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Abstract

It is shown that every orthogonal terrain, i.e., an orthogonal (right-
angled) polyhedron based on a rectangle that meets every vertical line in
a segment, has a grid unfolding: its surface may be unfolded to a single
non-overlapping piece by cutting along grid edges defined by coordinate
planes through every vertex.

1 Introduction

This paper is concerned with unfolding the surface of a polyhedron to a single,
connected planar piece that avoids overlap. We will concentrate on orthogonal
polyhedra: those whose faces meet at angles that are multiples of 90°, and whose
edges are parallel to Cartesian zyz-axes. Figure [l shows an edge unfolding of
an orthogonal polyhedron, an unfolding produced by cutting along edges of the
polyhedron. Note that we permit boundary overlap, but no interior points of
the planar piece overlap. Thus the shape could be cut out of paper and folded
up to form the surface of the polyhedron.

The study of unfolding orthogonal polyhedra was initiated in [BDD¥98], and
there are now many results, which we will not survey (see [O’R07] and [DOOQT]).
It will suffice here to note that an easy example (a small box in the center of a
larger box’s top face) demonstrates that not every orthogonal polyhedron may
be edge-unfolded. Consequently, loosenings of the unfolding criteria have been
explored. A grid unfolding adds edges (grid edges) to the surface by intersecting
the polyhedron with planes parallel to Cartesian coordinate planes through
every vertex, as in Figure c), permitting cutting along these grid edges. Even
this freedom has not proven sufficient to obtain broadly applicable algorithms,
so grid refinements have been studied. A ki xky refinement of a surface [DO05)]
partitions each face into a ki x ko grid of faces (with the convention that a 1x1
refinement is an unrefined grid unfolding). Athough there have now been several
grid refinement algorithms developed that unfold special classes of orthogonal
polyhedra (surveyed in [O'R07]), it remains unknown whether every orthogonal
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Figure 1: (a) An orthogonal polyhedron. (b) An edge unfolding of the polyhe-
dron in (a). (c¢) Grid edges added to (a) by intersecting with coordinate planes
through every vertex.

polyhedron has a (1x1) grid unfolding. This paper shows that a special class
of orthogonal polyhedra does have a grid unfolding.

This class we call orthogonal terrains. Let P be the surface of an orthogonal
polyhedron, and P the closed, solid whose boundary is P. An orthogonal terrain
satisfies two properties: (1) there is a distinguished rectangular face of P called
the base B; and (2) every vertical line L (parallel to the z-axis) that intersects P
meets it in a single segment, L NP = s, with s a finite-length line segment with
one endpoint on B: s € B. P\ B is a “monotone surface,” and models a terrain
of elevations. In fact, any Digital Elevation Model (DEM), i.e., any rectangular
array of heights, can be viewed as an orthogonal terrain (when closed with sides
and a base). Figure [2| shows an example we will use throughout the paper
(Figure [I[a) is not a terrain because its base is not a rectangle).

A slightly broader class of shapes, the “Manahattan towers,” were studied
in [DFOQ5]. These differ from terrains only in permitting the base B to be an
arbitrary orthogonal polygon. This apparently small generalization considerably
complicates the situation, and that paper achieved only a 5x4 grid unfolding.
Insisting that B be a rectangle permits a completely different, and relatively
simple algorithm to achieve a 1x1 grid unfolding.

2 Terrain Unfolding Algorithm

We now proceed to describe that algorithm, relying on illustrations to avoid
excessive formality. Unlike most unfolding algorithms, this one can be specified
as a continuous motion that avoids self-intersection throughout (as opposed to
only guaranteeing nonoverlap at the planar conclusion). The first two steps



Figure 2: A orthogonal terrain with grid edges added, in this case via a plane
at every integer coordinate. The base B underneath is a 10x10 square.

are straightforward. First, the right (+z), left (—z), and back (+y) vertical
faces are unfolded to the xy-plane while remaining attached to the base B. See
Figure Second, B and its attachments are rotated around the z-axis, and

Figure 3: Unfolding the right, left, and back sides of P.

then the front vertical faces unfolded horizontally as in Figure [l Here the line
of rotation is = 0Nz = h, where h is the height of the tallest front face (h = 3
in the figure; six front faces are tied for tallest).

All this is straightforward. The third step of the algorithmm is the heart
of it. Define an x;-strip as the sequence of faces between y =7 and y =7+ 1
(i =0,...,n—1) on the “top” of P: the horizontal xy-faces, and the vertical
yz right and left faces connecting them in a sinuous path. Each x;-strip will
be unfolded as a unit, into a (long) rectangle stretching in the z-direction. For
example, the first zo-strip (covering y = [0, 1]) in Figure [2| unfolds to a 16x1
rectangle: n = 10 unit square top zy-faces, connected by right/left pairs of 1x2
and 1x1 vertical faces. See Figure [f]

Consider any adjacent z-strips, z;—1 and z;. In the original P, they are
connected by a number of vertical xz-faces, some rising at y=i to connect to



Figure 4: Flipping the base B around the line y=2=0, and then unfolding the
front faces of P.
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Figure 5: Unfolding the top faces of P into z-strips connected by y-bridges.



a higher y-adjacent “tower,” and some descending to connect to a lower y-
adjacent neighbor. Define the bridge b; to be the zz-rectangle of greatest z-
height between the strips, breaking ties arbitrarily. Then we lay out the x;-strip
separated from the x;_; strip by the height of b; in the planar vertical (y-)
direction, and aligned horizontally so that b; connects the two strips. Note that
all the connecting xz-rectangles are attached above the x; strip. The continuous
unfolding process is depicted in Figure [5) and the final unfolding is shown in
Figure [} Note that, because of ties, the unfolding is not a simple polygon;

X

Figure 6: The final unfolding of P from Fig. [2in the zy-plane.

rather, the boundary overlaps at several places. However, the unfolding is what
is known as weakly simple, in that no interior points overlap, as mentioned
previously.



3 Conclusion

Although our example gridded the polyhedron at every integer lattice point,
it is clear that a coordinate grid plane through every vertex suffices for the
algorithm.

Orthogonal terrains add to the narrow classes of orthogonal polyhedra that
are known to be grid-unfoldable (orthotubes, well-separated orthotrees, orthog-
onally convex orthostacks; see [O'R0T]), although it may be that all orthogonal
polyhedra may be grid-unfoldable. Even extending this new algorithm to ter-
rains defined by slanted axes (e.g., Figure E[) remains problematical.

Figure 7: (a) The polyhedron from Fig. [2] with the z axis slanted 30° toward
the y-axis. (b) Partial unfolding of first three strips {z¢, 21,22}, showing that
the algorithm that produced Fig. [6] now leads to overlap.
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