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Abstract. We present nonoverlapping general unfoldings of two infi-
nite families of nonconvex polyhedra, or more specifically, zero-volume
polyhedra formed by double-covering an n-pointed star polygon whose
triangular points have base angle α. Specifically, we construct general
unfoldings when n ∈ {3, 4, 5, 6, 8, 9, 10, 12} (no matter the value of α),
and we construct general unfoldings when α < 60◦(1 + 1/n) (i.e., when
the points are shorter than equilateral, no matter the value of n, or
slightly larger than equilateral, especially when n is small). It remains
open whether all doubly covered star polygons, or more broadly arbitrary
nonconvex polyhedra, have general unfoldings.

Keywords: polyhedra · nonconvex · nets · nonoverlapping

1 Introduction

Unfolding a polyhedron P refers to the process of cutting and flattening its
surface into a connected planar piece without overlap [13, Part III]. Finding
unfoldings is a classical problem with applications ranging from origami robots to
sheet-metal manufacturing. Assuming P is genus 0, the cuts on the surface of P
must form a forest to ensure a connected unfolding. To enable flattening into the



2 H.A. Akitaya et al.

p1p2
p3

t1

t2

t3 pn

tn

c

Fig. 1. An n-star polygon with base angle α, convex vertices (point tips) t1, t2, . . . , tn,
and reflex vertices p1, p2, . . . , pn.

plane, the cuts must span all (non-zero curvature) vertices of P , with at least one
cut at each positive curvature vertex and two at each negative curvature vertex
[13, Sec. 22.1.3]. A polyhedron admits many different unfoldings, depending on
the choice of cuts.

Edge unfoldings restrict cuts to lie along the polyhedron’s edges. A famous
open problem (dating back to 1975 or even 1525) is whether every convex polyhe-
dron has an edge unfolding. Recent progress solves this problem for “nearly flat
convex caps” [19]. On the other hand, there are several examples of nonconvex
polyhedra without edge unfoldings [4,3,14].

We focus in this paper on general unfoldings, which allow cuts anywhere on
the polyhedron’s surface. All convex polyhedra have general unfoldings by a va-
riety of methods [2,20,16,12]. Thus we focus on general unfoldings of nonconvex
polyhedra. There are nonconvex polyhedra with boundary with no general un-
foldings, but it remains open whether all nonconvex polyhedra without boundary
have a general unfolding [3].

The main progress on this problem has been for orthogonal polyhedra, whose
edges and faces meet at right angles. All orthogonal polyhedra of genus ≤ 2
have general unfoldings [10,6,5,7]. For orthogonal polyhedra, we can quantify
the simplicity of an unfolding by how close the cuts stick to the natural grid
of the polyhedron, defined by extending planes through every face and taking
all intersections with orthogonal faces. A grid unfolding sticks to cuts along
this grid, while an (a× b)-grid unfolding allows cuts on a refined grid defined by
subdividing each grid face into an a×b subgrid for positive integers a, b. Grid un-
foldings are known for orthotubes [4], well-separated orthotrees [9], and one-layer
block structures [17], but it remains open whether they exist for all orthogonal
polyhedra; see the survey [18]. The original method for unfolding all orthogonal
polyhedra of genus 0 [10] uses exponential refinement. The level of refinement
was later reduced to quadratic [6] and then linear [5], and finally generalized to
genus-2 polyhedra (with linear refinement) [7]. Grid unfoldings that use sublin-
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Fig. 2. Summary of (n, α)-stars which this paper shows how to unfold without overlap.
Red is the naive unfolding, blue is the crown unfolding, purple shows comprehensive
unfoldings.

ear refinement have been developed only for specialized orthogonal shape classes.
For example, there exist (1 × 2)-grid unfoldings of orthostacks [4], (4 × 5)-grid
unfoldings of Manhattan Towers [11], (2 × 1)-grid unfoldings of well-separated
orthographs [15], and (4× 4)-grid unfoldings of low-degree orthotrees [8].

Our results. Apart from orthogonal polyhedra, we are not aware of any study
of general unfoldings of infinite classes of nonconvex polyhedra. In this paper,
we consider the seemingly simple class of doubly covered polygons formed by
joining two copies of a simple polygon “back to back” by gluing corresponding
edges, thereby forming a zero-volume genus-0 polyhedron. Specifically, we study
doubly covered (n, α)-stars: for positive integer n and positive angle α < π/2,
an (n, α)-star is a simple polygon having 2n vertices {p1, t1, p2, t2, . . . , pn, tn}
where points p1, p2, . . . , pn form a regular n-gon, all points ti lie outside of it,
and for all 1 ≤ i ≤ n triangle 4pitipi+1 is isosceles with |piti| = |tipi+1| and
base angle ∠pipi+1ti = α; see Fig. 1. (Throughout, we assume all vertex indices
are computed modulo n.) We also let β = π

2

(
1− 2

n

)
be half the angle of a

regular n-gon. This polyhedron has exactly two faces, and does not admit an
edge unfolding.

In this paper, we explore the space of doubly covered stars in search of families
of general unfoldings, and to search for counterexamples of polyhedra that do not
admit a general unfolding. We show that general unfoldings of doubly covered
(n, α)-stars exist:

– for any n when the base angle α < 60◦(1 + 1/n), and
– for any base angle α ∈ (0, π/2) when n ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12}.



4 H.A. Akitaya et al.

t1

tn
p2 p1

c

c

p1p2
tn

t1

Fig. 3. Naive unfolding. The cuts and raw edges are shown in green; top layer pieces
are shaded darker (blue) and bottom are lighter (yellow). Left: Two unfolded spikes
for a star with α ≥ π/4. Right: two unfolded spikes for a star with α < π/4.

These results are summarized in the plot in Fig. 2. We prove existence by con-
struction, providing families of general unfoldings within specific subdomains of
n and α.

2 Naive unfolding

When the base angle α of a doubly covered (n, α)-star is small, we can produce
a naive unfolding that is non-overlapping. For each i, we cut the top layer of
the star along segments cpi (center to spike base) and piti−1 (left side of spike).
This cuts the top layer of the star into n quadrilaterals Q1, Q2, . . . , Qn, where
Qi = 3picpi+1ti. The star can be unfolded along the right side piti of each spike:
each quadrilateral Qi is reflected along the line piti. See Fig. 3 (left). We now
prove:

Lemma 1. The naive unfolding of an (n, α)-star is non-overlapping when

α ≤

{
π
6

(
1 + 6

n

)
, for n ≤ 12 ,

3π
n , otherwise.

Proof. We compute the values of n and α for which the naive unfolding is non-
overlapping. Note that, due to symmetry, it is enough to show that one quadri-
lateral, say Q1, unfolds without overlapping. Let c′i and p′i+1 be the reflections
of the points c and pi+1 across the line piti respectively. The image of Qi after
unfolding is a quadrilateral Q′i = 3pic′ip

′
i+1ti. For the unfolding to be non-

overlapping it is necessary that the total sum of the angles around point p1 is
not greater than 2π, that is 3α+ 3β ≤ 2π, which reduces to:

α ≤ π

6

(
1 +

6

n

)
.
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Assume that the above inequality holds, and note that Q′1 lies on one side of
the line p1tn. Now consider two cases, when the angle ∠p2t1p′2 is non-reflex, and
when it is reflex. In the first case, when ∠p2t1p′2 ≤ π, or equivalently α ≥ π

4 ,
quadrilateral Q′1 lies on one side of the line p2t1 (refer to Fig. 3). Therefore none
of the images of the quadrilaterals Qi overlap with each other, as they all lie
inside the non-overlapping cones defined by the lines piti−1 and pi+1ti. That is,
the unfolding is flat when

π

4
≤ α ≤ π

6

(
1 +

6

n

)
.

This pair of inequalities has a solution when 0 < n ≤ 12.
In the second case, when ∠p2t1p′2 > π, or equivalently α < π

4 , quadrilateral
Q′1 may overlap with Q′2, the image of the quadrilateral Q2, if the exterior angle
∠t1p2c′2 is too small. Specifically, Q′1 and Q′2 will overlap if and only if p′2 and
t1 lie on opposite sides of p2c

′
2, which happens when ∠t1p2p′2 = π−4α

2 > t1p2c
′
2.

Thus, for the unfolding to be non-overlapping the total sum of the interior angles
around p2 has to be at most 2π − π−4α

2 , which reduces to

α ≤ 3π

n
.

Putting the two cases together proves the lemma. ut

3 Crown unfolding

For doubly-covered (n, α)-stars with larger base angles, we can produce a non-
overlapping crown unfolding, so named for its four crown-like pieces shown in
Fig. 4 (right). To produce this unfolding, first make one cut across the top layer
of the star along segment p1pm+1, and two cuts across the bottom layer along
p2pm+1 and p1pm+2, where m = dn/2e. Furthermore, cut along both edges of
every spike, except for edges p1t1, p1t2m, pm+1tm, and pm+1tm+1; see Fig. 4 and
Fig. 5 for even and odd n respectively. The top layer is cut into two crown-shaped
pieces, while the bottom layer is cut into three pieces: a hexagon and two more
crown-shaped pieces. The star can then be unfolded along the four preserved
spike edges to form its crown unfolding. We now prove:

Theorem 1. The crown unfolding of an (n, α)-star is non-overlapping when

α ≤

{
π
3

(
1 + 2

n

)
, for even n ,

π
3

(
1 + 1

n

)
, for odd n .

Proof. We compute the values of n and α for which the crown unfolding is
non-overlapping. Let T1 and T2 denote the two crown-shaped pieces from the
top layer, where T1 = p1t1 . . . tmpm+1 and T2 = pm+1tm+1 . . . t2mp1; let B1

and B2 denote the two crown-shaped pieces in the bottom layer, where B1 =
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Fig. 4. Left: A doubly-covered (2m,α)-star. Top layer cuts are shown as solid green
lines and bottom layer cuts are dashed. Right: The resulting unfolding. Top layer pieces
are shaded darker (blue) and bottom are lighter (yellow). The white quadrilateral is
not a piece but is used to simplify the proof.

p2t2 . . . tmpm+1 andB2 = pm+2tm+2 . . . t2mp1; and letH = p1t1p2pm+1tm+1pm+2

be the hexagonal bottom piece. We will consider the images of these pieces after
unfolding, and will prove bounds on α for when they do not overlap.

Denote the reflections of the points pi and ti across edge p1t1 as p′i and t′i
respectively, for all 1 ≤ i ≤ m+1; and let T ′ = p′1t

′
1 . . . t

′
mp
′
m+1 denote the image

of the top layer piece T1 after unfolding across edge p1t1. Then, let p′′i and t′′i be
the reflections of the points p′i and t′i across t′mp

′
m+1, for all 1 ≤ i ≤ m+ 1. The

bottom layer piece B1 (that was attached to the uncut spike edge tmpm+1) then
unfolds into the polygon B′′ = p′′2 t

′′
2 . . . t

′′
mp
′′
m+1.

Consider the images T ′ of T1 and B′′ of B1, which unfold on the same side
relative to the hexagonal bottom piece H. Polygons H and T ′ do not overlap as
they share edge p1t1 which lies on the convex hulls of both polygons. Similarly,
polygons T ′ and B′′ do not overlap because they share edge t′mp

′
m+1. It is not

hard to see that the crown unfolding does not intersect for sufficiently small α
(say, α < π

4 ) as T ′ and B′′ exist on one side of the extension of p1t1, with the
rest of the unfolding on the other side. Thus we focus our attention on the upper
bound, for α ≥ π

4 .
First we consider the case when n is even and prove that the crown unfolding

is non-overlapping when α ≤ α∗even where α∗even = π
3

(
1 + 2

n

)
; see Fig. 4. Observe

that the reflection of T ′ across t′mp
′
m+1 contains B′′ and point p′′1 . Then, when

p′′1 is in the half-plane Π bounded by p1 and pm+2 not containing p2, then T ′

and B′′ will both exist in the half-plane Π ′ bounded by t1 and tm+1 and will
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Fig. 5. Left: A doubly-covered (2m+1, α)-star. Top layer cuts are shown as solid green
lines and bottom layer cuts are dashed. Right: The resulting unfolding. Top layer pieces
are shaded darker (blue) and bottom are lighter (yellow).

not overlap with the rest of the unfolding. Define angles:

θeven = ∠pm+2p1p
′
m+1 =

3π

2
− 2α− β and φeven = ∠p1p

′
m+1p

′′
1 = 2π− 2α− 2β.

Observe that p′′1 is in Π when φeven + 2θeven ≥ π, which holds exactly when
α ≤ α∗even; so T ′ and B′′ both stay in P ′ when α ≤ α∗even. Further, define
distances d1 = |p1pm+2|, d2 = |p1p′m+1|, and d3 = |p1p′′1 |. Clearly d1 < d2 since
d2 is a diameter of the n-gon and d1 is a shorter diagonal. And when α ≤ α∗even,
d2 < d3 since φeven = π + 2π

n − 2α ≥ π
3 + 2π

3n >
π
3 . So d1 < d3, and B′′ also does

not intersect H.
By symmetry, the same argument also shows that the images of T2 and B2

do not overlap with H after unfolding, and lie on the other side of the line
through t1 and tm+1. Thus, the crown unfolding of a doubly-covered (n, α)-star
is non-overlapping when n is even and α ≤ α∗even.

Now we consider the case when n is odd and prove that the crown unfolding
is non-overlapping when α ≤ α∗odd where α∗odd = π

3

(
1 + 1

n

)
; see Fig. 5. First

we observe that, when α increases, the unfolded images T ′ and B′′ of T1 and
B1 approach H faster than the unfolded images of T2 and B2, so we focus our
attention on T ′ and B′′. We first observe that distance |p1p′m+1| is the same as
|p′m+1p

′′
2 |. Then, when p′′2 is in the half-plane Π bounded by p1 and pm+2 not
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containing p2, then T ′ and B′′ will both exist in the half-plane Π ′ bounded by
t1 and tm+1 and will not overlap with the rest of the unfolding. Define angles:

θodd = ∠pm+2p1p
′
m+1 =

3π

2
−2α−β− π

n
and φodd = ∠p1p

′
m+1p

′′
1 = 2π−2α−2β.

Observe that p′′2 is in P when φodd + 2θodd ≥ π, which holds exactly when
α ≤ α∗odd; so T ′ and B′′ both stay in P ′ when α ≤ α∗odd. Further, define distances
d1 = |p1pm+2|, d2 = |p1p′m+1|, and d3 = |p1p′′2 |. Clearly d1 < d2 since d2 is
a longer diagonal of the n-gon than d1. And when α ≤ α∗odd, d2 < d3 since
φodd = π + 2π

n − 2α ≥ π
3 + 4π

3n > π
3 . So d1 < d3, and B′′ does not intersect H.

Thus, the crown unfolding of a doubly-covered (n, α)-star is also non-overlapping
when n is odd and α ≤ α∗odd, completing the proof. ut

4 Comprehensive unfoldings

In this section, we provide unfoldings of (n, α)-stars for arbitrary α for some
small choices of n. We call such unfoldings comprehensive unfoldings.

Theorem 2. There exist non-overlapping unfoldings of (n, α)-stars for any pos-
itive α < π/2 and any n ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12}.

Proof (Case n = 3).
The naive unfolding suffices, since α ≤ π

6

(
1 + 6

3

)
= π

2 . ut

Proof (Case n = 4).
The crown unfolding suffices, since α ≤ π

3

(
1 + 2

4

)
= π

2 . ut

Proof (Case n = 5). The naive unfolding suffices for small α ≤ π
3 <

π
6

(
1 + 6

5

)
.

It fails for larger α because the unfolded image of a top layer’s spike intersects
one of the bottom layer’s spikes. Here we adopt an approach similar to the naive
unfolding, but resolve the overlap by moving spike material from one side to the
other; see Fig. 6.

To produce a comprehensive unfolding of a (5, α)-star, first cut the top layer
of the star along segments cpi for all i; and also along the right side of the spike
from ti to qi and along the bottom face to pi+1, where qi is the point on piti such
that ∠pipi+1qi = π

10 . The bottom layer is cut into a central 10-gon B and five
triangles Ti where B = p1q1p2 . . . pnqn and Ti = 4tipi+1qi; while the top layer
is cut into five quadrilaterals Qi = 3picpi+1ti. Note that Qi remains attached
to B alongside piqi, and Ti remains attached to Qi alongside tipi+1.

Due to symmetry, it is enough to show that one spike unfolds without overlap.
Let c′i and p′i+1 be the reflections of c and pi+1 across line piti respectively, and
let Q′i = 3pic′ip

′
i+1ti be the reflection of Qi across line piti. Further, let q′i be

the reflection of qi across line p′i+1ti, and let T ′i = tip
′
i+1q

′
i. It suffices to show

that the total sum of angles around point pi is not greater than 2π and that pic
′
i

does not intersect qi−1ti−1 for any π
3 ≤ α ≤

π
2 . The first condition is satisfied by
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Fig. 6. General unfolding for n = 5. Top layer cuts are shown as solid green lines and
bottom layer cuts are dashed. Top layer pieces are shaded darker (blue) and bottom
are lighter (yellow). Only the first and second spikes are shown unfolded. Note that c′1
is under the fifth spike, but it will be uncovered when the fifth spike is unfolded.

construction, as 2α+3β+ π
10 ≤ 2π implies α ≤ π

2 . To prove the second condition,
the closest any point on qi−1ti−1 gets to pi, for π

3 ≤ α ≤ π
2 , is |pipi+1| sinα ≥

|pipi+1| sin(π3 ) = |pipi+1|
√
3
2 ≈ 0.866|pipi+1|. Simple calculations show that the

distance from c′i to pi is |pic′i| = 1
2 cos β |pipi+1| =

√
2

5−
√
5
|pipi+1| ≈ 0.851|pipi+1|.

These together show that pi and c′i lie on the same side of qi−1ti−1, so the
unfolding does not overlap. ut

Proof (Case n = 6). The naive unfolding suffices for small α ≤ π
6

(
1 + 6

6

)
= π

3 ,
so here we focus on larger angles α > π

3 . We cannot solve n = 6 in the same way
as n = 5 because the center point c′i would approach pi−1 as α approaches π

2 ,
and would cut off the next spike. We solve this problem by unfolding two spikes
at once; see the left of Fig. 7. While the n ∈ {3, 5} comprehensive unfoldings
each had n-fold rotational symmetry, the n ∈ {6, 9} comprehensive unfolding
constructions we present each have 3-fold rotational symmetry, and the n ∈
{8, 12} each have 4-fold rotational symmetry.

To produce a comprehensive unfolding of a (6, α)-star, first cut the top layer
of the star along segments cpi, but only for even i; and also along the right side
of every odd spike, from ti to pi for odd i, and along the left side of every even
spike, from ti to pi+1 for even i. The bottom layer is cut into a central 9-gon
B and three triangles Ti, where B = p1p2t2p3p4t4p5p6t1 and Ti = 4tipi+1pi for
odd i; while the top layer is cut into three hexagons Hi = 7tipicpi+2ti+1pi+1

for even i. Note that Hi remains attached to B alongside tipi, and Ti+1 remains
attached to Hi alongside ti+1pi+2.
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Fig. 7. General unfoldings for n = 6 [Left] and n = 9 [Right] . Top layer cuts are shown
as solid green lines and bottom layer cuts are dashed. Top layer pieces are shaded darker
(blue) and bottom are lighter (yellow).

Due to symmetry, it is enough to show that one spike unfolds without overlap.
Let c′i, p

′
i+1, t′i+1, and p′i+2 be the reflections of c, pi+1, ti+1, and pi+2 across line

piti respectively for even i, and let H ′i = 7tipic′ip
′
i+2t

′
i+1p

′
i+1 be the reflection of

Hi across line piti. Further, let p′′i be the reflection of p′i across line p′i+1t
′
i for odd

i, and let T ′′i = t′ip
′
i+1p

′′
i also for odd i. It suffices to show that the total sum of

angles around point pi for even i is not greater than 2π, and that points c′i and
p′′i+1 lie on the counterclockwise side of pi−1ti−2 for even i, for any π

3 ≤ α ≤ π
2 .

The first condition is satisfied by construction, as 2α+ 3β ≤ 2π implies α ≤ π
2 .

To prove the second condition, we observe that points c′i and p′′i+1 always stay
on the counterclockwise side of the ray R extending from pi−1 away from the
center in the direction perpendicular to pi−2pi−1, while ti−2 always stays on the
clockwise side of R, for any π

3 ≤ α ≤
π
2 . We have found a dividing line separating

the leaves of the unfolding, thus the unfolding does not overlap. ut

For the remaining cases, we omit full details of the construction, and instead
provide a sketch of how they were discovered and adapted.

Proof (Sketch for case n = 9).
Just as with n = 6, for n = 9 we target 3-fold symmetry, so as to allow the top

layer center point to move farther away than the naive unfolding would achieve.
The center n-gon of the top face is divided into three equal pieces and, as with
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Fig. 8. General unfoldings for n = 8 [Left] and n = 12 [Right]. Top layer cuts are
shown as solid green lines and bottom layer cuts are dashed. Top layer pieces are
shaded darker (blue) and bottom are lighter (yellow).

the n = 5 comprehensive unfolding, additional cuts are made and propagated to
avoid overlap for larger α; see the right side of Fig. 7. The proof of correctness
is tedious, but follows the same proof techniques as used earlier in this paper,
ensuring that the unfolding of spike i (and everything attached to it) never
intersects the counterclockwise side of spike i− 1. ut

Proof (Sketch for case n = 8).
For n = 8, we choose to divide the top face, this time with 4-fold rotational

symmetry; see the left of Fig. 8. The authors also have another comprehensive
unfolding construction for n = 8 based on 2-fold rotational symmetry, but have
found that 4-fold approaches tend to be easier to implement than 2-fold ap-
proaches. As before, additional cuts are made to avoid overlap for larger α. ut

Proof (Sketch for case n = 12).
As with n = 8, we provide a comprehensive unfolding for n = 12 that has

4-fold symmetry, shown on the right of Fig. 8. We also have a comprehensive
unfolding for n = 12 that has 2-fold symmetry, but it is substantially more
complex. The figure shows an unfolding for an α angle close to π

2 . ut

Proof (Sketch for case n = 7).
Unlike n = 5 for which we could adapt the naive unfolding fairly directly,

n = 7 is the first prime number for which the naive unfolding maps c′i to a
point in the interior of the original n-gon bottom layer face. Thus, we attempt
to generalize the 3-fold symmetry approach of n ∈ {6, 9} to unfold n = 7 in three
pieces, two of which unfold two sectors of the original 7-gon while the third piece
unfolds three sectors; see left of Fig. 9. ut
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Fig. 9. General unfolding for n = 10. The cuts and raw edges are shown in green; top
layer pieces are shaded darker (blue) and bottom are lighter (yellow).

Proof (Sketch for case n = 10).

While not prime, we were unable to find an comprehensive unfolding for
n = 10 having 5-fold symmetry. Instead, we attempted to generalize the crown
unfolding having 2-fold rotational symmetry, cutting away material that would
cause the unfolding to intersect; see right of Fig. 9. Note that, while the crown
unfolding retains exactly two whole sectors of the original n-gon from the bottom
layer at the center of the unfolding, this unfolding retains four sectors in the cen-
ter. We have also used this construction approach as the basis for various 2-fold
rotational symmetry comprehensive unfoldings, specifically for n ∈ {6, 8, 10, 12}.

ut

5 Future Work

Our initial goal in studying doubly covered stars was to find a counterexample
to the proposition that every polyhedron admits a general unfolding. While we
have not yet found a counterexample, our search resulted in a number of in-
teresting unfoldings for a new generalized family of nonconvex polyhedra. Our
exploration suggests that (n, α)-stars with large n and α close to π

2 may be
potential counterexample candidates. We have attempted non-overlapping un-
foldings for n larger than 12, for example for n ∈ {16, 32} for α close to π

2 (as
shown in Fig. 10), but we are not at all convinced that these unfoldings can be
generalized for arbitrary α. We hope that future exploration of doubly-covered
star unfoldings will either provide unfoldings for the remaining space over n and
α, or find a polyhedron that does not admit a general unfolding.
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Fig. 10. Possible unfoldings for n = 16 [Left] and n = 32 [Right] for α close to π
2

.
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