
Grid Vertex-Unfolding Orthogonal Polyhedra ∗

Mirela Damian† Robin Flatland‡ Joseph O’Rourke§

September 25, 2006

Abstract

An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the
faces to a net, a connected planar piece with no overlaps. A grid unfolding allows additional
cuts along grid edges induced by coordinate planes passing through every vertex. A vertex-
unfolding permits faces in the net to be connected at single vertices, not necessarily along edges.
We show that any orthogonal polyhedra of genus zero has a grid vertex-unfolding. (There are
orthogonal polyhedra that cannot be vertex-unfolded, so some type of “gridding” of the faces
is necessary.) For any orthogonal polyhedron P with n vertices, we describe an algorithm that
vertex-unfolds P in O(n2) time. Enroute to explaining this algorithm, we present a simpler
vertex-unfolding algorithm that requires a 3× 1 refinement of the vertex grid.

Keywords: vertex-unfolding, grid unfolding, orthogonal polyhedra, genus-zero.

1 Introduction

Two unfolding problems have remained unsolved for many years [DO05a]: (1) Can every convex
polyhedron be edge-unfolded? (2) Can every polyhedron be unfolded? An unfolding of a 3D
object is an isometric mapping of its surface to a single, connected planar piece, the “net” for
the object, that avoids overlap. An edge-unfolding achieves the unfolding by cutting edges of a
polyhedron, whereas a general unfolding places no restriction on the cuts. A net representation of
a polyhedron finds use in a variety of applications [O’R00] — from flattening monkey brains [SSW89]
to manufacturing from sheet metal [Wan97] to low-distortion texture mapping [THCM04].

It is known that some nonconvex polyhedra cannot be unfolded without overlap with cuts along
edges. However, no example is known of a nonconvex polyhedron that cannot be unfolded with
unrestricted cuts. Advances on these difficult problems have been made by specializing the class
of polyhedra, or easing the stringency of the unfolding criteria. On one hand, it was established
in [BDD+98] that certain subclasses of orthogonal polyhedra — those whose faces meet at angles
that are multiples of 90◦ — have an unfolding. In particular, the class of orthostacks, stacks of
extruded orthogonal polygons, was proven to have an unfolding (but not an edge-unfolding). On
the other hand, loosening the criteria of what constitutes a net to permit connection through
points/vertices, the so-called vertex-unfoldings, led to an algorithm to vertex-unfold any triangu-
lated manifold [DEE+03] (and indeed, any simplicial manifold in higher dimensions). A vertex

∗This is a significant revision of the preliminary version that appeared in [DFO06].
†Dept. Comput. Sci., Villanova Univ., Villanova, PA 19085, USA. mirela.damian@villanova.edu.
‡Dept. Comput. Sci., Siena College, Loudonville, NY 12211, USA. flatland@siena.edu.
§Dept. Comput. Sci., Smith College, Northampton, MA 01063, USA. orourke@cs.smith.edu. Supported by NSF

award DUE-0123154.

1



unfolding maps the surface to a single, connected piece P in the plane, but P may have “cut
vertices” whose removal disconnect P .

A second loosening of the criteria is the notion of grid unfoldings, which are especially natural
for orthogonal polyhedra. A grid unfolding adds edges to the surface by intersecting the polyhedron
with planes parallel to Cartesian coordinate planes through every vertex. The two approaches were
recently married in [DIL04], which established that any orthostack may be grid vertex-unfolded.
For orthogonal polyhedra, a grid unfolding is a natural median between edge-unfoldings and unre-
stricted unfoldings.

Our main result is that any orthogonal polyhedron, without shape restriction except that its
surface be homeomorphic to a sphere, has a grid vertex-unfolding. We present an algorithm that
grid vertex-unfolds any orthogonal polyhedron with n vertices in O(n2) time. We also present,
along the way, a simpler algorithm for 3 × 1 refinement unfolding, a weakening of grid unfolding
that we define below. We believe that the techniques in our algorithms may help show that all
orthogonal polyhedra can be grid edge-unfolded.

2 Definitions

A k1× k2 refinement of a surface [DO05b] partitions each face into a k1× k2 grid of faces. We will
consider refinements of grid unfoldings, with the convention that a 1× 1 refinement is an unrefined
grid unfolding.

We distinguish between a strict net, in which the net boundary does not self-touch, and a net
for which the boundary may touch, but no interior points overlap. The latter corresponds to the
physical model of cutting out the net from a sheet of paper, with perhaps some cuts representing
edge overlap, and this is the model we use in this paper. We also insist as part of the definition
of a vertex-unfolding, again keeping in spirit with the physical model, that the unfolding “path”
never self-crosses on the surface in the following sense. If (A,B, C,D) are four faces incident in
that cyclic order to a common vertex v, then the net does not include both the connections AvC
and BvD.1

We use the following notation to describe the six type of faces of an orthogonal polyhedron,
depending on the direction in which the outward normal points: front: −y; back: +y; left: −x;
right: +x; bottom: −z; top: +z. We take the z-axis to define the vertical direction; vertical faces
are parallel to the xz-plane. Directions clockwise (cw), and counterclockwise (ccw) are defined from
the perspective of a viewer positioned at y = −∞. We distinguish between an original vertex of
the polyhedron, which we call a corner vertex or just a vertex, and a gridpoint, a vertex of the grid
(which might be an original vertex). A gridedge is an edge segment with both endpoint gridpoints,
and a gridface is a face of the grid bounded by gridedges.

Let O be a solid orthogonal polyhedron with the surface homeomorphic to a sphere (i.e, genus
zero). Let Yi be the plane y = yi orthogonal to the y-axis. Let Y0, Y1, . . . , Yi, . . . be a finite sequence
of parallel planes passing through every vertex of O, with y0 < y1 < · · · < yi < · · ·. We define layer
i to be the portion of O between planes Yi and Yi+1. Observe that a layer may include a collection
of disjoint connected components of O; we call each such component a slab. A surface piece that
surrounds a slab is called a band. Referring to Fig. 1a, layer 0, 1 and 2 each contain one slab (with
outer bands A, B and D, respectively). Note that each slab is bounded by an outer (surface) band,
but it may also contain inner bands, bounding holes. Outer bands are called protrusions and inner
bands are called dents (C in Fig. 1a). In other words, band A is a protrusion if a traversal of the

1This was not part of the original definition in [DEE+03] but was achieved by those unfoldings.

2



rim of A in Yi, ccw from the viewpoint of y = −∞, has the interior of O to the left of A, and a
dent if this traversal has the interior of O to the right.

For fixed i, define P = ∂O ∩ Yi as the portion of the surface of O lying in plane Yi. P+ is the
portion of P with normal in the direction +y (composed of back faces), and P− the portion with
normal in the direction −y (composed of front faces). By convention, band points in P that are
not incident to either front or back faces (e.g., when one band aligns with another), belong to both
P+ and P−. Thus P = P+ ∪ P−.

For a band A, Let Ri(A) = A ∩ Yi be the polygon in Yi determined by the rim of band A,
and ri(A) the closed region of Yi whose boundary is Ri(A). For any two bands A and B, let
ri(AB) = ri(A) ∩ ri(B) and let Ri(AB) be the boundary of ri(AB).

B

x

z

y

D

A

C

Y
1

Y
2

Y
3

Y
0

B

A

C D

Figure 1: Definitions. (a) Shaded connected pieces are bands; A, B and D are protrusions; C is
a dent; r2(CB) coincides with the back face of C; R2(DB) is marked in dashed lines. (b) The
adjacency structure of bands is a tree.

3 Dents vs. Protrusions

We observe that dents may be treated exactly the same as protrusions with respect to unfolding,
because an unfolding of a 2-manifold to another surface (in our case, a plane) depends only on the
intrinsic geometry of the surface, and not on how it is embedded in R3. Note that we are only
concerned with the final unfolded “flat state” [DO05a], and not with possible intersections during a
continuous sequence of partially unfolded intermediate states. Our unfolding algorithm relies solely
on the amount of surface material surrounding each point: the cyclic ordering of the faces incident
to a vertex, and the pair of faces sharing an edge. All these local relationships remain unchanged
if we conceptually “pop-out” dents to become protrusions, i.e., a “Flatland” creature living in
the surface could not tell the difference; nor can our algorithm. We note that the popping-out is
conceptual only, for it could produce self-intersecting objects. Also dents are gridded independently
of the rest of the object, so that it would not matter whether they are popped out or not.

Although the dent/protrusion distinction is irrelevant to the unfolding, the interrelationships
between dents and protrusions touching a particular Yi do depend on this distinction. To cite
just the simplest example, there cannot be two nested protrusions to the same side of Yi, but a
protrusion could have a dent in it to the same side of Yi (e.g., protrusion B encloses dent C to the
same side of Y1 in Fig. 1). These relationships are crucial to the connectivity of the band graph
Gb, discussed in Sec. 8.

3



4 Overview

The two algorithms we present share a common central structure, with the second achieving a
stronger result; both are vertex-unfoldings that use orthogonal cuts only. We note that it is the
restriction to orthogonal cuts that makes the vertex-unfolding problem difficult: if arbitrary cuts
are allowed, then a general vertex-unfolding can be obtained by simply triangulating each face and
applying the algorithm from [DEE+03].

The (3 × 1)-algorithm unfolds any genus-0 orthogonal polyhedron that has been refined in
one direction 3-fold. The bands themselves are never split (unlike in [BDD+98]). The algorithm
is simple. The (1 × 1)-algorithm also unfolds any genus-0 orthogonal polyhedron, but this time
achieving a grid vertex-unfolding, i.e., without refinement. This algorithm is more delicate, with
several cases not present in the (3 × 1)-algorithm that need careful detailing. Clearly this latter
algorithm is stronger, and we vary the detail of presentation to favor it. The overall structure of
the two algorithms is the same:

1. A band “unfolding tree” TU is constructed by shooting rays vertically from the top of bands.
The root of TU is a frontmost band (of smallest y-coordinate), with ties broken arbitrarily.

2. A forward and return connecting path of vertical faces is identified, each of which connects a
parent band to a child band in TU .

3. Each band is unfolded horizontally as a unit, but interrupted when a connecting path to a
child is encountered. The parent band unfolding is suspended at that point, and the child
band is unfolded recursively.

4. The vertical front and back faces of each slab are partitioned according to an illumination
model, with variations for the more complex (1 × 1)-algorithm. These vertical faces are
attached below and above appropriate horizontal sections of the band unfolding.

The final unfolding lays out all bands horizontally, with the vertical faces hanging below and above
the bands. Non-overlap is guaranteed by this strict two-direction structure.

Although our result is a broadening of that in [DIL04] from orthostacks to all orthogonal
polyhedra, we found it necessary to employ techniques different from those used in that work.
The main reason is that, in an orthostack, the adjacency structure of bands yields a path, which
allows the unfolding to proceed from one band to the next along this path, never needing to return.
In an orthogonal polyhedron, the adjacency structure of bands yields a tree (cf. Fig. 1b). Thus
unfolding band-by-band leads to a tree traversal, which requires traversing each arc of the tree in
both directions. It is this aspect which we consider our main novelty, and which leads us to hope
for an extension to edge-unfoldings as well.

5 (3× 1)-Algorithm

5.1 Computing the Unfolding Tree TU

Define a z-beam to be a vertical rectangle on the surface of O connecting two band rims whose top
and bottom edges are gridedges. In the degenerate case, a z-beam has height zero and connects two
rims along a section where they coincide. We say that two bands b1 and b2 are z-visible if there exists
a z-beam connecting a gridedge of b1 to a gridedge of b2. There can be many z-beams connecting
two bands, so for each pair of bands we select a representative z-beam of minimal (vertical) height.
Let G be the graph that contains a node for each band of O and an arc for each pair of z-visible
bands. It easily follows from the connectedness of the surface of O that G is connected. Let the

4



unfolding tree TU be any spanning tree of G, with the root selected arbitrarily from among all
bands adjacent to Y0.

Applying the 3x1 refinement partitions each front, back, top and bottom face of O into a 3× 1
grid of faces. This partitions the top and bottom edges of each z-beam into three refined gridedges
and divides the beam itself into three vertical columns of refined gridfaces. For a band B in TU

with parent A, let e be the gridedge on B’s rim where the z-beam from A attaches. We define the
pivot point xb to be the 1

3 -point of e (or, in circumstances to be explained below, the 2
3 -point), and

so it coincides with a point of the 3× 1-refined grid. The unfolding of O will follow the connecting
vertical ray that extends from xb on B to A. Note that if e belongs to both A and B, then the
ray connecting A and B degenerates to a point. To either side of a connecting ray we have two
connecting paths of vertical faces, the forward and return path. In Fig. 2a, these connecting paths
are the shaded strips on the front face of A.

5.2 Unfolding Bands into a Net

Starting at a frontmost root band, each band is unfolded as a conceptual unit, but interrupted by
the connecting rays incident to it from its front and back faces. In Fig. 2, band A is unfolded as a
rectangle, but interrupted at the rays connecting to (front children) B, C and (back child) B′. At
each such ray the parent band unfolding is suspended, the unfolding follows the forward connecting
path to the child, the child band is recursively unfolded, then the unfolding returns along the return
connecting path back to the parent, resuming the parent band unfolding from the point it left off.

Fig. 2 illustrates this unfolding algorithm. The cw unfolding of A, laid out horizontal to the
right, is interrupted to traverse the forward path down to B, and B is then unfolded as a rectangle
(composed of its contiguous faces). The base xb of the connecting ray is called a pivot point because
the ccw unfolding of B is rotated 180◦ ccw about xb so that the unfolding of B is also horizontal to
the right. It is only here that we use point-connections that render the unfolding a vertex-unfolding.
The unfolding of B proceeds ccw back to xb, crosses over A to unfold B′, then a cw rotation by
180◦ around the second image of pivot x′b orients the return path to A so that the unfolding of A
continues horizontal to the right. Note that the unfolding of C is itself interrupted to unfold child
D. Also note that there is edge overlap in the unfolding at each of the pivot points.

The reason for the 3× 1 refinement is that the upper edge e′ of the back child band B′ has the
same (x, z)-coordinates as the upper edge e of B on the front face. In this case, the faces of band A
induced by the connecting paths to B would be “overutilized” if there were only two. Let a1, a2, a3

be the three faces of A induced by the 3× 1 refinement of the connecting path to B, as in Fig. 2.
Then the unfolding path winds around A to a1, follows the forward connecting path to B, returns
along the return connecting path to a2, crosses over A and unfolds B′ on the back face, with the
return path now joining to a3, at which point the unfolding of A resumes. In this case, the pivot
point xb′ for B′ is the 2

3 -point of e′. Other such conflicts are resolved similarly. It is now easy to
see that the resulted net has the general form illustrated in Fig. 2b:

1. The faces of each band fall within a horizontal rectangle whose height is the band width.

2. These band rectangles are joined by vertical connecting paths on either side, connecting
through pivot points.

3. The strip of the plane above and below each band face that is not incident to a connecting
path, is empty.

4. The net is therefore an orthogonal polygon monotone with respect to the horizontal.

5



...

...

A

B

xc

xb

A

C

C

D

B

A

C

D

B

(a) (c)

(b)

a1a2 a3

D

xd
xbxb

xc

xc

xd

xd

a1

a2

a3

C

x

z
y

B' xb'

e

e'

B'

...
B'xb' xb'

...

D

Figure 2: (a) Orthogonal polyhedron. (b) Unfolding tree TU . (c) Unfolding of bands and front
(hachured) face pieces. Vertex connection through the pivots points xb, xb′ , xc, xd is shown exag-
gerated for clarity.

5.3 Attaching Front and Back Faces to the Net

Finally, we “hang” front and back faces from the bands as follows. The front face of each band A
is partitioned by imagining A to illuminate downward lightrays from the rim in the front face. The
pieces that are illuminated are then hung vertically downward from the horizontal unfolding of the
A band. The portions unilluminated will be attached to the obscuring bands.

In the example in Fig. 2, this illumination model partitions the front face of A into three pieces
(the striped pieces in Fig. 2b). These three pieces are attached under A; the portions of the front
face obscured by B but illuminated downward by B are hung beneath the unfolding of B (not
shown in the figure), and so on. Because the vertical illumination model produces vertical strips,
and because the strips above and below the band unfoldings are empty, there is always room to
hang the partitioned front face. Thus, any orthogonal polygon may be vertex-unfolded with a 3×1
refinement of the vertex grid.

Although we believe this algorithm can be improved to 2× 1 refinement, the complications needed
to achieve this are similar to what is needed to avoid refinement entirely, so we instead turn directly
to 1× 1 refinement.

6 (1× 1)-Algorithm

Although the (1 × 1)-algorithm follows the same general outline as the (3 × 1)-Algorithm, there
are significant complications, which we outline before detailing. First, without the refinement of
z-beams into three strips to allow avoidance of conflicts on opposite sides of a slab (e.g., B and
B′ in Fig. 2a), we found it necessary to replace the z-beams by a pair of z-rays that are in some
sense the boundary edges of a z-beam. Selecting two rays per band permits a 2-coloring algorithm
(Theorem 3) to identify rays that avoid conflicts. Generating the ray-pairs (Sec. 6.1.1) requires
care to ensure that the band graph Gb is connected (Sec. 8). This graph, and the 2-coloring, lead

6



to an unfolding tree TU (Sec. 6.2). From here on, there are fewer significant differences compared
to the (3 × 1)-Algorithm. Without the luxury of refinement, there is more need to share vertical
paths on the vertical face of a slab (Fig. 11). Finally, the vertical connecting paths obscure the
illumination of some grid faces, which must be attached to the connecting paths. We now present
the details, in this order:

1. Select Pivot Points (Sec. 6.1) via
a. Ray-Pair Generation (Sec. 6.1.1)
b. Ray Graph (Sec. 6.1.2)

2. Construct TU (Sec. 6.2)
3. Select Connecting Paths (Sec. 6.2.1)
4. Determine Unfolding Directions (Sec. 6.2.2)
5. Recurse:

a. Unfold Bands into a Net (Sec. 6.3)
b. Attach Front and Back Faces to the Net (Sec. 6.4)

6.1 Selecting Pivot Points

The pivot xa for a band A is the gridpoint of A where the unfolding of A starts and ends. The
y-edge of A incident to xa is the first edge of A that is cut to unfold A.

Let A be an arbitrary band delimited by planes Yi and Yi+1. Say that two gridpoints u ∈ Yi

and w ∈ Yi+1 are in conflict if the upward rays emerging from u and w hit the endpoints of the
same y-edge of A; otherwise, u and v are conflict-free. If u lies either on a vertical edge, or on a
vertically extreme horizontal edge, then the ray at u degenerates to u itself.

Our goal is to select conflict-free pivots for all bands in TU , which will help us avoid later
competition over the use of certain faces in the unfolding, an issue that will become clear in
Sec. 6.3. Selecting these pivots is the most delicate aspect of the (1× 1)-algorithm. Ultimately, we
represent pivoting conflicts in the form of a graph Gr (Sec. 6.1.2), from which TU will be derived.

6.1.1 Ray-Pair Generation

In order to avoid pivoting conflicts, for each band we will need two choices for its connecting
ray. Thus the algorithm generates the rays in pairs. Because there is no refinement, the two rays
originate at grid points on the same band, but they may terminate on different bands. A simple
example is shown in Figure 3a, where the ray pair originating on band D hits two different bands,
B and C. This example also suggests that one cannot consider ray pairs connecting pairs of bands,
as in the (3 × 1)-algorithm (which would connect D to A in this example), but instead we focus
on shooting pairs of rays upward from strategic locations on the boundary of each band, and then
selecting a subset of these rays so that the conflicts can be resolved and TU is connected. To ensure
connectedness of all bands, several ray-pairs must be issued upward from each band. Figure 3b
shows an example: no pair of rays can emanate upward from the top of B ∩ P− or C ∩ P−; one
pair of rays shoots upward from the top of each component of A ∩ P−: (r1, r2) connects A to
B and (r3, r4) connects A to C; finally, one pair of rays (r5, r6) issues from the top of A ∩ P−,
which connects A to D. So, overall, three pairs of rays are generated for band A. We now turn to
describing in detail the method for generating ray-pairs.

Let band A intersect plane Yi. The algorithm is a for-loop over all A. Let A1, A2, . . . , Am be
the components of A, defined as follows. Take all the maximal components of A∩P+ that contain
an x-gridedge, and union with all the maximal components of A ∩ P− that contain an x-gridedge.

7



Yi

r
1

r
2

B

A C

D

z

xy

r
1

r
2

B

A

C
D

r
3

r
4

r
5
rr

r
6
rr

(a) (b)

Figure 3: (a) The ray pair (r1, r2) connects band D to two different bands B and C. (b) To ensure
connectivity, three pairs of rays must be issued for A: (r1, r2), (r3, r4) and (r5, r6).

We define S(Aj) as the set of all potential rays shooting upward from Aj . More precisely, S(Aj)
consists of the set of all segments s = (a, b), with a ∈ Aj , such that

1. Either s is a point, with b = a, or s ⊂ P ⊂ Yi is vertical (parallel to z), with a below b.

2. b ∈ B for some band B 6= A.

3. The open segment s \ {a, b} may contain points of A (see r2 in Fig. 4b), but no other band
points.

For each band A, for each component Aj ⊆ A, if S(Aj) is nonempty, we select one ray pair (r1, r2),
such that (i) r1 is the leftmost segment in S(Aj) that is incident to a highest x-gridedge in Aj , and
(ii) r2 is the segment one x-gridedge to the right of r1. Fig. 4 shows a few examples. As mentioned

A

B

Y
i

r
1

r
2 B

Y
i

r
1

r
2

r'1r'r'
r'r'r'
2
r'r'

A

Y
i

B

r
1

r
2

A

(a) (b) (c)

Figure 4: Generating ray-pairs: (a) (r1, r2) for A; S(B) = ∅. (b) (r1, r2) for A (note that r2 runs
along source band A); degenerate ray-pair (r′1, r

′
2) for B. (c) S(A) = ∅; (r1, r2) for B.

above, several ray pairs could be generated for any one band, and indeed several pairs connecting
two bands.

Let Gb be the band graph whose nodes are bands. Two bands are connected by an arc in Gb if
the ray-pair algorithm generates a ray connecting them. We call a collection of bands in Gb ray-

8



connected if they are in the same connected component of Gb. We establish that Gb is a connected
graph, i.e., all bands are ray-connected to one another, even if only one ray per pair is employed:

Lemma 1 Gb is connected. Furthermore, the subgraph of Gb induced by exactly one ray per ray-
pair (arbitrarily selected) is connected.

Whereas the connectedness of bands by z-beams in the (3 × 1)-algorithm is straightforward, the
complex possible relationships between bands makes connectedness via rays more subtle. We
relegate the proof to the Appendix (Sec. 8) in order to not interrupt the main flow of the algorithm.

The over-generation of ray-pairs noted above is designed to ensure connectedness. Eventually
many rays will be discarded by the time TU is constructed in Sec. 6.2.

6.1.2 Ray Graph Gr

One pair of rays per pair of bands suffices to ensure that all bands are ray-connected. If multiple
pairs of rays exist for a pair of bands, pick one pair arbitrarily and discard the rest. Then define
a ray graph Gr as follows. The nodes of Gr are vertical rays in a plane Yi, perhaps degenerating
to points, connecting gridpoints between two bands that both intersect Yi. The arcs of Gr each
records a potential pivoting conflict, and are of two varieties:

(i) The nodes for the two rays issuing from the top of one band B are adjacent in Gr. Call such
arcs x-arcs; geometrically they can be viewed as parallel to the x-axis.

(ii) The nodes for two rays incident to opposite sides of the rim of a band A, connected by a
y-segment on the band, are adjacent in Gr. Call such arcs y-arcs; geometrically they can be
viewed as parallel to the y-axis.

Fig. 5 shows two simple examples of Gr involving nodes on opposite sides of one band A. Before

r
3
rrr

4
rr

A B

C r
2r

1
r
2

r
1

r
3

r
4

Gr

z

xy

r
6
rr

r
5
rr

A

D r
3r

2
r
3

r
2

r
6

r
5

G
r

B

C

r
1

r
4

r
1

r
4

(a) (b)

Figure 5: Building Gr. (a) Gr is a 4-cycle; {r1, r2} and {r3, r4} are x-arcs; any other arc is a y-arc.
(b) Gr is a path; {r2, r5} and {r3, r6} are y-arcs; any other arc is an x-arc.

proceeding, we list the consequences of the two types of arcs in Gr. Assuming that we can 2-color
Gr {red, blue}, and we select the base of (say) the red rays as pivots, then: (i) exactly one pivot
is selected for each band, and (ii) no two pivot rays are in conflict across a band. So our goal now
is to show that Gr is 2-colorable. Because a graph is 2-colorable if and only if it is bipartite, and
a graph is bipartite if and only if every cycle is of even length, we aim to prove that every cycle in
Gr is of even length. We start by listing a few relevant properties of Gr:

9



1. Every node r ∈ Gr has exactly one incident x-arc. The rays are generated in pairs, and the
pairs are connected by an x-arc. As no such ray is shared between two bands, at most one
x-arc is incident to any r.

2. Nodes have at most degree 3, with the following structure: degree-1 nodes have an incident
x-arc; degree-2 nodes have both an incident x- and y-arc; and degree-3 nodes have an incident
x-arc and two incident y-arcs.

3. Each x-arc spans exactly one pair of adjacent y-gridlines, and each y-arc spans exactly one
band rim-to-rim. The former is by the definition of ray pairs, which issue from adjacent
gridpoints, and the latter follows from the grid partitioning of the object into bands.

B1

B2

B4

B5

B
6

B7

r
1

r
2

r
7

r
8

r
9

r
10

B1

B2

B4

B5

B
6

B7
B
3

r
3

r
4

r
5

r
6

r
11

r
12

xz

y

x z

y

r
1 r

2

r
3

r4
r5

r
6

r
10

r8r
7

r
11

r
12

r
9

Gr

(a) (b)
(c)

y

x

Figure 6: (a,b) Two side views of an object; z-rays and y-arcs are marked with thick lines. (c)
Gr coordinatized into xy-plane Π; (r5, r6, r10, r9) is a 4-cycle; (r1, r3, r4, r8, r7, r11, r12, r9, r5, r2) is
a 10-cycle.

Our next step requires embedding Gr in an xy-plane Π. Toward that end, we coordinatize the
nodes and arcs of Gr as follows. A node r ∈ Gr is a z-ray, and is assigned the (x, y) coordinates of
the ray. Note that this means collinear rays get mapped to the same point; however we treat them
as distinct. The x-arcs are then parallel to the x-axis, and the y-arcs are parallel to the y-axis. In
essence, this coordinatization is a view from z = +∞.

Fig. 6 shows a more complex example illustrating this viewpoint. The object is composed of 7
bands Bi, one of which (B3) is a dent. There are 12 ray nodes, two pairs of which lie on the same
z-vertical line, namely (r4, r5) and (r8, r9). Note that there are y-arcs crossing both the top of and
the bottom2 of B4. The graph Gr has a 4-cycle and a 10-cycle, both detailed in the caption (as
well as a 12-cycle not detailed).

Lemma 2 Every cycle in Gr is of even length.
2A dent is included in this example precisely to introduce such a bottom y-arc into Gr.

10



Proof: Let C be a cycle in Gr. The coordinatization described above maps C to a (perhaps self-
crossing) closed path in the xy-plane Π, a path which may visit the same (x, y) point more than
once, and/or traverse the same edge in Π more than once. Any such closed path on a grid must
have even length, for the following reason.

First, by Property (3) above, each edge of the path in Π connects adjacent grid lines: an edge
never “jumps over” one or more grid lines. Second, any such closed lattice path changes parity
with each step, in the following sense. Number the x- and y-gridlines with integers 0, 1, 2, . . . left
to right and bottom to top respectively. Define the parity of a gridpoint of Π to be the sum of its
x- and y-gridline coordinates, mod 2. Then each step of the path, necessarily in one of the four
compass directions, changes parity, as it changes only one of x or y. Returning to the start point to
close the path must return to the starting coordinates, and so to the same parity. Thus, there must
be an even number of parity changes along any closed path. Therefore, C has an even number of
edges.

We have now established this:

Theorem 3 Gr is 2-colorable.

Note that nowhere in the above proof do we assume genus zero, so this theorem holds for polyhedra
of arbitrary genus.

Band pivoting. By Theorem 3, we can 2-color the nodes of Gr {red,blue}. We choose all red
ray-nodes of Gr to be pivoting rays, in that their base points become pivot points. As remarked
before, this selection guarantees that each band is pivoted, and no two pivots are in conflict.

6.2 Unfolding Tree TU

The next task is to define a band spanning tree TU , based on the band graph Gb. Define G′
b, to

retain the just the arcs of Gb corresponding to the red ray nodes (in the above 2-coloring) in Gr.
This maintains the connectivity of Lemma 1. Then take TU to be any spanning tree of G′

b rooted
at a frontmost band.

With TU finally in hand, the remainder of the (1× 1)-algorithm follows the overall structure of
the 3× 1 algorithm, with variations as mentioned before, as detailed below.

6.2.1 Selecting Connecting Paths

Having established a pivot point for each band, we are now ready to define the forward and return
connecting paths for a child band in TU . Let B be an arbitrary child of a band A. If B intersects A,
both forward and return connection paths for B reduce to the pivot point xb (e.g., u in Fig. 7). If
B does not intersect A, then a ray r connects xb to A (Figs. 8a and 10a). The connecting paths are
the two vertical paths separated by r comprised of the gridfaces sharing an edge with r (paths a1

and a2 in Figs. 8a and 10a). The path first encountered in the unfolding of A is used as a forward
connecting path; the other path is used as a return connecting path.

6.2.2 Determining Unfolding Directions

A top-down traversal of TU assigns an unfolding direction to each band in TU as follows. The root
band in TU may unfold either cw or ccw, but for definiteness we set the unfolding direction to
cw. Let B be the band in TU currently visited and let A be the parent of B. If the upward ray r
incident to xb connects B to a bottom gridpoint of A, and if A unfolds cw(ccw), then B unfolds

11



cw(ccw). Otherwise, r connects B to a top or a side (for degenerate rays) gridpoint of A; in this
case, if A unfolds cw(ccw), then B unfolds ccw(cw). In other words, A and B unfold in a same
direction if B “hangs below” A, and in opposite direction otherwise.

6.3 Unfolding Bands into a Net

Let A be a band to unfold, initially the root band. The unfolding of A starts at xa and proceeds
in the unfolding direction (cw or ccw) of A. Henceforth we assume w.l.o.g. that the unfolding
of A proceeds cw (w.r.t. a viewpoint at y = −∞); the ccw unfolding of A is a vertical reflection
of the cw unfolding of A. In the following we describe our method to unfold every child B of A
recursively, which falls naturally into several cases.

b
1 a

1

b
0

...

a
0

b
0

A

b
1

a
1

B

a
0

xb

xb xb

z

xy

a
0

a
1

b
1a

0 a
1

b
0

...

b
0

A

B

b
1

x
b

x
b

x
b

Figure 7: Unfolding B when the ray connecting B to A degenerates to xb.

Case 1: Pivot xb ∈ A ∩ B. Then, whenever the unfolding of A reaches xb, we unfold B as in
Fig. 7. The unfolding uses the two band faces of A incident to xb (a0 and a1 in Fig. 7). The gridface
b0 of B ccw of xb gets rotated around xb so that the ccw unfolding of B extends horizontally to the
right. The unfolding of B proceeds ccw back to xb, then the face a1 incident to xb gets oriented
about xb so that the unfolding of A continues horizontal to the right.

Note that, because the pivots of any two children of A are conflict-free, there is no competition
over the use of a0 and a1 in the unfolding. Note also that the unfolding path does not self-cross.
For example, the cyclic order of the faces incident to u in Fig. 7a is (a0, Afront, b0, b1, Bback, a1),
and the unfolding path follows (a0, b0, . . . , b1, a1).

Case 2: Pivot xb 6∈ A∩B and the (forward, return) connecting paths for B do not overlap other
connecting paths (except at their boundaries); we will later see that this may happen. Let us settle
some notation first (cf. Fig 8a): r is the ray connecting B to A; a1 and a2 are forward and return
connecting paths for B (one to either side of r); u1 is the endpoint of r that lies on A; and u2 is
the other endpoint of the y-edge of A incident to u1. We discuss three situations:

Case 2a: u1 is neither a reflex corner nor a bottom corner of A. In this case, whenever the
unfolding of A reaches a1, the unfolding of B proceeds as in Fig. 8a or Fig. 8b, depending on
whether xb touches a left face of B or not. In either case, if b0 is the face of B extending ccw left of
xb, rotate b0 so that the unfolding of B extends horizontal to the right, recursively unfold B, then
rotate the return path a2 about xb so that the unfolding of A continues horizontal to the right.

12



A

B

a
0

a
3

a
1

a
2

b
0

b
1

a
0

a
3

a
1

a
2

b
0

b
1

...

r

u
1

u
2

z

xy

xb

xb xb

A

B

a
0

a
3

a
1

a
2

b
0

b
1

a
0

a
3

a
1

b
1

b
0 ... bs a

2

u
1

u
2

x
b

x
b x

b

u
2

(a) (b)

Figure 8: Unfolding B: u1 is not a corner vertex of A (a) xb incident to a left face of B (b) xb

incident to a top face of b.

Case 2b: u1 is a reflex corner of A. In this case, the unfolding of B proceeds as in Fig. 9(a, b).
It is the existence of the vertical strip incident to u1 (marked t in Fig. 9) that makes handling this
case different from Case 2a above. Note however that the existence of t implies the existence of at
least two gridfaces on either the return path or the forward path for B, depending on whether t is
a left (Fig. 9a) or a right (Fig. 9b) strip of faces. In the former case the unfolding starts as in Case
2a (Fig. 9a), and once the unfolding of B returns to xb, it continues along the return path up to u1,
then unfolds t and orients it about u1 in such a way that the unfolding of A continues horizontal
to the right. The portion of the return path that extends above u1 (a20 in Fig. 9a) gets attached
below the adjacent top face of A (a3 in Fig. 9a).

A

B

a
3

a
20

a
1

b
1

a
20

b
0

a
21

xb

a
0

t
u
1

a
0

a
3

a
1

a
21

b
0

b
1

...

xb t

u
1

u
2

u
2

xb

z

xy

A

B

a
0 a

3

a
10

t

b
0

a
0

a
10

b
1

b
0

...

b
1

a
11

a
2

t a
11

u
1

x
b

x
b

u
1

u
2

(a) (b)

Figure 9: Unfolding B: u1 is a corner vertex of A. (a) t is a left strip (b) t is a right strip.

If t is a strip of right faces, then t gets unfolded before descending along the forward path down
to B, as in Fig. 9b (note the vertical symmetry with the unfolding in Fig. 9a); the unfolding of B
then proceeds as in Case 2a (Fig. 8b).

13



Case 2c: u1 is a bottom corner of A. In this case, the unfolding proceeds as in Fig. 10a or
Fig. 10b, depending on whether u1 is a right or a left bottom corner of A. The unfolding illustrated
in Fig. 10a follows the familiar unfolding pattern: orient the face of B ccw left of xb so that the
unfolding of B extends to the right; once the unfolding of B returns to xb, follow the return path
back to A and unfold the face of A cw to the right of u1 (a3 in Fig. 10a) so that the unfolding of
A continues horizontal to the right. A similar pattern applies to the case illustrated in Fig. 10b,

a
2

a
0

...
b
0

a
1

b
1

A'

A

a
2 b

0

a
1

u
1

a
3

a
0

Bb
1

xb

z

xy

u
1

a
3

a
3

t

A'

A

a
0

a
2

b
0

b
1

a
1

B

u
1

b
1

a
2

...
b
0

u
1

r

u
2

t

x
b

a
1

a
0

x
b

a
3

x
b

x
b

(a) (b)

Figure 10: Unfolding B: u1 is a bottom corner of A (a) rightmost, and (b) leftmost face of A
vertically aligned with leftmost face of B.

with one subtle difference meant to aid in unfolding front and back faces (discussed in Sec. 6.4): in
unfolding bands, we aim at maintaining the vertical position of the (forward, return) connecting
paths in the unfolding, so that vertical strips hanging below these connecting paths could also hang
vertically in the unfolding. More on this in Sec. 6.4. Observe that a1 and a2 from Fig. 10a hang
downward in the unfolding. However, if a2 were to maintain its vertical position in the unfolding
from Fig. 10b, it would not be possible to orient a3 around u1 so as to continue unfolding A
horizontal to the right of a2. This is the reason for employing the face marked t in the unfolding,
so that vertical sides of t remain vertical in the unfolding, and any face strip hanging below t could
be attached to t vertically in the unfolding.

We note that Fig. 10 illustrates only the situation in which xb is incident to a left face of B,
but it should not be difficult to observe that an exact same idea applies to any top pivot of B; the
pivot position only affects the start and end unfolding position of B, and everything else remains
the same.

Case 3: Pivot xb 6∈ A ∩ B and a connecting path for B overlaps a connecting path for another
descendant C of A. This case is slightly more complex, because it involves conflicts over the use of
the connecting paths for B. The following three situations are possible.

Case 3a: The forward path a1 for B overlaps the return path for another descendant C of A.
This situation is illustrated in Fig. 11a. In this case, the unfolding B starts as soon as the unfolding

14



along the return path from C to A meets a face of B incident to xb (face b0 in Fig. 11a). At this
point B gets recursively unfolded as before (see Fig. 11b), then the unfolding continues along the
return path for C back to A. Fig. 11b shows face a1 in two positions: we let a1 hang down only if
the next face to unfold is a right face of a child of A (see the transition from k7 to c5 in Fig. 12);
otherwise, use a1 in the upward position, a freedom permitted to us by rotating about vertex u.

A

a20

C
a21

c1

c2

a1

B

A

c20

b3

b0
B

C

c21

a1

u

a2

b1

a1

a1c20

b0

...
c21b1

b3

u

(a)

(b)

(c)

A

c21

a
2

a
1

B

(d)

C

u2
z

xy

xb

xc
xb

xc

xbxc

xb

xc

A

a
2

(e)
B

xb
a1
xc

C

Figure 11: (a) Return path for C includes c20, c21, a1; forward path for B is a1. (b) Unfolding for
(a) (c) Return path for B includes a20, a21, c1; forward path for C is c1. (d) Return path for B is
a2; forward path for C includes a2, c21. (e) Forward (return) paths are identical for B and C.

Case 3b: The return path a2 for B overlaps the forward path for another descendant C of A.
This situation is illustrated in Figs. 11c and 11d. The case depicted in Fig. 11c is similar to the
one in Fig. 11a and is handled in the same manner. For the case depicted in Fig. 11d, notice that
a2 is on both the forward path for C and the return path for B. However, no conflict occurs here:
from a2 the unfolding continues downward along the forward path to C and unfolds C next.

Case 3c: The forward path a1 for B overlaps the forward path for another descendant C of A.
This situation occurs when either B or another band C incident to B is a dent, as illustrated in
Figs. 11e. Again, no conflict occurs here: the recursive unfolding of C, which returns to xc = xb, is
followed by the recursive unfolding of B, which returns to xb, then the unfolding continues along
the return path for B (C) back to A.

Fig. 12 shows a more complex example that emphasizes these subtle unfolding issues. Note that the
return path k1, k8, k9 for B overlaps the forward path k9 for C; and the return path k5, k6 and k7

for G overlaps the forward path for H, which includes k7. The unfolding produced by the method
described in this section is depicted in Fig. 12(b).

15



A

a
0 C

B

k0

k1

b9
b0

c0

k2

Dd0

k3 k4

Gg0

g3

k5

H
h0

h3

k6

k7c9

k8

k9

a1

d4

u1 u2

u3

(a)

a0

...

c0

b0

k0

b9

k1

c1

k2 d0
...

d4 k3

c2 c3 c4

k4 g0

g0

...

g3 k5

h0

h1 h2 h3 k6

k7 c5

c5
...

c9 k8 k9

a1

u1

u2

u3

(b)

z

xy

xb

xb xb

xc

xc

xd

xd xd

xg

xg

xg

xh

xh

Figure 12: (a) An example. (b) The vertex-unfolding.

6.4 Attaching Front and Back Faces to the Net

Front and back faces of a slab are “hung” from bands following the basic idea of the illumination
model discussed in Sec. 5.3. There are three differences, however, caused by the employment of
some front and back gridfaces for the connecting paths, which can block illumination from the
bands.

1. We illuminate both upward and downward from each band: each x-edge illuminates the
vertical face it attaches to. This alone already suffices to handle the example in Fig. 12: all
vertical faces are illuminated downward from the top of A, upward from the bottom of A,
and upward from the top of B.

2. Some gridfaces still might not be illuminated by any bands, because they are obscured both
above and below by paths in connecting faces. Therefore we incorporate the connecting faces
into the band for the purposes of illumination. For example, in Fig. 10a, a2 illuminates
downward and a1 illuminates upward. The reason this works is that, with one exception,
each vertical connecting strip remains vertical in the unfolding, and so illuminated strips can
be hung safely without overlap.

3. The one exception is the forward connecting path a1 in Fig. 10b. This paths unfolds “on its
side,” i.e., what is vertical in 3D becomes horizontal in 2D. Note, however, that the face x
below each of these paths (a face always present), is oriented vertically. We thus consider x
to be part of the connecting path for illumination purposes, permitting the strip below to be
hung under x.

Because our cases are exhaustive, one can see now that all gridfaces of (say) the front face of A
are either illuminated by A, or by some descendant of A on the front face, augmented by the
connecting paths as just described. (In fact every gridface is illuminated twice, from above and
below.) Hanging the strips then completes the unfolding.

16



6.5 Algorithm Complexity

Because there are so few unfolding algorithms, that there is some algorithm for a class of objects is
more important than the speed of the algorithm. Nevertheless, we offer an analysis of the complexity
of our algorithm. Let n be the number of corner vertices of the polyhedron, and N = O(n2) the
number of gridpoints. The vertex grid can be easily constructed in O(N) time, leaving a planar
surface map consisting of O(N) gridpoints, gridedges, and gridfaces. The computation of connecting
rays (Sec. 6.2) requires determining the components of A ∩ P+ and A ∩ P−, for each A. This can
be easily read of from the planar map by running through the n vertices of each of the O(n)
bands and determining, for each vertex, whether it belongs to P+ or P−. Each of the O(n) band
components shoots a vertical ray from one corner vertex, in a 2D environment (the plane Yi) of n
noncrossing orthogonal segments. Determining which band a ray hits involves a ray shooting query.
Although an implementation would employ an efficient data structure, perhaps BSP trees [PY92],
for complexity purposes the naive O(n) query cost suffices to lead to O(n2) time to construct Gr.
Selecting pivots (Sec. 6.1) involves 2-coloring Gr in O(n) time, and computing the unfolding tree
TU in a breadth-first traversal of Gr, which takes O(n) time. Unfolding bands (Sec. 6.3) involves a
depth-first traversal of TU in O(n) time, and laying out the O(N) gridfaces in O(N) time. Thus,
the algorithm can be implemented to run in O(N) = O(n2) time.

7 Further Work

Extending these algorithms to arbitrary genus orthogonal polyhedra remains an interesting open
problem. Holes that extend only in the x and z directions within a slab seem unproblematic, as
they simply disconnect the slab into several components. Holes that penetrate several slabs (i.e,
extend in the y direction) present new challenges. One idea to handle such holes is to place a
virtual xz-face midway through the hole, and treat each half-hole as a dent (protrusion).

Acknowledgements

We thank the anonymous referees on [DFO06] for their careful reading and insightful comments.

References

[BDD+98] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins,
and S. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc. 10th
Canad. Conf. Comput. Geom., pages 70–71, 1998.

[DEE+03] E. D. Demaine, D. Eppstein, J. Erickson, G. W. Hart, and J. O’Rourke. Vertex-
unfoldings of simplicial manifolds. In Andras Bezdek, editor, Discrete Geometry, pages
215–228. Marcel Dekker, 2003. Preliminary version appeared in 18th ACM Symposium
on Computational Geometry, Barcelona, June 2002, pp. 237-243.

[DFO06] M. Damian, R. Flatland, and J. O’Rourke. Grid vertex-unfolding orthogonal polyhedra.
In Proc. 23rd Symp. on Theoretical Aspects of Comp. Sci., pages 264–276, February
2006. Lecture Notes in Comput. Sci., Vol. 3884, Springer.

[DIL04] E. D. Demaine, J. Iacono, and S. Langerman. Grid vertex-unfolding of orthostacks. In
Proc. Japan Conf. Discrete Comp. Geom., pages 76–82, 2004. Lecture Notes in Comput.
Sci., Vol. 3742, Springer.

17



[DO05a] E. D. Demaine and J. O’Rourke. A survey of folding and unfolding in computational
geometry. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Com-
putational Geometry, pages 167–211. Cambridge University Press, 2005.

[DO05b] Erik D. Demaine and Joseph O’Rourke. Open problems from CCCG 2004. In Proc.
17th Canad. Conf. Comput. Geom., pages 303–306, 2005.

[GBKK98] S. K. Gupta, D. A. Bourne, K. H. Kim, and S. S. Krishnan. Automated process planning
for sheet metal bending operations. J. Manufacturing Systems, 17(5):338–360, 1998.

[O’R00] Joseph O’Rourke. Folding and unfolding in computational geometry. In Discrete Com-
put. Geom., volume 1763 of Lecture Notes Comput. Sci., pages 258–266. Springer-
Verlag, 2000. Papers from the Japan Conf. Discrete Comput. Geom., Tokyo, Dec.
1998.

[PY92] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects.
J. Algorithms, 13:99–113, 1992.

[SSW89] E. L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the generalized
map-maker’s problem: Flattening nonconvex poleyderal surfaces. IEEE Trans. Pattern
Anal. Mach. Intell., 11(9):1005–1008, 1989.

[THCM04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-maps.
ACM Trans. Graph., 23(3):853–860, 2004.

[Wan97] C.-H. Wang. Manufacturability-driven decomposition of sheet metal products. PhD
thesis, Carnegie Mellon University, The Robotics Institute, 1997.

18



8 Appendix: Proof of Lemma 1 (Connectedness of Gb)

Two subsets of P ⊂ Yi are path-connected, or just connected, if there are points in each that are
connected by a path that lies in P . We need some notation to describe the portions of r(A) that are
relevantly connected to each band A. For a protrusion A, let rc(A) be the subset of r(A) (cf. Sec. 2)
that is path-connected to A via paths that do not cross any bands. For a dent B, let rc(B) be
the boundary of B plus the subset of r(B) that is both path-connected to B via paths that do not
cross any bands, and is not part of rc(A), for some protrusion A. Consider for example Figure 14b.
For protrusion B′, rc(B′) consists of the boundary rim of B′ and the portion of the back face of
B′ that overhangs dent B. For dent B, rc(B) consists only the boundary of B, even though the
overhanging portion of B′ can be reached from B without crossing any bands, because that is part
of rc(B′). In Figure 16a however, the portion of the front face of A′ enclosed by B belongs to rc(B),
not to rc(A′).

The genus-zero assumption implies that, for protrusion A and dent B on opposite sides of Yi

such that rc(A) ∩ rc(B) is nonempty, it must be that A ∩B is nonempty (cf. Figs. 15). Define

rc(A,B) =
{

A ∩B, if A ∩B 6= ∅, and at least one of A and B is a dent
rc(A) ∩ rc(B) otherwise.

This definition is intended to identify gridpoints on either A or B from which rays are issued
by the ray-pair generation algorithm (Sec. 6.1.1). The reason for treating intersecting dents and
protrusions differently is a subtle one, and is captured by Fig. 14b: B is a dent behind Yi and B′ is
a protrusion in front of Yi; rc(B′) is the piece of the back face of B′ enclosed by B; u is a highest
gridpoint in B ∩B′, while w is a highest gridpoint in rc(B)∩ rc(B′); u is a potential ray basepoint,
while w is not. The above definition eliminates points such as w from the set rc(A,B).

Our connectivity proof for Gb proceeds as follows. In general, there are a number of disconnected
maximal components P1, P2, . . . of P , with P = P1 ∪ P2 ∪ · · ·. The bands incident to each of these
are ray-connected to each other via planes other than Yi. We first argue that, to prove that Gb

is ray-connected, it suffices to prove that each Pj is ray-connected. Remove from O all the slabs
S1, S2, . . . incident to Y0. Establish that the bands in the resulting object O′ are ray-connected,
via induction. Now put back the slabs. Each Sj corresponds to a component Pj , and we are
assuming we can establish that all bands incident to Pj are ray-connected to one another. This
along with the fact that O itself is connected implies that all bands are ray-connected. Henceforth
we concentrate on one such connected component Pj , call it Q ⊂ Yi for succinctness. Let C be
the collection of all bands that intersect Q. Then ∪A∈Crc(A) = Q. The idea of the connectedness
proof is that the bands get connected in upward chains, and ultimately to each other through
“common ancestor” higher bands. We choose to prove it by contradiction, arguing that a highest
disconnected component cannot exist.

Lemma 4 All bands in C are ray-connected. Furthermore, if one arbitrary ray in each ray-pair is
discarded, C remains ray-connected.

Proof: For the purpose of contradiction, assume that not all bands in C are ray-connected. Let
C1, C2, . . . be the distinct maximal subsets of C that are ray-connected. Let Qj = ∪A∈Cjrc(A). Then
Q = ∪jQj . Since Q is connected, the subsets Qj are not disjoint, in that for every Qj there is an
Qk such that Qj ∩Qk is nonempty. By the observation above, this means that

Qjk = ∪A∈Cj ,B∈Ck
rc(A, B)

19



is also nonempty. Let j and k be such that Qjk contains a highest x-gridedge (gridpoint, if Qjk

contains only isolated points) among all Qjk. Let u be the leftmost highest gridpoint in Qjk. Let
A ∈ Cj and B ∈ Ck be such that u ∈ rc(A,B).

We have thus identified two bands A and B, ray-disconnected because in different components
of Q, which contribute this highest gridpoint u in the “highest” intersection Qjk. We now examine
in turn the four protrusion/dent possibilities for these two bands.

Case 1. A and B are both protrusions on opposite sides of Yi. Assume w.l.o.g that A is behind
Yi, B is in front of Yi, and u is on B (as depicted in Fig. 13). We discuss two subcases:

A

Yi

r

u

B

D

r'u'

z

xy

A

Y
i

r

D

B
u

r'

u'

A

Y
i

D

u

u
1

r

B
u'
11
u'u'

r'

u'

(a) (b)

Figure 13: Case 1: A and B are both protrusions on opposite sides of Yi (a) D is a protrusion (b)
D is a dent with a vertical side incident to u (c) D is a dent with a bottom edge incident to u.

a. u is on a top edge of B (Figs. 13(a,b)). Then our ray-pair algorithm generates a ray-pair (r, r′),
with r incident to u and r′ incident to the gridpoint u′ cw from u. Consider r (the analysis
is similar for r′). If r hits A, then in fact A and B are ray-connected, contradicting the fact
that A and B belong to different ray-connected components of C. So let us assume that r hits
another band D ∈ C`. Fig. 13a(b) illustrates the situation when D is a protrusion (dent).
If D ∈ Cj , then D and A are ray-connected in Cj , and since B and D are ray-connected,
it follows that B and A are ray-connected, a contradiction. So assume that D ∈ C`, with
` 6= j. But then rc(A,D) (and implicitly Qj`) has a gridpoint higher than u, contradicting
our choice of j, k and u.

b. u is on a vertical (left, right) edge of B (Fig. 13c). Then u must be at the intersection between
a dent D and B, meaning that D∩rc(B) is nonempty. Furthermore, rc(A,D) has a gridpoint
higher than u, meaning that D ∈ Gj . Let u1 be the leftmost among the highest gridpoints
of D ∩ rc(B). Then our ray-pair algorithm generates a ray-pair (r, r′) from u1 and its right
neighbor u′1. Consider r (the analysis is similar for r′). If r hits B, then B is ray-connected
to D, which is ray-connected to A, a contradiction. If r hits a band E other than D, then
it must be that D ∈ Ck, since rc(B, E) has a gridpoint higher than u1, which is no lower
than u. This means that B is ray-connected to E, which is ray-connected to D, which is
ray-connected to A, a contradiction.

Case 2. A is a protrusion and B is a dent, both on a same side of Yi. The case when A and B
are both in front of Yi (illustrated in Fig. 14a) is identical to Case 1 above, once one conceptually
pops out B into a protrusion. We now discuss the case when A and B are both behind Yi.

20



Assume first that rc(A,B) contains no top edges of B, as depicted in Figure 14b. Let B′ be
a protrusion in front of Yi covering the top of B. Then rc(A,B′) and rc(B′, B) each contains a
gridpoint higher than u. The following two contradictory observations settle this case:

a. It must be that B′ 6∈ Ck; otherwise Qjk would contain a gridpoint in rc(A,B′) higher than u.

b. If B′ ∈ C`, then it must be that ` = k; otherwise Q`k would contain a gridpoint in rc(B′, B)
higher than u.

If rc(A,B) contains at least one top gridedge of B, then arguments similar to the ones used for
the case illustrated in Fig. 13a (conceptually popping B to become a protrusion) settle this case as
well.

A'

A

B

u
u'

Yi z

xy

A

Y
i

B'

B
u

w

u'

(a) (b)

Figure 14: Case 2: A is a protrusion and B is a dent (a) behind Yi (b) in front of Yi.

Case 3. A is a protrusion and B is a dent on opposite sides of Yi (see Fig. 15). Let B′ be the
protrusion in front of Yi enclosing B. We discuss two subcases:

a. rc(A) contains a top edge of B (see Fig. 15a). This means that rc(A) ∩ r(B) is nonempty,
and the ray-pair algorithm shoots a ray-pair (r, r′) upward from the endpoints of a highest
gridedge {u1, u

′
1} of A ∩ r(B). Consider ray r (the analysis is similar for r′). If r hits B,

then A and B are in fact ray-connected, a contradiction. If r hits a band D other than B,
then arguments similar to the ones for the case illustrated in Fig. 13a (Case 1) lead to a
contradiction.

A

u

Y
i

B'

u

B

1

r

u'1

r'

A

u

Y
i

B'

B

u'

w

(a) (b)

Figure 15: Case 3: A is a protrusion behind Yi; B is a dent in B′, both in front of Yi.

21



b. rc(A) contains a bottom edge of B. This case is symmetrical to the one above in that a ray
upward from a gridpoint of B ∩ r(A) hits A, thus ray-connecting A and B.

c. rc(A) contains neither a top nor a bottom edge of B (see Fig. 15b). Arguments similar
to the ones used in Case 1 (protrusions on opposite sides of Yi) show that A and B′ are
ray-connected. That B and B′ are ray-connected follows immediately from the fact that
rc(B,B′) has a gridpoint higher than u (w in Fig. 15b). These together imply that A and B
are ray-connected, a contradiction.

A'

Yi

BBBB

u

B'

A

βββββ u'

z

xy

A'

Y
i

B
B'

A

uβββ

u'

(a) (b)

Figure 16: Case 4: A is a dent behind Yi, enclosed within protrusion A′. B is a dent in front of Yi,
enclosed within protrusion B′.

Case 4. A and B are both dents: A is a dent behind Yi enclosed within protrusion A′, and B is a
dent in front of Yi enclosed within protrusion B′ (see Fig. 16). The genus-zero assumption implies
that r(A) ∩ r(B) is a polygonal region of positive area. Since u ∈ rc(A) ∩ rc(B), we have that
u ∈ r(A) ∩ r(B). Let β be the boundary segment of r(A) ∩ r(B) incident to u. We discuss two
subcases:

a. β ⊂ P−, meaning that β ⊂ A (see Fig. 16a).

An analysis similar to the one for the case illustrated in Fig. 15a (Case 3) shows that A and
B are ray-connected, a contradiction.

b. β ⊂ P+, meaning that β ⊂ B (see Fig. 16b). We show that A and A′ are ray-connected, B
and B′ are ray-connected, and A′ and B′ are ray-connected. This implies that A and B are
ray-connected, a contradiction. First note that the ray-pair algorithm shoots a ray-pair (r, r′)
upward from a highest gridedge on β. An analysis similar to the one for the case illustrated
in Fig. 13a (conceptually popping B to become a protrusion) shows that r and r′ must hit B,
thus ray-connecting B and B′. That A and A′ are ray-connected follows immediately from
the fact that rc(A,A′) has a gridpoint higher than u, and similarly for A′ and B′.

Having exhausted all possible cases, the connectivity claim of the lemma is established. Because
the proof for each of these cases goes through by considering either the first or second ray of a
ray-pair, retaining either ray suffices to preserve connectivity. Thus the second claim of the lemma
is established as well.

22


