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1 Introduction

Imagine a polyhedron surface P made from paper. We would like to know
when P can be cut and unfolded flat into the plane to a single, nonoverlapping
piece. Consider the polyhedron shown in Figure 1(a), a collection of rectan-
gular towers rising from a rectangular base. Polyhedra in this class are known
as orthogonal terrains, orthogonal because all edges are parallel to orthogonal
Cartesian axes, and terrain because the upper surface can be described by a
height field. Cutting the tops of the right, left, and back vertical sides permits
unfolding those together with the base as illustrated in (b,c) of the figure. Then

Figure 1: Unfolding the sides and base of P.

cutting the terrain top into z-strips, but leaving one “bridge” rectangle face
connecting y-adjacent x-strips, permits flattening the top as shown in Figure 2.
The result (c) is a planar shape that is the union of the faces of P, and does
not self-overlap except possibly along its boundary. Thus one could cut out the
shape in Figure 2(c) from paper with scissors and reverse the unfolding process
to form P in R3. This algorithm works for all orthogonal terrains [O’R07].

2 Edge Unfolding

What we just described is called an edge unfolding because the surface is cut
only along edges of P. This is the ideal, the holy grail of this line of research.
Alas, it is not always possible.

2.1 Nonconvex: Not Always Possible

Figure 3(a) shows an orthogonal polyhedron with no edge unfolding: it is edge-
ununfoldable. Here is why. There are six congruent larger faces, and in order
for the unfolding to be a single piece, some of them must be connected together.
Suppose the Front and Top faces F' and T remain connected in the unfolding.
Now consider the “notch” of four small square faces in the edge shared between



Figure 2: Unfolding the top faces of P into z-strips connected by y-bridges.

F and T. These small squares must fit inside a hole (the flattened notch hole)
that can only accommodate two such squares. And this is impossible.

Figure 3: (a) Edge-ununfoldable orthogonal polyhedron. (b) Edge-ununfoldable
triangulated polyhedron.

This impossibility result relies on the nonconvexity of the faces of this polyhe-
dron. In contrast, all the faces of the edge-unfoldable polyhedron in Figure 1(a)
are convex. What about polyhedra all of whose faces are convex? Several re-
searchers answered this question independently at about the same time with
edge-ununfoldable examples [Tar99] [BDEK99] [Grii02]. Figure 3(b) shows one,
a “spiked tetrahedron” [BDE103], which is especially interesting it that all of its
(36) faces are triangles. The reason this is edge-ununfoldable is not so straight-
forward. Suffice it to say that the four open “hats” that sit on the four faces
of the inscribed tetrahedron are each individually edge-ununfoldable, and there



is no way to keep a complete unfolding connected without unfolding one of the
hats to self-overlap.

So now we know that not all polyhedra, even triangulated polyhedra, have
an edge unfolding. But what about convex polyhedra?

2.2 Convex: Open

Whether or not all convex polyhedra have an edge unfolding is an open prob-
lem, unresolved since it was explicitly posed by Shephard in 1975 [She75]. The
problem has been implicit in some sense since the time of Diirer, whose 1525
book [Diir25] described many convex polyhedra by presenting them as edge un-
foldings (or “nets”). See, e.g., Figure 4. Over the years, this has become a
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Figure 4: Diirer’s edge unfolding of a truncated icosahedron.

standard presentation for convex polyhedra, and no one has yet found an exam-
ple that cannot be edge unfolding. The lack of a counterexample led Griinbaum
to conjecture that indeed all convex polyhedra can be edge unfolded [Grii91],
but it has to be admitted that the positive evidence is slim. Only the most
narrow classes of polyhedra are known to be edge-unfoldable.

Prismoids. A prismatoid is the convex hull of parallel convex polygons A and
B. To my knowledge, there is no proof that prismatoids are edge-unfoldable,



despite their apparent simplicity. Only an even more specialized subclass is
settled: prismoids. A prismoid is a prismatoid with A and B equiangular and
oriented so that corresponding edges are parallel. Thus all lateral faces of a
prismoid are trapezoids, whereas the lateral faces of a prismatoid are triangles
or trapezoids. This makes it easier to control the unfolding, and indeed a simple
“volcano” unfolding suffices, as illustrated in Figure 5. This unfolding splays the

Figure 5: Edge unfoldings of two different primsoids. The top A is attached to
the marked edge in both instances.

lateral faces around the base B, and attaches the top A to a carefully selected
side face (not every possible attachment always avoids overlap) [O’RO1].

Domes. Another narrow class of shapes that are known to be edge-unfoldable
is the “domes.” A dome is a polyhedron with a distinguished base face B, and
the property that every nonbase face shares an edge with B. Again a volcano
unfolding works, as illustrated in Figure 6. This time there is no issue of where
to place the nonexistent top, which makes it easier than prismoids, but the side
faces are arbitrary convex polygons rather than trapezoids, which makes it more
difficult.

There are now three proofs that this is a non-overlapping unfold-
ing [DO07] [BOO07] [Pin07]. We'll present the latter, which leads to a stronger
result that will be explained afterward.

Let Fy and F5 be two faces of the dome, incident to the base B at edges
e1 and ey respectively. Let IIg be the base plane containing B. If F} and Fj
are adjacent along OB at a vertex v, then it is clear that they unfold without
overlapping one another, because there is positive curvature at every vertex of
a convex polyhedron, and so a positive “angle gap” at v. So, for example, a
ray in IIp bisecting this angle gap separates the unfoldings of Fi and Fa. So
assume that F} and Fy are not adjacent along 0B. If e; is parallel to e, then



Figure 6: Unfolding of a dome.

the unfolding of F is separated by the line containing e; from the unfolding of
F5. So assume e; and ey are not parallel. Extend F) to a plane II; and extend
F5 to a plane II,. The three planes I, IIy, IIg meet at a point a that is the
intersection of the lines containing e; and e;. Let b be another point on the line
I1; N 11y, with b above IIg. See Figure 7. Choose b so that F; and F; are both

Figure 7: For i = 1,2, F; C R; C II;, and F] C R; C Ilpg.

nested in regions of Ry C II; and Ry C II; bounded by the shared segment
ab. (This choice is always possible by the convexity of the dome.) Now the
point a has positive curvature when viewed as a vertex of an enclosing convex
polyhedron bounded by Ilp, II;, and II;. Thus unfolding R; and Rs to Ilp
leaves an angle gap at a, so those unfoldings R} and R} do not overlap. And



because F; C Ry and Fy C Ry, their unfoldings F| and F do not overlap either.

Fewest Nets. Given the lack of progress on settling Griinbaum’s conjecture
that every convex polyhedron has an edge unfolding, I posed the “Fewest Nets”
problem [DOO04]: If a convex polyhedron has F faces, what is the fewest number
of connected, flat, non-overlapping pieces into which it may be cut by slicing
along edges? Although the answer may be 1, it is not obvious how to improve
on the trivial bound F', obtained by cutting out each face individually. Upper
bounds of %F and then %F were obtained before Pincu proved, using the dome
proof, that %F is an upper bound. One key observation is that the above proof
works for more than a dome: it shows that any face B of a convex polyhedron
P, together with all the faces of P incident to OB, may be cut out of P and
flattened without overlap. The proof only uses convexity and adjacency to B,
not closing to a dome. This result plus a nontrivial graph domination argument
lead to the 3F bound [Pin07]. The gap between 1 and 2F remains at this
writing.

3 General Unfolding

The restriction to cutting along the edges of the polyhedron is natural in terms
of physical models, but unnatural in terms of the intrinsic metric on the surface
(for example, points on the interior of edges have no curvature). This suggests
permitting arbitrary cuts to produce an unfolding. The only condition on the
cuts are the necessary ones: they must form a tree on the surface of P (a tree
implies a single-piece unfolding), and the tree must span the vertices (so that
all curvature is “resolved” and the resulting piece can be flattened). For lack of
a better term, we call these general unfoldings. Does every polyhedron have a
general unfolding to a single non-overlapping piece? For convex polyhedra, the
answer is: YES.

3.1 Convex: Star & Source Unfoldings

Indeed there are two general methods to unfold any convex polyhedron, com-
plements of a sort. One is easy to explain but hard to prove avoids overlap, the
other is easy to prove non-overlapping but less intuitive perhaps. We start with
the first, the so-called star unfolding.

Let © € P be a “generic” source point on the surface of a convex polyhedron
P. Draw the shortest path o(z,v;) from z to each vertex v; € P. It is not
difficult to show that x can be chosen so that o(x,v;) is unique; this is the
sense in which 2 should be generic. For example, Figure 8(a) shows the shortest
paths between the midpoint x of the bottom face and the 8 vertices of a 2x1x1
rectangular box. Now, cut all these shortest paths and unfold to produce the
star unfolding U*(z). Note that all vertices have an incident cut, so indeed this
is a spanning tree and can be flattened, as shown in (b) of the figure. What
is not so evident is that the unfolding avoids overlap. The concept of the star



unfolding was introduced by Alexandrov in 1948 [Ale50, p. 181][Ale05, p. 195]*
but only proved to avoid overlap more recently [AO92].

If P has n vertices, the unfolding has 2n vertices, n of which are images of
x, which alternate with the n images of the vertices of P. Because x can be any
generic point on the surface (and there is only a finite network of nongeneric
points to avoid), the star unfolding provides an entire class of unfoldings for a
given P.
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Figure 8: (a) 2x1x1 box. Box faces are labeled: Bt F,T,R,L,Bk for Bottom,
Front, Top, Left, Right, and Back respectively. (b) Star unfolding with respect
to x.

The second general unfolding for a convex polyhedron is the source unfolding.
Again we start with a source point z € P, but this time we follow shortest paths
o(z,y) from z to every point y € P. The closure of the set of points y such
that o(x,y) is not unique forms the cut locus C(x) C P of z. The notion of cut
locus was introduced by Poincaré in 1905 [Poi05], and since then has become a
central concept in global Riemannian geometry. Its name reflects the fact that
shortest paths are “cut” or terminated when they reach the cut locus. The cut
locus for the box example is shown in Figure 9(a). Notice that the cut locus is
indeed a spanning tree of the vertices of P (this the reason for the closure in the
definition). So cutting C(x) will enable flattening the surface. The resulting
source unfolding for the box example is shown in (b) of the figure. That this does
not overlap is clear, because one can view it as composed of straight-segment
“spokes” of length o(z,y) for each y € C(x), emanating around x at every angle.

Returning to the star unfolding, the cut locus C(x) unfolds to a tree in U*(x)
that spans the n vertices of U*(x) which are the images of the vertices of P.

3.2 Nonconvex

Now that we have seen that all convex polyhedra have (many) general unfold-
ings, it is natural to ask whether nonconvex polyhedra do also. Here again the

1 And so sometimes called an “Alexandrov unfolding” [MPOS].
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Figure 9: (a) 2x1x1 box, with cut locus C(x) marked. (b) Source unfolding
with respect to x.

answer is unknown: there is neither a counterexample, nor a general algorithm.
Progress has been made recently on orthogonal polyhedra.

3.2.1 Orthogonal Polyhedra

We saw one special class of orthogonal polyhedra that can be edge unfolded,
and one example (Figure 3(b)) of an orthogonal polyhedron that cannot be edge
unfolded. However, if we permit ourselves arbitrary cuts, it is not difficult to
unfold this edge-ununfoldable example into a number of thin, connected strips.
See Figure 10 for one way, the result of applying a variation on the algorithm
from Section 1 for orthogonal terrains.

The idea of slicing an orthogonal polyhedron into strips was explored in a
series of papers handling special classes (summarized in [O’R08]), finally culmi-
nating in an algorithm that unfolds any orthogonal polyhedron P (of genus zero)
into a single, non-overlapping piece [DFO07]. This algorithm “peels” the sur-
face into a thin strip, following a recursively-nested helical path on the surface
of P. Although the cuts are arbitrary, they are parallel to polyhedron edges,
which is natural in this context. Unfortunately, the resulting unfolding can be
exponentially thin and exponentially long: if P has n vertices and has longest
dimension 1, strips might have width 1/2°(") and stretch out to length 2°(%),

4 Summary & Prospects
Table 1 summarizes the status of the main questions on unfolding.

Of course there are many topics we have not discussed. For exam-
ple, the source and star unfoldings have been generalized to “quasigeodesic”
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Figure 10: (a) Fig. 3(b) repeated; (b) General unfolding. Red segments indicate
cuts.

Shapes || Edge Unfolding? | General Unfolding? |
convex polyhedra Open YES
nonconvex polyhedra NO Open

Table 1: Status of main questions concerning nonoverlapping unfoldings.



sources [IOV07]. They have also been generalized to higher dimensions: the
source unfolding of a convex polytope exists and produces a non-overlapping
unfolding in one lower dimension, but the star unfolding does not general-
ize [MPO0S].

There are also many more open problems than the central ones which have
been the focus of this article; see [DOO07] for a sampling. One particularly
intriguing one was posed by Connelly: When is there a “continuous blossoming,”
an unfolding that not only results in a non-overlapping planar piece, but also
avoids self-intersection throughout a continuous unfolding processes from start
to finish? This is achieved, for example, by the orthogonal terrain unfoldings
(Figures 1 and 2), but has not been explored even for the source and star
unfoldings of convex polyhedra.

Finally, let me end with two recent developments related to the open question
on edge unfolding convex polyhedra. First, classes of polyhedra are known where
almost all unfoldings overlap [BOO08]: the percentage of the spanning cut trees
that lead to non-overlap goes to zero as the number of vertices goes to infinity.
Second, Tarasov constructed an intricate example of a convex polyhedron P
whose surface may be partitioned into convex geodesic polygons in such a way
that P cannot be “edge unfolded” along the edges of this partition [Tar08]. A
geodesic polygon is a closed region on the surface bounded by a finite number
of geodesics and enclosing no vertices. So each is intrinsically flat, but may
cross edges of the polyhedron. Tarasov’s result shows that, in a sense, the edge-
unfolding conjecture is false from an intrinsic viewpoint. Whether this will help
resolve that corner of Table 1 remains to be seen.
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