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Isometric Morphing of Triangular Meshes *
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Abstract

We present a novel approach to morph between two isomet-
ric poses of the same non-rigid object given as triangular
meshes. We model the morphs as linear interpolations in
a suitable shape space S. For triangulated 3D polygons, we
prove that interpolating linearly in this shape space corre-
sponds to the most isometric morph in R3. We extend this
shape space to arbitrary triangulations in 3D using a heuris-
tic approach.

1 Introduction

Given two isometric poses of the same non-rigid object as
triangular meshes S(®) and S(*) with known point-to-point
correspondences, we aim to find a smooth isometric defor-
mation between the poses. Interpolating smoothly between
two given poses is called morphing. We achieve this by find-
ing shortest paths in a shape space similar to the approach by
Kilian et al. [5]. We propose a novel shape space.

A deformation of a shape represented by a triangular
mesh is isometric if and only if all triangle edge lengths
are preserved during the deformation [5]. We call a morph
SM .0 < t < 1 between two (possibly nonisometric) shapes
S©) and S most isometric if it minimizes the sum of the
absolute values of the differences between the correspond-
ing edge lengths of two consecutive shapes summed over all
shapes S, for ¢ in [0, 1]!. In this paper, we examine isomet-
ric morphs of general triangular manifold meshes in 3D and
of triangulated 3D polygons, which are triangular meshes
with no interior vertices. We introduce a new shape space S
for triangulated 3D polygons that has the property that in-
terpolating linearly in shape space corresponds to the most
isometric morph in R3. We then extend this shape space
to arbitrary triangulations in 3D using a heuristic approach.
Note that self-intersections may occur when morphing.

Computing a smooth morph from one pose of a shape in
two or three dimensions to another pose of the same shape
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has numerous applications. For example in computer graph-
ics and computer animation this problem has received con-
siderable attention [7, 1].

Recently, Kilian et al. [5] used shape space representations
to guide morphs and other more general deformations be-
tween shapes represented as triangular meshes. Each shape
is represented by a point in a high-dimensional shape space
and deformations are modeled as geodesics in shape space.
The geodesic paths in shape space are found using an energy-
minimization approach. Before Kilian et al. [5] presented the
use of a shape space for shape deformation and exploration
of triangular meshes, shape space representations were de-
veloped to deform shapes in different representations. Cheng
et al. [2] proposed an approach that deforms shapes given in
skin representation, which is a union of spheres that are con-
nected via blending patches of hyperboloids, with the help of
a suitable shape space. Furthermore, algorithms for deform-
ing curves with the help of shape space representations were
proposed by Younes [10] and Klassen et al. [6]. Eckstein et
al. [3] propose a generalized gradient descent method similar
to the approach by Kilian et al. that can be applied to de-
form triangular meshes. All of these approaches depend on
solving a highly non-linear optimization problem with many
unknown variables using numerical solvers. It is therefore
not guaranteed that the globally optimal solution is found.

2  Theory of Shape Space for Triangulated 3D Poly-
gons

This section introduces a novel shape space for triangulated
3D polygons with the property that interpolating linearly in
shape space corresponds to the most isometric morph in R3.
The dimensionality of the shape space is linear in the number
of vertices of the deformed polygon.

We start with two triangulated 3D polygons P(®) and P(1)
corresponding to two almost isometric poses of the same
non-rigid object. We assume that the point-to-point corre-
spondence of the vertices P(°) and P(") are known. Fur-
thermore, we assume that both P(9) and P(1) share the same
underlying mesh structure M. Hence, we know the mesh
structure M with two sets of ordered vertex coordinates V' (9)
and V() in R3, where M is an outer-planar graph. We will
show that we can represent P(°) and P(!) as points p(®) and
p™) in a shape space S, such that each point p(*) that is a
linear interpolation between p(®) and p!) corresponds to a
triangular mesh P(*) isometric to P(*) and P(!) in R®.

Let M consist of n vertices. As M is a triangulation of a
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3D polygon with n vertices, M has 2n — 3 edges and n — 2
triangles. We assign an arbitrary but fixed order on the ver-
tices, edges, and faces of M. We eliminate rigid transforma-
tions by positioning P(9) and P! such that the first vertex v
is incident to the origin, the first edge e of M incident to v is
aligned along the positive z-axis, and the first triangle con-
taining e lies on the x, y plane. The shape space S is defined
as follows. The first 2n — 3 coordinates are the lengths of the
edges in M in order. The final 2(n — 2) coordinates are the
outer normal directions of the triangles in M in spherical co-
ordinates, in order. Hence, the shape space S has dimension
2n—3+4+2(n—2)=4n—7=0(n).

In the following, we prove that interpolating linearly be-
tween P(9) and PV in shape space yields the most isometric
morph. To interpolate linearly in shape space, we interpo-
late the edge lengths by a simple linear interpolation. That
is, p,(:) = tp\® (1 - t)p,(el), where p,(f) is the kth coor-
dinate of p(*). The normal vectors are interpolated using
geometric spherical linear interpolation (SLERP) [8]. That
is, p,(f) = %p,&o) + %pg), where © is the angle
between the two directions that are interpolated.

To study interpolation in shape space, we make use of the
dual graph D(M) of M. The dual graph D(M) has a node
for each triangle of M. We denote the dual node correspond-
ing to face f of M by D(f). Two nodes of D(M) are joined
by an arc if the two corresponding triangles in M share an
edge. We denote the dual arc corresponding to an edge e of
M by D(e). Note that because M meshes a 3D polygon, it
is an outer-planar triangular graph and so the dual graph of
M is a binary tree. An example of a mesh M with its dual
graph D(M) is shown in Figure 1.

Figure 1: A mesh M with its dual graph D(M).

Theorem 1 Let M be the underlying mesh structure of the
triangulated 3D polygons P(©) and P, The linear inter-
polation p® between p© and pV) in shape space S for
0 <t <1 has the following properties:

1. The mesh P®Y) € R® that corresponds to p®) € S is
uniquely defined and has the underlying mesh structure

M. We can compute this mesh using a traversal of the
binary tree D(M) in ©(n) time.

2. If PO and PM are isometric, then P\ is isometric to
PO gnd PO, IfP(O) and PO are not isometric, then

each edge length of P®) linearly interpolates between
the corresponding edge lengths of P(®) and PV,

3. The coordinates of the vertices of P\*) are a continuous
function of t.

Due to page restrictions, the proof of this theorem is omit-
ted in this abstract, but can be found in [9]. Note that Theo-
rem 1 implies that the most isometric morph is found as all
edge lengths are linearly interpolated.

Because D(M) has complexity ©(n), we can traverse
D(M) in ©(n) time. Hence, we can compute intermediate
deformation poses in ©(n) time each.

Using the proposed algorithm, we deform the polygon
shown in Figure 3 (a) to the polygon shown in Figure 3 (i).
The morph is illustrated in Figures 3 (b)-(h). All of the inter-
mediate poses are isometric to the start and end poses. The
overlayed poses are shown in Figure 2.

Figure 2: Most isometric morph of a simple polygon. The
start polygon is a 3D polygon obtained by discretizing the
curve y = sin(x) and by adding thickness to the curve along
the z-direction. The end polygon is similarly obtained from
y = —sin(x).

3 Generalization to Triangular
Meshes

This section extends the shape space from the previous sec-
tion to arbitrary connected triangular meshes. We can no
longer guarantee the properties of Theorem 1, because the
dual graph of the triangular mesh M is no longer a tree.
Given two triangular meshes S(®) and S™) corresponding
to two almost isometric poses of the same non-rigid object
with known point-to-point correspondence, we know one
mesh structure M with two sets of ordered vertex coordi-
nates V() and V(! in R3. As before, we can represent S(©)
and S™) as points 5(°) and s(1) in a shape space S using the
same shape space points as in Section 2. Let s(*) be the linear
interpolation of s(°) and s(*) in S, where the linear interpo-
lation is computed as outlined in Section 2. The existence
of a mesh S) € R3 that has the underlying mesh struc-
ture M and that corresponds to s(*) is no longer guaranteed.
This can be seen using the example shown in Figure 4. Fig-
ure 4(a) and (b) show two isometric meshes S(©) and SM).
The dual graph D(M) of the mesh structure M is a sim-
ple cycle. Note that although the start and the end pose are
isometric, we cannot find an intermediate pose that satisfies
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Figure 3: Most isometric morph of a simple polygon from pose (a) to pose (i) obtained using the polygon algorithm.
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Figure 4: Example of isometric triangular meshes where
most isometric intermediate poses do not exist.

all of the interpolated normal vectors and that is isometric to
S and S,

Let M consist of n vertices. As M is a planar graph, M
has ©(n) edges and ©(n) triangles. The shape space S is de-
fined using the same shape space points as in Section 2. The
shape space S has dimension ©(n). As before, we interpo-
late linearly in shape space by interpolating the edge lengths
by a simple linear interpolation. The following observation
is illustrated in Figure 4.

Observation 1 Given a triangular mesh S with underly-
ing mesh structure M, point sV in S is uniquely determined.
However, the inverse operation, that is computing a triangu-
lar mesh SY given a point s\ € S, is ill-defined.

To compute a unique triangular mesh S(*) given a point
s() € S that linearly interpolates between 5(*) and s(1), such
that S() represents the information given in s(*) well, we use
the dual graph D(M) of M. Unlike in Section 2, D(M) is
not necessarily a tree. Our algorithm therefore operates on
a minimum spanning tree T'(M) of D(M). The tree T'(M)
is computed by assigning a weight to each arc e of D(M).
The weight of e is equal to the difference in dihedral angle
of the supporting planes of the two triangles of M corre-
sponding to the two endpoints of e. That is, we compute the
dihedral angle between the two supporting planes of the two
triangles of M corresponding to the two endpoints of e for
the start pose S(°) and for the end pose S(!). The weight
of e is then set as the difference between those two dihedral
angles, which corresponds to the change in dihedral angle
during the deformation. The weight can therefore be seen as
a measure of rigidity. The smaller the weight, the smaller
the change in dihedral angle between the two triangles dur-
ing the deformation, and the more rigidly the two triangles
move with respect to each other. As 7'(M) is a minimum
spanning tree, T'(M) contains the arcs corresponding to the
most rigid components of M.

We compute S) by traversing T(M). However, unlike
in Section 2, setting the vertex coordinates of a vertex v of
S®) using two paths from the root of T(M) to two triangles

containing v can yield two different resulting coordinates for
v. An example of this situation is given in Figure 5, where
the coordinates of v can be set by starting at root(T'(M)),
and traversing the arcs es and e3 of T'(M) or by traversing
the arcs eq, e4, and e5 of M. We call the different coordinates
computed for v in T (M) candidate coordinates of v. Our
algorithm computes the coordinates of each vertex v € S(*)
as the average of all the candidate coordinates of v.

AT

T(M)
Figure 5: A mesh M with its dual tree T'(M).

To analyze the maximum number of candidate coordinates
that can occur for a vertex in S(), let e denote an edge of
M such that D(e) is in T(M). Let v denote the vertex of
S®) opposite e in the triangle corresponding to an endpoint
of D(e), such that the coordinates of v are computed when
traversing D(e). This is illustrated in Figure 6. Let d; and d»
denote the total number of candidate coordinates of the two
endpoints of e. As we compute d;d, candidate coordinates
for v by traversing D(e), we can bound the number of candi-
date coordinates of v computed using the path through D(e)
by dids. The number of candidate coordinates for the two
endpoints of the edge corresponding to the first edge is one.
Furthermore, each vertex v can be reached by at most deg(v)
paths in T'(M), where deg(v) denotes the degree of vertex
v in M. As each path in T (M) has length at most m — 1,
where m = O(n) is the number of triangles of M, we can
bound the total number of candidate coordinates in S*) by
ey 2™ tdeg(v) = 2n2™ 1, where V is the vertex set.

Our algorithm finds a triangular mesh S®*) corresponding
to s(*) that is isometric to S(® and S() if such a mesh ex-
ists, because all of the candidate coordinates are equal in this
case and taking their average yields the desired result. If
there is no isometric mesh corresponding to s*), our algo-
rithm finds the nearly isometric morph as a unique mesh that
weighs all the evidence given by T'(M) equally. By choosing
T(M) as a minimum spanning tree based on weights repre-
senting rigidity, we allocate rigid parts of the model more
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Figure 7: Nearly isometric morph of a cycle from pose (a) to pose (i) obtained using the exponential algorithm.

Figure 6: [llustration of how to bound the number of candi-
date coordinates of v computed using the path through D e).

emphasis than non-rigid parts. The reason for this is that in
most morphs, triangles close to non-rigid joints are deformed
more than triangles in mainly rigid parts of the model. We
conclude with the following.

Proposition 2 Let SO and SV denote two isometric con-
nected triangular meshes and let s©) and s) denote the
corresponding shape space points, respectively. We can
compute a unique triangular mesh S*) representing the in-
formation given in the linear interpolation s, 0 < t < 1 of
59 and sV, in exponential time. We find a triangular mesh
S®) corresponding to s\ that is isometric to S and S
if such a mesh exists.

The algorithm can easily be extended to work for a non-
connected triangular mesh M by removing rigid transforma-
tions for each connected component of M using local coor-
dinate systems. We can then adapt the algorithm by finding
the dual graph D(M) and a minimum spanning tree 7'(M)
for each connected component of M. With this information,
we can traverse the graph as described above.

Using the proposed algorithm, we deform the model
shown in Figure 7. We aim to smoothly and isometrically
deform the pose shown in Figure 7(a) to the pose shown in
Figure 7(i). As mentioned previously, there is no isomet-
ric deformation between the poses that interpolates the tri-
angle normals. The result of our algorithm is shown in Fig-
ures 7(b)-(h). Note that all triangle normals are interpolated
and the symmetry of the model is preserved. Furthermore,
all edge lengths with the exception of the edges of the four
top faces are interpolated.

4 Conclusion

We presented a novel approach to morph efficiently between
isometric poses of triangular meshes in a novel shape space.
The main advantage of this morphing method is that the most

isometric morph is always found in linear time when trian-
gulated 3D polygons are considered. For general triangular
meshes, the approach cannot be proven to find the optimal
solution. However, this paper presents a heuristic approach
to find a morph for general triangular meshes. More efficient
heuristics are explored in the accompanying report [9].

A direction for future work is to find an efficient way of
morphing triangular meshes while guaranteeing that no self-
intersections occur. For polygons in two dimensions, this
problem was solved using an approach based on energy min-
imization [4].
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