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Abstract. We present an algorithm to unfold any triangulated 2-manifold
(in particular, any simplicial polyhedron) into a non-overlap-
ping, connected planar layout in linear time. The manifold is cut only along
its edges. The resulting layout is connected, but it may have a disconnected
interior; the triangles are connected at vertices, but not necessarily joined
along edges. We extend our algorithm to establish a similar result for sim-
plicial manifolds of arbitrary dimension.

1. Introduction

It is a long-standing open problem to determine whether every convex

polyhedron can be cut along its edges and unfolded flat in one piece without

overlap, that is, into a simple polygon. This type of unfolding has been
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termed an edge-unfolding ; the unfolding consists of the facets of the poly-

hedron joined along edges. In contrast, unfolding via arbitrary cuts easily

leads to non-overlap. See [11] for a history of the edge-unfolding problem

and its applications to manufacturing. Recently it was established that not

every nonconvex polyhedron can be edge-unfolded, even if the polyhedron is

simplicial, that is, all of its faces are triangles [2, 3].

In this paper we loosen the meaning of “in one piece” to permit a non-

overlapping connected region that (in general) does not form a simple poly-

gon, because its interior is disconnected. We call such an unfolding a vertex-

unfolding : facets of the polyhedron are connected in the unfolding at com-

mon vertices, but not necessarily along edges. With this easier goal we

obtain a positive result:

Theorem 1. Every connected triangulated 2-manifold (possibly with bound-

ary) has a vertex-unfolding, which can be computed in linear time.

This result includes simplicial polyhedra of any genus, manifolds with any

number of boundary components, and even manifolds like the Klein bottle

that cannot be topologically embedded in 3-space. Our proof relies crucially

on the restriction that every face is a triangle. The problem remains open

for nonsimplicial polyhedra with simply connected or even convex faces; see

Section 5.

We extend this result in the natural way to higher dimensions in Section 4.

2. Algorithm Overview

Let M be a triangulated 2-manifold, possibly with boundary. Following

polyhedral terminology, we refer to the triangles ofM as facets. The (vertex-

facet) incidence graph ofM is the bipartite graph whose nodes are the facets

and vertices of M, with an arc (v, f) whenever v is a vertex of facet f . A

facet path is a trail4 (v0, f1, v1, f2, v2, . . . , fk, vk) in the incidence graph ofM

that includes each facet node exactly once, but may repeat vertex nodes. In

any facet path, vi−1 and vi are distinct vertices of facet fi for all i. Because

each facet node appears only once, no arc is repeated. A facet cycle is a

facet path that is also a circuit, that is, where v0 = vk.

Our algorithm relies on this simple observation:

Lemma 2. If M has a facet path, then M has a vertex-unfolding in which

each triangle of the path occupies an otherwise empty vertical strip of the

plane.

4A trail is a walk in which no arc is repeated. A walk in a graph is an alternating series
of nodes and arcs with each arc incident to the surrounding nodes.
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Proof. Let p be a facet path ofM. Suppose inductively that a facet path p

has been laid out in strips up to facet fi−1, with all triangles left of vertex

vi, the rightmost vertex of fi−1. Let (vi, fi, vi+1) be the next few nodes in p;

recall that vi 6= vi+1. Rotate facet fi about vertex vi so that vi is leftmost

and vi+1 rightmost, and the third vertex of fi lies horizontally between. Such

rotations exist because fi is a triangle. Place fi in a vertical strip with vi and

vi+1 on its left and right boundaries. Repeating this process for all facets in

p produces a non-overlapping vertex-unfolding. ¤
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Figure 1. Vertex-unfolding the top four triangles of the reg-
ular octahedron and making the connections planar.

Thus to prove Theorem 1 it suffices to prove that every connected trian-

gulated 2-manifold has a facet path.

It might be more pleasing to obtain a vertex-unfolding based

on a noncrossing facet path, one that does not include a pattern

(. . . , A, v, C, . . . , B, v, D, . . .) with the facets incident to the vertex v appear-

ing in the cyclic order A, B, C, D. Because a facet path has either no or at

most two odd nodes (its endpoints), and because any such planar graph has a

noncrossing Eulerian trail, we can convert any facet path into a noncrossing

facet path. Specifically, we can replace each crossing pair of vertex-to-vertex
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connections with one of the two alternate pair of connections, whichever al-

ternate pair keeps the vertex-unfolding connected [4, Lem. 1]. See Figure 1.

The existence of facet paths has two further applications:

(1) The vertex-unfolding resulting from a noncrossing facet path can be

viewed as a hinged dissection [7] of the surface. Thus we demonstrate

a hinged dissection for any triangulated 2-manifold.

(2) A facet path also yields an “ideal rendering” of any triangulated

surface on a computer graphics system with a 1-vertex cache: each

triangle shares one vertex with the previous triangle in the graphics

pipeline. This result is in some sense best possible: an ideal rendering

for a 2-vertex cache in which every adjacent pair of triangles shares

two vertices is not always achievable, because there are triangulations

whose dual graphs have no Hamiltonian path [1].

Figure 2(a) shows a vertex-unfolding of the triangulated surface of a cube,

obtained from a facet path by our algorithm. Figure 2(b) shows a less regular

vertex-unfolding. Note that the vertices do not necessarily lie on a line.

Several more complex examples are shown in Figure 3. In our examples, we

permit the triangles to touch along segments at the strip boundaries (as in

(a) of the figure), but this could easily be avoided if desired so that each strip

boundary contains just the one vertex shared between the adjacent triangles.

(a)

(b)

Figure 2. Laying out facet paths in vertical strips: (a) cube;
(b) 16-facet convex polyhedron.

3. Facet Paths in 2-Manifolds

In this section, we prove that every triangulated 2-manifold has a facet

path, which, by Lemma 2, yields Theorem 1.
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Figure 3. Vertex-unfoldings of random convex polyhedra
(generated by code from [10]). The number of triangles is
indicated to the left of each unfolding. The unfoldings were
constructed using an earlier, less general version [6] of the
algorithm in Section 3.

3.1. Notation. We first establish terminology for arbitrary dimensions, an-

ticipating Section 4, but specializing to dimension 2 for this section.

A d-manifold is a topological space such that every point has a neighbor-

hood homeomorphic to the neighborhood of some point in a closed halfspace

in IRd. Interior points of a 2-manifold have neighborhoods homeomorphic

to a disk, and boundary points have neighborhoods homeomorphic to a

half-disk. (Thus, the vertex-unfoldings in Figures 2 and 3 are not mani-

folds.) A simplicial d-manifold is a simplicial complex5 homeomorphic to a

d-dimensional manifold, possibly with boundary. For example, any simpli-

cial convex d-polytope is a simplicial manifold homeomorphic to the sphere

S
d−1. We call the full d-dimensional simplices facets and the codimension-1

simplices (i.e., the simplices of dimension d− 1) ridges. When d = 2, ridges

are also called edges. A triangulated 2-manifold is an edge-to-edge gluing of

(topological) triangles. Triangulated 2-manifolds are not necessarily simpli-

cial complexes; see Figure 8.

The dual 1-skeletonM∗ of a simplicial manifoldM is a simple graph, with

a node for each facet and an arc between any two facets that share a ridge.

We call a simplicial manifoldM a tree manifold if its dual 1-skeletonM∗ is

5A simplex is the convex hull of d + 1 independent points: a triangle, tetrahedron,
etc. A simpicial complex is a collection of simplices such that every pair of simplices that
intersect do so in exactly one face of each. The proofs in this section proofs only require
abstract simplicial complexes; the geometry of a simplex is only used in Lemma 2.
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a tree, or equivalently, if it is connected and its codimension-2 simplices all

lie on the boundary. Every tree manifold T is homeomorphic to a ball. A

tree 2-manifold is a simplicial complex with the topology of a triangulated

polygon with no interior vertices. A tree 3-manifold has the topology of a

triangulated polyhedron in IR3 with no diagonals or interior vertices. Given

a simplicial manifoldM, we take an arbitrary spanning tree ofM∗ to yield

a tree manifold T corresponding to M. We will find our facet paths in T

rather than inM, which is no loss because any facet path or facet cycle of T

can be mapped to a facet path or facet cycle ofM; recall that a facet path

may repeat vertex nodes.

(a)

(e)

(d)(c)(b)

Figure 4. Tree manifold (a) to scaffold (b) to connected
scaffold (c) to facet cycle (d) to strip layout (e). The layout
is based on a different facet path than used in Figure 2(a).

As in Section 2, the (vertex-facet) incidence graph of a simplicial manifold

has a node for every vertex and every facet, and an arc (v, f) whenever v is

a vertex of facet f . A facet path is a trail that includes each facet node in

the incidence graph exactly once, and a facet cycle is a circuit in that passes

through every facet exactly once. We now generalize facet paths and cycles

to more general subgraphs that span the facets.

A scaffold is a subgraph of the incidence graph in which every facet ap-

pears and has degree 2, and at most two vertices have odd degree; if every

vertex has even degree, we call it an even scaffold. (See Figure 5(d) below

for an example of a scaffold.) Any facet path is a scaffold, and any Euler

walk through a connected scaffold is a facet path. Thus, our goal is to find

a connected scaffold for T , which yields a facet path for T , which yields a

facet path forM. The full process is illustrated for a cube in Figure 4.
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Figure 5. (a) A polygon triangulation T . Lightly shaded
triangles are ears; darker shaded triangles are hats. (b) Re-
moving a Mickey House hat. (c) Removing a dunce cap. (d)
A scaffold produced by our algorithm.

3.2. Connected Scaffolds. First we establish a slightly weaker result:

Lemma 3. Every triangulated polygon with no interior vertices has a (pos-

sibly disconnected) scaffold.

Proof. Let T be a triangulated polygon with no interior vertices. We prove

the lemma by induction on the number of triangles, with two base cases.

If T is empty, we are done. If T is a single triangle, then a path between

any two vertices is a scaffold. Henceforth, assume that T has at least two

triangles.

An ear in T is a triangle that is adjacent to at most one other triangle.

We call a triangle in T a hat if it is adjacent to at least one ear and at most

one non-ear. If we remove all the ears from T , we obtain a new triangulated

polygon T ′. See Figure 5(a). If T ′ is non-empty, then it has at least one ear,

and every ear in T ′ is a hat in T . On the other hand, if T ′ is empty, then

T consists of exactly two triangles, which are both ears and hats. In either

case, T contains at least one hat.
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To perform the induction, we choose a hat in T , find a cycle in the facet-

vertex incidence graph of that hat and (at most two of) its adjacent ears,

and recursively construct a scaffold for the remaining triangulation. We have

two inductive cases.

Suppose T has a hat H = qrs with at least two ears E = pqr and

F = rst (a “Mickey Mouse hat”). See Figure 5(b). We construct a cy-

cle (r, E, q, H, s, F, r) through the facet-vertex of these three triangles, and

recursively construct a scaffold for the smaller triangulation T \ {H, E, F}.

Otherwise, let H = qrs be a hat with just one adjacent ear E = pqr (a

“dunce cap”). See Figure 5(c). We construct a cycle (q, H, r, E, q) through

the facet-vertex of those two triangles, and recursively construct a scaffold

for the smaller triangulation T \ {H, E}. ¤

Following the proof gives us an easy linear-time algorithm, consisting of

a simple depth-first traversal of the input triangulation’s dual tree. Figure

5(d) shows a scaffold computed by our algorithm. The scaffold we construct

may be disconnected, but we now show how to make it connected using a

series of local operations.

Lemma 4. Every triangulated polygon with no interior vertices has a con-

nected scaffold.

Proof. Let S be a scaffold with more than one component. If S is not actu-

ally an even scaffold, its two odd vertices must be in the same component;

every other component has an Euler circuit and so must be 2-edge-connected.

Choose a pair of triangles A = pqr and B = qrs that lie in different compo-

nents of S. Without loss of generality, suppose S contains the edges (p, A),

(q, A), (r, B), and (s, B). At most one of the edges (q, A) and (r, B) is a

bridge (its removal would disconnect the graph). If we remove edges (q, A)

and (r, B) and add edges (r, A) and (q, B), we obtain another scaffold S ′

with one fewer component than S. See Figure 6. Repeating this process for

each adjacent pair of components gives us a connected scaffold. ¤

Given a triangulated 2-manifold M, we convert it to a tree manifold T ,

apply Lemmas 3 and 4 to obtain a connected scaffold, and finally use an

Euler walk through this scaffold to produce a facet path. This yields:6

Theorem 5. Every connected triangulated 2-manifold (possibly with bound-

ary) has a facet path.

6Igor Pak [personal communication, Dec. 2001] found a different proof of this result
for triangulated, genus-zero polyhedra (without boundary). After vertex truncation, a
Hamiltonian cycle in the dual is found via Whitney’s theorem on planar triangulations
without separating triangles. This cycle is then converted to a facet path.
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Figure 6. Lemma 4: Joining two components of a scaffold
with a flip. Clouds hide the rest of the components.

3.3. Checkered Triangulations and Facet Cycles. We can strengthen

this result slightly, by showing that most properly triangulated 2-manifolds

actually have a facet cycle. This permits the strip layout of Lemma 2 to

start on the left with any given triangle of the manifold.

We call a polygon triangulation checkered if there is a 2-coloring of the

triangles so that every white triangle has three (necessarily black) neighbors.

See Figure 7(a).

Lemma 6. A polygon triangulation with no interior vertices has a facet

cycle if and only if it is not checkered.

Proof. Let T be a triangulated polygon with no interior vertices. First we

prove by induction that no checkered triangulation has a facet cycle. The

base case is a single (black) triangle, which clearly has no facet cycle. In

any other checkered triangulation T , we can always find a (Mickey Mouse)

hat: two black ears adjacent to a common (white) triangle. If T has a facet

cycle, it must contain a subcycle of six edges inside the Mickey Mouse hat

and another subcycle through the rest of the triangulation. But the rest of

the triangulation is checkered, so by the induction hypothesis, it has no facet

cycle. See Figure 7(b).

Now suppose T is a noncheckered triangulation; in particular, T has at

least two triangles. To prove the lemma, it suffices to show that T has an

even scaffold. Assume without loss of generality that T has no hats; other-

wise, we can remove them as described above. (This might actually eliminate

every triangle in T , but then we’ve computed an even scaffold!) We cannot

be left with a single triangle because T is not checkered. Thus, T has at

least two “dunce caps”: hats with only one adjacent ear. If we follow the

algorithm in Lemma 3, removing hats whenever possible, the triangulation

always contains at least one dunce cap, until either the algorithm removes
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(a) (b)

Figure 7. Lemma 6: (a) A checkered polygon triangulation.
(b) After removing three Mickey Mouse hats.

every triangle or there are exactly three triangles left. Thus, the triangu-

lation never consists of a single triangle, which implies that the algorithm

constructs an even scaffold. ¤

We say that a triangulated 2-manifold is simplicial if it is a simplicial

complex, or equivalently, if its dual graph is simple (has no multi-edges or

loops). Every manifold constructed from geometric triangles is simplicial.

(A nonsimplicial manifold is shown below in Figure 8.)

Lemma 7. For every connected simplicial 2-manifold (possibly with bound-

ary) M, with the exception of a checkered polygon triangulation, there cor-

responds a noncheckered tree manifold T .

Proof. Let M be a simplicial 2-manifold that either is multiply connected

or has interior vertices. Assume without loss of generality that M has a

checkered tree manifold T , because otherwise we have nothing to prove.

This immediately implies thatM is not 2-colorable.

Color the triangles of T black and white, so that adjacent triangles have

opposite colors and every boundary edge of T lies on a black triangle. Be-

cause the dual 1-skeleton of M is a simple graph, we can cut T into two

simple polygons along some edge, and then reglue those pieces along some

other pair of edges, to obtain another tree manifold T ′ ofM. BecauseM is

not 2-colorable, we must reverse the colors of one of those pieces to obtain

a proper 2-coloring of T ′. Because each piece has at least three edges, each

piece has at least one edge that is on the boundary of both T and T ′. It fol-

lows that T ′ has boundary edges adjacent to both black and white triangles,

so T ′ is not checkered. ¤

Combining the previous two lemmas, we conclude the following:
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Figure 8. An improper triangulation of the sphere with a
facet path but no facet cycle. Edges with identically labeled
endpoints are identified.

Theorem 8. Every connected simplicial 2-manifold (possibly with boundary)

has a facet cycle, except a checkered polygon triangulation.

This theorem requires that we start with a simplicial complex. There are

triangulated but nonsimplicial 2-manifolds that have no facet cycle, like the

triangulation of the sphere shown in Figure 8. However, even improperly

triangulated 2-manifolds have facet paths.

4. Higher Dimensions

In this section we generalize our results to higher dimensions. Lemma 2

generalizes in the obvious way, yielding from any facet path a vertex-

unfolding that places simplices in slabs bounded by parallel hyperplanes.

We will show that any simplicial polyhedron has a facet cycle, and thus a

vertex-unfolding. Like the results in the previous section, the proofs are al-

most purely topological, and thus actually apply to arbitrary triangulated

manifolds, possibly with boundary, independent of any embedding.7

We follow the notation set in Section 3.1, and follow the same proof out-

line: from simplicial d-manifoldM to tree d-manifold T to even scaffold to

connected even scaffold to vertex cycle.

Lemma 9. For all d ≥ 3, every tree d-manifold has an even scaffold, with

the exception of a single d-simplex.

7In fact, our results apply to pseudo-manifold ∆-complexes—sets of d-simplices whose
facets (our ridges) are glued together in pairs [9]; we called the two-dimensional version
of this a “triangulated 2-manifold” in Sec. 3.1. A pseudo-manifold ∆-complex is not
necessarily a manifold, even with boundary.
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Proof. Let T be a tree d-manifold with d ≥ 3 and with more than one facet.

An ear of T is a facet that is adjacent to only one other facet. A hat is a

facet that is adjacent to at least one ear and at most one non-ear. Just as

in the two-dimensional case, every tree d-manifold with more than one facet

has at least two ears and at least one hat (and with only d − 1 exceptions,

at least two hats).

We prove the lemma by induction. If T is non-empty, we identify a small

collection of simplices in T , find a cycle in the incidence graph of those sim-

plices, and recursively construct an even scaffold for the remaining complex,

which is still a tree manifold. It is fairly easy to construct an even scaffold

for any subcomplex consisting of a hat and its ears, and to decompose any

tree complex into a sequence of such complexes by removing a hat (and its

ears) and recursing [8]. To keep things simple, however, we will consider

only the four following cases.

(1) If T is empty, there is nothing to do.

(2) Suppose T consists of exactly three simplices: a hat H and two ears

E and F . E and F share at least one vertex p; E and H share

at least one vertex q 6= p; and H and F share at least one vertex

r 6= p, q. (In fact, we have d − 2 choices for each of these three

vertices.) Then (p, E, q, H, r, F, p) is a cycle in the incidence graph

of T . See Figure 9.

H

F

E
p

q

r

Figure 9. Case 2 of Lemma 9: hat H, ears E and F , T = {H, E, F}.

(3) Suppose some hat H is adjacent to just one ear E. H and E share

an edge pq. (In fact, they share an entire ridge.) We recursively

construct an even scaffold for the subcomplex U \ {H, E}, and add

the cycle (p, H, q, E, p).
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(4) Finally, suppose some hat H is adjacent to more than one ear and T

has more than three facets. Let E and F be any two ears adjacent to

H. E and F share an edge pq. (In fact, they share an entire face of

dimension d− 2 > 0; this is the only step of the proof that requires

d ≥ 3.) We recursively construct an even scaffold for the subcomplex

U \ {E, F} and add the cycle (p, E, q, F, p).

The only tree manifold that does not fall into one of these four cases is a

single simplex. ¤

Once we have an even scaffold, we can make it connected using local flip

operations as in the two-dimensional case; in fact the proof is slightly simpler

because every component of an even scaffold is 2-connected. Let A and B be

adjacent simplices that lie in different components of the even scaffold, and

suppose the scaffold contains edges (p, A), (q, A), (r, B), and (s, B). The

ridge A ∩B contains all but one vertex of A and all but one vertex of B, so

without loss of generality, q and r are both in A ∩ B. If we replace edges

(q, A) and (r, B) with edges (q, B) and (r, A), we obtain a new even scaffold.

Any node in the old component of A is still connected to p, then A, then

q, and then to any node in the old component of B. Thus, the new even

scaffold has one fewer component. Repeating this process for each adjacent

pair of components, we obtain a connected even scaffold.

Putting the pieces together yields the following:

Theorem 10. For any d ≥ 3, every connected simplicial d-manifold (possi-

bly with boundary) has a facet cycle, except a single d-simplex.

As we only need a path for the slab construction, we immediately obtain:

Corollary 11. Every connected simplicial manifold (possibly with boundary)

has a vertex-unfolding, which can be computed in linear time.

5. Open Problems

(1) The obvious question left open by our work is whether the restriction to

simplicial facets is necessary. Does every three-dimensional polyhedron with

simply-connected facets have a non-overlapping vertex-unfolding? What if

we require the facets to be convex?

Our strip construction fails for polyhedra with nontriangular convex

facets, because such polyhedra may not have facet paths. For example,

the truncated cube has no facet path: no pair of its eight triangles can

be adjacent in a path, but its six octagons are not enough to separate the

triangles.
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If facets are permitted to have holes, then there are polyhedra that cannot

be vertex-unfolded at all, for example, the box-on-top-of-a-box construction

of Biedl et al. (Figure 7 of [5]).

(2) A related reverse problem is: Given a collection of polygons connected

in a chain at vertices, can they be glued along their edges to form a polyhe-

dron? In other words, do they form a vertex-unfolding of some polyhedron?

What about convex polyhedra? What is the complexity of these decision

problems?

(3) Finally, we mention the question which initiated our work, the gener-

alization of edge-unfolding to higher dimensions. One can view this question

as seeking a spanning tree of the dual 1-skeletonM∗ of a simplicial manifold

M that embeds geometrically in IRd−1 without overlap. It remains open for

all d ≥ 3 whether every d-polytope has such a ridge-unfolding.
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