [ej—l: Wj—1], [ej, Wj]) [ej+1; Wj+1]) [ej+2: Wj+z] -}
case [of
I=2: {Fig. 1.18b}
Snew(—' o [ej—lr Ui],v [ej+2: wj-+-2] tre
I=1: {Fig. 1.18c}
Snew(_' i [ej—b Ui]) [e,,v U,'], [ej+11 wj+1] et
I=0: {Fig. 1.18d}
Spew e ‘[ej: Ui]; [e', Ui]; [e"; Ui], [ej+1) Wj+1] Tt
if v; is reflex then draw diagonal (v;, w;)
end

We will now run through a small example. Consider the polygon in Fig.
1.19. The vertices are labeled by integers in descending order, and the edges

18 POLYGON PARTITIONS

Fig. 1.19. Monotone partitioning example: diagonals (5,4) and (6, 5) partition the polygon
into monotone pieces.

are labeled with letters. Table 1.1 shows the values of the critical variables
and the data structure S throughout the execution of the algorithm.

One can easily see that the algorithm is prepared to remove external
cusps also, and it is only by checking whether v; is reflex that we ensure that
internal cusps are removed. Their algorithm was originally designed for
planar point location, an application for which all cusps need to be
removed.

We now turn to an analysis of the time complexity of the algorithm. The
initial sorting step takes O(n logn) time. If the list S is implemented as a
dictionary, say by a height-balanced tree (Knuth, 1973), then insertions and
deletions can be performed in O(logn) time. As each vertex is processed
only when it is passed by the sweeping line L, there are O(r) such insertions
and deletions, leading to an O(n logn) algorithm. The “trapezoidization”

Table 1.1

-~
-~
~

S Output
[_oo’ 0][], 0][‘1! 0]

[~, 4]Li, 6][%, 6](g, 6]If, 7]
[—oo’ 4][i: 6][h’ 8]
[—oo’ 9]

O 0 NN R W RO
|
8

a 0 [—oo, 0][]7 0][(1, 0][6» 1][d’ 1]
i1 [, 01, 2][b, 2]lc, 1][d, 1]
i 2 [=, 01U 31[d, 1]
1 (==, 4]{i, 4]ld, 1]
i 0 [, 4][i,]IS, Slle, Slid, 1] 54
i 0 (==, 4](i, 6][%, 6](g, 611, S][e. 5], 1] 6—5
2
2
2

1.3. TRIANGULATION 19

algorithm in Tarjan and Van Wyk (1986), to be described shortly, improves
this time complexity to O(n loglog n).

Finally we note that Preparata and Supowit have designed an algorithm to
decide in linear time whether or not a given polygon is monotone with
respect to any direction (Preparata and Supowit 1981).

Triangulation Algorithm of Garey, Johnson, Preparata, and Tarjan

The reason that monotone polygons have proven so useful is not due to
their natural shape (they can be rather unnatural), but rather that often
algorithms are much simpler if they are designed to work specifically on this
restricted class. Triangulation is the best illustration of this: Garey et al.
demonstrated that monotone polygons may be triangulated in linear time.
Together with the O(nlogn) algorithm for monotone partitioning just
presented, this gives an O(n log n) algorithm for triangulating a polygon.

One might at first think that the dual of a triangulation of a monotone
polygon must just be a simple path rather than the tree guaranteed by
Lemma 1.3, but Fig. 1.20 shows that the structure can be quite complicated.
Nevertheless, the situation is sufficiently constrained that Garey et al. were
able to triangulate with a single stack algorithm.

Assume that the polygon P is monotone with respect to the y-axis. The
first step of their algorithm is to sort the vertices in descending order by
y-coordinate. Normally this would require O(nlogn) time, but as the
vertices on both the left and right chains of P are already sorted by y, the
total sort can be obtained in linear time by a simple merge of the two
sequences. Let py, ..., p, be the vertices in sorted order, with p, at the
top. We will assume that no two vertices have the same y-coordinate to
simplify the presentation.

The algorithm successively reduces P by chopping triangles off the top. At
all times it maintains a stack of all the vertices examined so far but not yet
completely processed. Let vy, . .., v, be the vertices on the stack, with v,
on the bottom and v, on the top of the stack, and let P, be the polygon
remaining as step { commences. Then the following stack properties are

Fig. 1.20. The triangulation dual of a monotone polygon is not necessarily a path.

20 POLYGON PARTITIONS

maintained throughout the processing:

(1) wv,, ..., v, decrease by height, v, lowest.

(2) wy,..., v, form a chain of consecutive vertices on the boundary of
P.

(3) wvy,..., v, are reflex vertices.

(4) The next vertex p; to be processed is adjacent via a polygon edge of
P, to either v, or v, (or to both).

The algorithm connects diagonals from the next vertex to the vertices on the
top of the stack, pops these off the stack, and pushes the just processed
vertex onto the stack.

Algorithm 1.3. Triangulation of a Monotone Polygon
Sort vertices by decreasing y-coordinate, resulting in py, . . ., p,.
Push p.
Push p;.
fori=2ton-—1do
if p; is adjacent to v, then {Fig. 1.21a}
begin
while ¢ >0 do
begin
Draw diagonal p;— v,.
Pop.
end
Pop.
Push v,.
Push p,.
end
else if p; is adjacent to v, then {Fig. 1.21b}
begin
while ¢ > 0 and v, is not reflex do
begin
Draw diagonal p;,— v,_;.
Pop.
end
Push p;.
end

The stack contents as the algorithm processes the polygon shown in Fig.
1.22 are shown in Table 1.2. The algorithm ends when p; is adjacent to both
vo and v,. Rather than insert special code to handle this case, we permit the
redundancy of drawing one diagonal {(17, 16) in the above example] that is
superfluous.

We now establish that each diagonal output by the algorithm lies entirely
within the polygon. Consider first the diagonal (p,, v,) in Fig. 1.21a, which
is drawn by the first while loop of the algorithm. It forms a triangle
T = (vq, V1, p;). None of the vertices v,, ..., v, can lie inside of T, since

1.3. TRIANGULATION 21

Fig. 1.21. Triangulation algorithm cases: p, is adjacent to the stack bottom (a) or to the stack
top (b).

the reflex angles at those vertices (stack property (3)) force them to lie on
the opposite side of vov, as p;. Every p; with j >{ has smaller y-coordinate
than p;, so none of these can lie in 7. We have thus established that T
cannot contain any vertex of P. It still could happen that T is crossed by an
edge of P, without any vertices being interior. But this is not possible
because vgp; and vyv,; are boundary edges of P. Therefore, (p;, v,) is an
internal diagonal. Now the remaining diagonals output by the first while
loop are internal by the same argument (or by induction).

Fig. 1.22. Triangulation algorithm example.

22 POLYGON PARTITIONS

Table 1.2

-~

Stack (top—) Diagonals Drawn

2 01

3012

40123

5 01234 (5,3)(5,2) 5, 1)
6 015 (6,5) (6, 1)
756 (7,6)

8 67 (8,7

9 78 9,7)

10 79 (10,9)

11 910 (11,9)

12 911 (12,9)

13 912 (13, 12)

14 12 13 (14,13)

15 13 14 (15, 13)

16 1315

17 13 15 16 (17, 16) (17, 15)

Consider second the diagonal (p;, v,_;) in Fig. 1.21b, drawn by the
second while loop. Let T be the triangle (v,_y, v,, p;). The vertices
Vg, . . ., U, are above T and p; for j >i are below. So no vertex of P, is
inside T. And again, no edge of F; can cross 7 since v,v,_, and v,p; are
boundary edges of P.. Thus the diagonal (p;, v,_,) is internal. The remaining
diagonals are internal by the same argument.

Finally, we argue that the four stack properties are maintained by the
algorithm. Only p; and v, are pushed onto the stack, and when both are
pushed they are pushed in the correct vertical order. Thus the vertices are in
decreasing order by y-coordinate (1). The vertices form a chain (2) because
either (a) the stack is reset to two adjacent vertices (Fig. 1.21a) or (b) by
induction (Fig. 1.21b). The internal angles are reflex (3) because p; is only
pushed when v, is reflex in the second while. And finally, p; is either
adjacent to v, or v, (4) because the montonicity of P, guarantees that p; has
a (unique) neighbor above it, and in the chain v,, . .., v,, only v, and v, do
not have all their neighbors accounted for.

Concerning time complexity, each vertex is pushed at most twice on the
stack, once as p; and once as v,. Examination of the code shows that for
each Push there is a corresponding Pop, and thus the algorithm requires
O(n) time. Together with the O(nlogn) algorithm for partitioning a
polygon into monotone pieces, which adds on O(n) additional edges, this
yields the claimed O(n log n) overall time complexity.

1.3. TRIANGULATION 23

The algorithm has been presented as merely producing diagonals, without
the adjacency information contained in the dual graph of the triangulation.
It is not difficult, however, to modify the algorithm to produce the complete
graph structure for each monotone piece, and then to stitch together the
graphs from the pieces, without increasing the time complexity. With this
graph structure available, Avis and Toussaint’s divide-and-conquer coloring
algorithm may be replaced by a straightforward linear recursive graph
traversal.

Recent Triangulation Algorithms

In this section we review four recent triangulation algorithms. The
algorithms will only be sketched and no proofs will be given; often the
authors themselves have only published sketches of their algorithms. Our
main point is to illustrate the variety of approaches available.

Plane Sweep Algorithm of Hertel and Mehlhorn. The algorithm pre-
sented in the previous two sections uses a plane sweep to partition into
monotone pieces, then sweeps over each piece to triangulate it. It is natural
to wonder if the triangulation cannot be done during the same sweep that
performs the partitioning. Hertel and Mehlhorn showed that indeed a plane
sweep algorithm can be constructed (Hertel and Mehlhorn 1983).
Moreover, their algorithm is not a trivial merging of the algorithms of Lee
and Preparata and of Garey et al.; for instance, Hertel and Mehlhorn’s
algorithm achieves a complete triangulation in a single forward pass,
whereas the monotone partitioning algorithm requires a reverse pass as
well.

The plane sweep algorithm runs in O(n log) time: O(n log n) to sort the
vertices for the sweep, and O(n) instances of data structure updates, each
costing O(logn), so no asymptotic advantage has been gained over the
Garey et al. algorithm. What makes the Hertel and Mehlthorn approach
noteworthy is that they can modify it to achieve O(n + r log r) time, where
is the number of reflex vertices of the polygon. Since r can be as large as
n —3, this is no gain in the worst case, but it could be a significant gain in
practice. Moreover, it was one of the first hints that perhaps better than
O(n log n) might be achievable.

Two changes are made to achieve this new bound. First, the sweep line
stops only at the r reflex vertices (and O(r) other vertices that we will not
specify here) rather than at all » vertices. Thus only O(r) vertices need to be
sorted. Second, the sweep line breaks into pieces, some of which may lag
behind others. The data structure representing the state of the polygon “at”
this now crooked sweep line is only of size O(r), so that processing each of
the O(r) “event” vertices costs O(logr) each. Of course, O(n) is still
needed to output the n—3 diagonals. The result is an O(n +rlogr)
algorithm.

Chazelle’s Polygon Cutting Theorem. We remarked earlier that a naive
implementation of the proof of the triangulation theorem results in an
inefficient triangulation algorithm. The next algorithm we will discuss is in

24 POLYGON PARTITIONS

some sense a sophisticated implementation of the same idea. But rather
than depending on the triangulation theorem, it depends on Chazelle’s
Cutting Theorem. We will present a specialized version of his more general
result (Chazelle 1982):

THEOREM 1.4 [Chazelle 1982]. After O(nlogn) preprocessing, it is
possible to find, in O(n) time, a diagonal that divides the polygon into two
pieces P, and P, that satisfy |P)| =|P|=(2/3)|P|+2 (where |Q| indicates
the number of vertices of Q).

We must have that |P|+ |P|=|P|+2. Solving this equation for [P
and substituting into the inequality shows that the theorem implies that
(1/3) |P| < |Py|. Thus the cutting theorem says that a preprocessed polygon
can be divided into nearly equal-sized pieces in linear time. This immedi-
ately leads to a recursive algorithm for triangulating a polygon: namely, find
a cutting diagonal as guaranteed by the theorem, and recurse on the two
pieces. If the polygon has fewer than seven vertices, stop the recursion (as
the theorem may result in fewer than three vertices in P;) and triangulate by
some brute-force method. Because the search for a cutting diagonal is
linear, we have the recurrence relation T'(n) =27 (2n/3) + O(n) for the time
complexity, whose solution is O(n log n).

Sinuosity Algorithm of Chazelle and Incerpi. The only supralinear step
in the Garey et al. algorithm is partitioning into monotone pieces, which
costs O(nlogn). Chazelle and Incerpi have shown how the monotone
partitioning can be improved to O(n log s), where s is the “sinuosity” of the
polygon (defined below) (Chazelle and Incerpi 1983, 1984). The sinuosity
may be O(n), but it is “usually” very small. Their algorithm works by first
finding a ‘“trapezoidization” of the polygon, from which it is easy to derive a
monotone partition. Indeed, Lee and Preparata’s algorithm discussed in the
previous section can be viewed as computing a trapezoidization.

The trapezoidization Tr(P) of a polygon P is obtained by drawing a
horizontal line through every vertex, extended to the point where it first
crosses to the exterior of the polygon. Figure 1.23 shows an example. The
horizontal lines partition the polygon into trapezoids, or triangles, which
can be considered degenerate trapezoids. Each trapezoid T is “supported”
on its top and bottom sides by a vertex of P. The vertices v of P that violate
monotonicity in the y-direction are those that lie on the interior of a
horizontal segment. Connecting each such v to the unique w that is the
other support vertex for 7 partitions P into pieces monotone with respect to
y. This is also illustrated in Fig. 1.23.

Chazelle and Incerpi compute the trapezoidization of a polygon by
divide-and-conquer. To do this, they first note that a trapezoidization may
be defined for any simple, oriented polygonal path, or a chain: it does not
have to be a closed polygon. The horizontal partition lines are simply
permitted to run to infinity if they meet no obstruction.

Given a polygon P defined by the vertices p,, . . ., p, in counterclockwise
order, let P, be the chain py, ..., p|.z; and P, the chain p|,pj41, - - ., pa.

1.3. TRIANGULATION 25

Fig. 1.23. A trapezoidization (dashed lines) leads to a monotone partitioning with the
addition of diagonals to “internal” vertices (dotted).

The divide-and-conquer algorithm recursively computes Tr(P;) and Tr(P,),
and then merges these two into Tr(P). Obviously all the cleverness is
embodied in the merge procedure.

Consider the example of Fig. 1.24. Starting from v, =w,, the merge
processing walks along the chains wvy,...,v,, and w,...,w,
simultaneously, stitching together the trapezoids to obtain the trapezoidiza-
tion for their union. The process has many similarities to merging two
sorted lists, but it is of course much more complicated. We will skip the
details, and just note one important point: it is possible for the processing to
take “short-cuts.” For example, one can jump from v, to v, on P, without
examining any of the vertices in between, as P, never crosses the v,v, line.

vy

Fig. 1.24. Stitching together trapezoids from separate chains to form a trapezoidization.

26 POLYGON PARTITIONS

We now define the sinuosity of a polygonal path p4, ..., p,. Assume for
simplicity that no two adjacent vertices have the same y-coordinate. As i
moves from 1 to k — 1, the ray R through p;p;.; may pass the horizontal
(positive x-axis) either counterclockwise (ccw) or clockwise (cw). The path
is called spiraling if R never passes the horizontal cw twice in a row, and
antispiraling if it never passes ccw twice in a row. Here by “twice in a row”
we mean two successive horizontal crossings, independent of the number of
chain vertices between these crossings. Thus a spiraling path winds ccw,
with perhaps some cw movements of less than 360°, and an antispiraling
path winds cw. It is easy to partition a simple polygon into maximal
spiraling and antispiraling chains in linear time. The number of chains is
somewhat (+1) dependent on the starting position. The maximum number
of chains over all starting positions for a polygon P is defined as the
sinuosity s of P. For example, the polygon in Fig. 1.25 has s =1: it is a
spiral.

Chazelle and Incerpi have established that (a) the horizontal decomposi-
tion of any spiraling or antispiraling chain can be computed in linear time
using shortcuts, and (b) that this leads to an O(nlogs) algorithm for
triangulating a simple polygon of sinuosity s. This result lent further
credence to the long-standing conjecture that O(nlogn) is not the lower
bound on triangulation.

Triangulation Algorithm of Tarjan and Van Wyk. The conjecture
just mentioned was finally settled by Tarjan and Van Wyk, who found
an O(n loglogn) algorithm for triangulation (Tarjan and Van Wyk 1986).
As one might suspect from a problem so resistant to solution, their
algorithm is rather complex. It would take us very far afield into current
data structure theory to explain the algorithm in detail, so we will only
sketch it at a high level.

They start with the same observation used by Chazelle and Incerpi (and
made independently in (Fournier and Montuno 1984)): triangulation is
linear-time reducible to trapezoidization—that is, a triangulation may be

Fig. 1.25. A polygon with sinuosity 1: there are no two successive clockwise transitions across
the horizontal.

1.4. CONVEX PARTITIONING 27

constructed from a trapezoidization in linear time. Again similar to
(Chazelle and Incerpi 1983), Tarjan and Van Wyk construct the trapezoidi-
zation by divide-and-conquer. But they divide the polygon, not chains. At
any stage of the algorithm, a set S of subpolygons of P are maintained. A
polygon P' is removed from S, and a vertex v, of P’ is selected. A
horizontal line L is drawn through v,,, and P’ is partitioned into pieces that
lie above and below L. This is a complicated step, and requires a novel use
of “finger search trees” (Brown and Tarjan 1980). The points at which P’
crosses L are found in the order in which they occur in a traversal of the
boundary of P’, which is (in general) not the same as their left-to-right
sorted order along L. The intersection points can, however, be sorted in
linear time. This is another complicated step, and one of the keys to the
algorithm’s efficiency. The linear sorting depends on the points forming a
“Jordan sequence” (Hoffman et al. 1985). After splitting and sorting, all
those pieces that are triangles or trapezoids are output; those that are
neither are added to S, and the process repeats.

Although it is unclear at this writing if this algorithm is of practical utility,
its theoretical impact is felt throughout computational geometry, since so
many algorithms depend on triangulation. Even improving on
O(nloglogn) would be a major theoretical advance. The fundamental
question of whether a linear-time triangulation algorithm is achievable
remains open at this writing.

1.4. CONVEX PARTITIONING

We saw in the preceding sections algorithms whose performance was
measured as a function of a variable (r and s) other than #, the number of
vertices of the polygon. This suggests asking Klee’s original art gallery
question, but requesting the answer as a function of something besides n.
As a convex n-gon only needs 1 guard, not |n/3], it makes sense to use a
variable that is a more accurate measure of the “shape” of the polygon. In
this section we investigate the art gallery question as a function of r, the
number of reflex vertices of the polygon.

We first note that » can be as large as n — 3; see Fig. 1.26. This figure

Fig. 1.26. Of a polygon’s n vertices, as many as n — 3 may be reflex.

28 POLYGON PARTITIONS

shows that r no more captures the “shape” of the polygon than n does, since
only one guard is needed for this polygon regardless of the size of r.
Nevertheless, the pursuit of this issue will draw us into the important topic
of convex partitioning.

1.4.1. Theorems
Necessity

Superficially it appears that perhaps no more than roughly /2 guards are
ever necessary to see the interior of a polygon of r reflex vertices, but the
“shutter” examples in Fig. 1.27 demonstrate that in fact r guards are
sometimes necessary.

Sufficiency

Intuition suggests that placing a guard at each reflex vertex suffices to cover
any polygon with r>1 reflex vertices. That this is indeed the case can be
established by Chazelle’s “naive” convex partitioning (Chazelle 1980).

LEMMA 1.5 [Chazelle 1980]. Any polygon can be partitioned into at most
r + 1 convex pieces.

Proof. The proof is by induction. The lemma is clearly true when r =0. In
the general case, draw a ray from a reflex vertex bisecting the internal angle
up to its first intersection with the polygon’s boundary. This ray divides the
polygon into two polygons with » and r, reflex vertices, respectively.
r+r=r—1, since the ray resolved at least one reflex vertex (it may have
resolved another at its point of contact with the boundary). Applying the
induction hypothesis yields r, + 1+ 7, +1=<r +1 convex pieces. O

Fig. 1.27. “Shutter” shapes show that r guards can be necessary.

1.4. CONVEX PARTITIONING 29

THEOREM 1.5 [O’Rourke 1982]. r guards are occasionally necessary and
always sufficient to see the interior of a simple n-gon of r = 1 reflex vertices.

Proof. Necessity has already been established. For sufficiency, apply
Chazelle’s naive convex partition lemma. Each convex piece must have at
least one reflex vertex on its boundary. Thus guards placed on every reflex
vertex see into each convex piece. [

We now turn to a discussion of algorithms for finding convex parti-
tionings.

1.4.2. Algorithms for Convex Partitioning

It is rather easy to compute the naive convex partition in O(rn) = O(n?)
time as follows (Chazelle 1980). For each reflex vertex, intersect every edge
of the polygon with the bisection of the reflex angle. Connect the reflex
vertex to the closest intersection point. Chazelle shows how this speed can
be improved to O(n +r*log(n/r)) time, and I believe a plane-sweep
algorithm can achieve O(n logr), but we will not present the details.

Because at most two reflex vertices can be resolved by a single cut, the
minimum number of convex pieces into which a polygon may be partitioned
is [r/2] +1. Thus, if an optimal partitioning results in OPT pieces,
OPT = [r/2] + 1. The naive partition achieves no more than » + 1 <20PT
pieces in O(n?) time. We will discuss two more algorithms, one faster but
with a poorer performance ratio, and one slower but optimal.

The first results from an observation of Hertel and Mehlhorn (1983).

THEOREM 1.6 [Hertel and Mehlhorn 1983]. Any triangulation of a
polygon can be converted into a convex partitioning of no more than 2r + 1
pieces by removing diagonals.

Proof. Let d be an internal diagonal of the triangulation incident with a
vertex v. Call d essential for v if its removal would result in a non-convex
interior angle at v. Then a reflex vertex cannot have more than two essential
diagonals incident to it: an angle smaller than 360° cannot be partitioned
into more than three intervals such that adjacent intervals span more than
180°. If each reflex vertex does have exactly two essential diagonals, and no
two reflex vertices share essential diagonals, then 2r of the triangulation
diagonals cannot be removed, resulting in a partition into 2r + 1 convex
pieces. [

Note that 2r + 1 =40PT. Although the performance ratio is lower, the
algorithm implied by the theorem runs in O(n loglog n) time: O(n log log)
for triangulation, and linear time for removal of inessential diagonals.

Finally, we briefly mention Chazelle’s remarkable optimal algorithm
(Chazelle 1980; Chazelle and Dobkin 1985). Construction of an optimal
convex partition requires the introduction of “Steiner points: points that

30 POLYGON PARTITIONS

Fig. 1.28. An optimal convex partition may require interactions between the cuts resolving
several reflex vertices.

are not vertices of the original polygon." Such points were introduced by the
naive partitioning, but in a very controlled manner. The situation for
optimal partitions is more complicated, as illustrated in Fig. 1.28. This
complexity leads one to believe that perhaps the problem is NP-hard, and
indeed, we will see in Chapter 9 that many minimal partition problems are
NP-hard. Nevertheless, Chazelle was able to obtain an O(n’) optimal
algorithm using dynamic programming, and much else besides. His descrip-
tion fills 97 pages (Chazelle 1980), and we will make no attempt to
summarize it here.

Convex partitions will be revisited for three-dimensional polyhedra in
Chapter 10.

1. Convex partitions without Steiner points are discussed in Greene (1983).

