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Abstract

We provide an algorithm for unfolding the surface of any orthogonal polyhedron that
falls into a particular shape class we call Manhattan Towers, to a nonoverlapping
planar orthogonal polygon. The algorithm cuts along edges of a 4×5×1 refinement
of the vertex grid.
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1 Introduction

It is a long-standing open problem to decide whether the surface of every
convex polyhedron can be edge unfolded : cut along edges and unfolded flat
to one piece without overlap [DO05][DO07]. It is known that some nonconvex
polyhedra have no edge unfolding; a simple example is a small box sitting on
top of a larger box. However, no example is known of a nonconvex polyhedron
that cannot be unfolded with unrestricted cuts, i.e., cuts that may cross the
interior of faces.

The difficulty of these questions led to the exploration of orthogonal polyhedra,
those whose faces meet at right angles and whose edges are parallel to coor-
dinate axes. Progress has been made in two directions: firstly, by restricting
the shapes to subclasses of orthogonal polyhedra, such as the “orthostacks”
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and “orthotubes” studied in [BDD+98]; and secondly, by generalizing the cuts
beyond edges but with some restrictions. In particular, a grid unfolding parti-
tions the surface of the polyhedron by coordinate planes through every vertex,
and then restricts cuts to the resulting grid. The box-on-box example men-
tioned earlier can be easily grid unfolded. Recent work on grid unfolding of
orthostacks is reported in [DM04] and [DIL04].

Because on the one hand no example is known of an orthogonal polyhedron
that cannot be grid unfolded, and on the other hand no algorithm is known
for grid unfolding other than very specialized shapes, the suggestion was made
in [DO04] to seek k1 × k2 × k3-refined grid unfoldings, where every face of the
vertex grid is further refined into a grid of edges. Positive integers k1, k2 and
k3 are associated with the amount of refinement in the x, y and z directions,
respectively; e.g., z-perpendicular faces are refined into a k1 × k2 grid, and
similarly x-perpendicular (y-perpendicular) faces are refined into a k2 × k3

(k1 × k3) grid. It is this line we pursue in this paper, on a class of shapes not
previously considered.

We define “Manhattan Tower (MT) polyhedra” to be the natural generaliza-
tion of “Manhattan Skyline polygons,” also known as rectilinear histogram
polygons [O’R87, p. 176]. Although we do not know of an unrefined grid un-
folding for this class of shapes, we prove (Theorem 2) that there is a 4× 5× 1
grid unfolding. Our algorithm peels off a spiral strip that winds first forward
and then interleaves backward around vertical slices of the polyhedron, recurs-
ing as attached slices are encountered.

2 Definitions

Let Zk be the plane {z = k}, for k ≥ 0. Define P to be a Manhattan Tower
(MT) if it is an orthogonal polyhedron such that:

(1) P lies in the halfspace z ≥ 0, and its intersection with Z0 is a simply
connected orthogonal polygon, its base polygon;

(2) For 0 ≤ k < j, P ∩ Zk ⊇ P ∩ Zj: the cross-section at higher levels is
nested in that for lower levels.

Manhattan Towers are terrains in that they meet each vertical (parallel to z)
line in a single segment or not at all; thus they are monotone with respect to
z. Fig. 1a shows an example. Manhattan Towers may not be monotone with
respect to x or y, and indeed P ∩ Zk will in general have several connected
components (see Fig. 2c), and may have holes (see Fig. 2b), for k > 0.
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Fig. 1. Manhattan Tower P.
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Fig. 2. Cross-sections of Manhattan Tower P from Fig. 1: (a) The base Z0 ∩ P is a
simple orthogonal polygon; (b) Z2 ∩ P is an orthogonal polygon with one hole; (c)
Z5 ∩ P has two disjoint components.

As an xy-plane sweeps from Z0 upwards, the cross-section of P changes at
finitely many locations. Thus a Manhattan Tower P may be viewed as con-
sisting of nested layers, with each layer the extrusion of a set of orthogonal
polygons. The base layer of P is its bottom layer, which is bounded below by
Z0 and above by the xy-plane passing through the first vertex with z > 0.
Note that, unlike higher layers, the base is simply connected, since it is an
extrusion of P ∩ Z0.

We use the following notation to describe the six types of faces, depending on
the direction in which the outward normal points: front: −y; back: +y; left:
−x; right: +x; bottom: −z; top: +z. An x-edge is an edge parallel to the x-axis;
y-edges and z-edges are defined similarly.

Clockwise (cw) and counterclockwise (ccw) directions are defined with respect
to the view from y = −∞. Later we will rotate the coordinate axes in recursive
calls, with all terms tied to the axes altering appropriately.
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3 Recursion Tree

We start with the partition Π of the base layer induced by the xz-planes
passing through every vertex of P . (The restriction of the partition to planes
orthogonal to y will facilitate processing in the ±y directions.) Such a partition
consists of rectangular boxes only (see Fig. 3a). The dual graph of Π has a
node for each box and an edge between each pair of nodes corresponding to
adjacent boxes. Since the base is simply connected, the dual graph of Π is a
tree T (Fig. 3b), which we refer to as the recursion tree. The root of T is a
node corresponding to a box (the root box ) whose front face has a minimum
y-coordinate (with ties arbitrarily broken).
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Fig. 3. (a) Partition Π of P’s base; (b) Recursion tree T .

It turns out that nearly all unfolding issues are present in unfolding single-
layer MTs, due to the nested-layer structure of MTs. In Sec. 5 we describe an
algorithm for unfolding single-layer MTs. The algorithm is then extended to
handle multiple-layer MTs in Sec. 6.

4 4× 5× 1−Refined Manhattan Towers

Fig. 4 illustrates the refinement process, using the base from Fig. 3a as an
example. The gridded base (Fig. 4a) contains additional surface edges induced
by yz-coordinate planes through each vertex. A 4 × 5 × 1 refinement of the
gridded base further partitions each horizontal grid rectangle into a 4×5 grid.
In addition to gridedges of the gridded base, the 4×5×1-refined base (Fig. 4b)
contains all surface edges induced by coordinate planes passing through each
gridpoint in the refinement. In the following we show that every 4×5×1-refined
MT can be edge-unfolded.
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Fig. 4. (a) Gridded MT base; (b) 4× 5× 1-refined MT base.

5 Single-Layer MTs

A single-layer Manhattan Tower consists of a single layer, the base layer. We
describe the unfolding algorithm recursively, starting with the base case in
which the layer is a single rectangular box.

5.1 Single Box Unfolding

Let r be a 4×5×1-gridded rectangular box and let T , R, B, L, K and F be the
top, right, bottom, left, back and front faces of r, respectively. Let s and t be
two gridpoints either adjacent along an x-edge of r (as in Fig. 5a), or vertically
aligned, with one on a top x-edge and one on a bottom x-edge of the front face
of r (as in Fig 6a). Let ys and yt be the (y parallel) gridedges incident to s and
t. The unfolding of r starts at ys and ends at yt. More precisely, this means
the following. Let ξ2d (ξ3d) denote the planar (three-dimensional) embedding
of the cut surface piece. Then ξ2d has ys on its far left and yt on its far right
(as in Figs. 5c and 6c).

The main unfolding idea is to cut the top, right, bottom and left faces so that
they unfold into a staircase-like strip, and then attach front and back faces to
it vertically without overlap. We collectively refer to the top, right, bottom and
left faces as support faces (intuitively, they support the front and back faces).
Roughly stated, ξ3d starts at ys, spirals cw around the support faces toward
the back face, crosses the back face, then spirals ccw around the support faces
back to yt. This idea is illustrated in Figs. 5 and 6. In the following we provide
the details for the case when s and t are adjacent on the top front edge of r
(Fig. 5). The case when s lies on a bottom front edge and t lies on a top front
edge of r is similar and is illustrated in Fig. 6; the case when s is on the top
and t is on the bottom is identical, when viewed through an xy-mirror.
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Fig. 5. Single box unfolding: s adjacent to t along an x-edge (a) Front view of box r
and mirror view of right (R), bottom (B) and back (K) faces, marked with unfolding
cuts (b) Faces of r flattened out (front face not shown) (c) Spiral unfolding of r;
labels identify faces containing the unfolded pieces.

As illustrated in Fig. 5, let w be the x-extent and let h be the y-extent of
r. We implicitly define the unfolding cuts by describing the surface pieces
encountered in a walk along ξ3d on the surface of r (delineated by unfolding
cuts). Starting at ys, walk cw along a rectangular strip of y-extent equal to
2h/5 (two gridfaces wide) that spirals around the support faces from ys to yt.
This spiral strip lies adjacent to the front face of r; we will refer to it as the
front spiral of ξ3d. At yt, take a left turn and continue along a rectangular
strip (orthogonal to the front spiral and right-aligned at t) of y-extent equal
to 2h/5 (two gridfaces wide) and x-extent equal to w/4 (one gridface long).
At the end of this strip, take a right turn and continue along a rectangular
strip of y-extent equal to h/5, until the right face R is met; at this point,
the strip thickens to a y-extent equal to 2h/5 (two gridfaces wide), so that
it touches the back face K of the box. The strip touching K consumes the
entire length of the right face R, plus an additional w/4 (one gridface) amount
onto the adjacent bottom face B. At the end of this bottom strip, take a left
turn and continue along a w/4-wide strip across back face K and up onto the
top face T . The piece of ξ3d traversed so far is called the forward spiral; the
remaining piece is called the backward spiral, conveying the fact that from this
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Fig. 6. Single box unfolding: s and t are vertically aligned on opposite front edges
(a) Front view of box r and mirror view of right (R), bottom (B) and back (K)
faces, marked with unfolding cuts (b) Faces of r flattened out (front face not shown)
(c) Spiral unfolding of r; labels identify faces containing the unfolded pieces.

point on ξ3d spirals ccw around the support faces back to yt. The piece of the
backward spiral adjacent to the back face is the back spiral of r. The planar
piece ξ2d (obtained by laying ξ3d out in the plane) has the staircase-like shape
illustrated in Fig 5c. Conceptually, the front face F and the back face K are
not part of the unfolding described so far; however, they can be flipped up and
attached vertically to ξ2d without overlap (see the arrowed faces in Fig. 5c), a
point to which we return in Sec. 5.4.

5.2 Recursion Structure

In general, a box r in the recursion tree has children (adjacent boxes) attached
along its front and/or back face. Call a child attached on the front a front
child and a child attached on the back a back child. In unfolding r, we unwind
the support (top, bottom, left, right) faces into a staircase-like strip just as
described for the single box. But when the front/back spiral runs alongside
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the front/back face of r and encounters an adjacent child, the unfolding of r
is temporarily suspended, the child is recursively unfolded, then the unfolding
of r resumes where it left off.

At any time in the recursive algorithm there is a forward direction, corre-
sponding to the initial spiraling from front to back (the lighter strip in Figs. 5
and 6), and an opposing backward direction corresponding to the subsequent
reverse spiraling from back to front (the darker strip in Figs. 5 and 6). When
the recursion processes a front child, the sense of forward/backward is re-
versed: we view the coordinate system rotated a half-turn about the vertical
axis so that the +y axis is aligned with the forward direction of the child’s
spiral, with all terms tied to the axes altering appropriately. In particular, this
means that the start and end unfolding points s′, t′ of a front child r′ lie on
the front face of r′, as defined in the rotated system.

For example, in Fig. 7, boxes a, b, c, d are processed from front to back. But
recursion on e, a front child of d, reverses the sense of forward, which continues
through e, f , and g. We can view the coordinate system rotated so that +y is
aligned with the arrows shown. Thus f is a back child of e, g is a back child
of f , and k a front child of g. Again the sense of forward is reversed for the
processing of k.

a g

f

e

d

c

b k

Fig. 7. Arrows indicate which direction is forward in the recursive processing.

5.3 Suturing Techniques

We employ two methods to “suture” a child’s unfolding to its parent’s unfold-
ing. The first method, same-direction suture, is used to suture all front children
to their parent. As the name suggests, this suturing technique preserves the
unwinding direction (cw or ccw) of the parent’s spiral. If there are no back
children, then a strip from the back face of the parent (K0 in Figs. 5 and 6) is
used to reverse the direction of the spiral to complete the parent’s unfolding,
as described in Sec. 5.1 for the single box. However, if the parent has one or
more back children, these children cover parts or perhaps all of the back face
of the parent, and the back face strip may not be available for the reversal. So
instead we use a second suturing method, reverse-direction suture, for one of
the back children. This suture uses the child’s unfolding to reverse the direc-
tion of the parent’s spiral, and does not require a back-face strip. We choose
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exactly one back child for reverse-direction suturing. Although any such child
would serve, for definiteness we select the rightmost child. To summarize, our
suturing rules are as follows:

(1) For every front child, use same-direction suturing.
(2) For the rightmost back child, use reverse-direction suturing.
(3) For remaining back children, use same-direction suturing.

5.3.1 Same-direction suture

We first note that a front child r′ never entirely covers the front face of its
parent box r, because the parent of r is also adjacent to the front face of r.
This is evident in Fig. 7, where e cannot cover the front face of d because
d’s parent, c, is also adjacent along that side. Similarly, k cannot cover the
“front” face of g (where here the sense of front is reversed with the forward
direction of processing) because g’s parent f is also adjacent along that side.
The same-direction suture may only be applied in such a situation of non-
complete coverage of the shared front face, for it uses a thin (one-gridface-
wide) vertical strip of that face.
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Fig. 8. Same-direction suture. (a) Front view of root box r and front child r′, with
mirror bottom, left and back views. (b) Result ξ2d of recursive unfolding.

This suture begins at the point where the parent’s spiral meets an adjacent
child as it runs alongside its front or back face. To be more specific, consider

9



the case when r′ is a front child of r, and the parent’s front spiral meets r′ as
it runs along the top of r. This situation is illustrated in Fig. 8. The same-
direction suture begins by cutting a vertical strip I off the front face of parent
r, which includes all vertical gridfaces that lie alongside child r′ (see Fig. 8a),
then it takes a bite J one gridface thick and three gridfaces long (in the x-
direction) off the bottom face of the parent. This marks the gridedge ys′ on r′

where the child’s spiral unfolding starts. The child’s spiral unfolding ends at
top gridedge yt′ of the same x-coordinate as ys′ . When the child’s unfolding is
complete, the spiral unfolding of the parent resumes at the y-gridedge it left
off (see the cut labeled γ in Fig. 8). The other cases are similar: if r′ is a back
child of r, I occurs on the back face of r; and if the parent’s front spiral meets
r′ as it runs along the bottom of r, 3 J occurs on the top face of r (see child
r4 and parent r2 in Fig. 10). It is this last case that requires a 5 refinement in
the y direction: the front spiral must be two gridfaces thick so that cutting J
off it does not disconnect it.

In Fig. 8, notice that the parent’s spiral unfolds in cw direction on top face
T before the suture begins. The parent’s cw unfolding is suspended at y-
gridedge marked γ, and after the child is unfolded, the parent’s spiral resumes
its unfolding in cw direction at γ. The unfolded surface ξ2d is shown in Fig. 8b.

5.3.2 Reverse-direction suture

This suture begins after the parent’s spiral completes its first cycle around
the support (top, right, bottom, left) faces, as illustrated in Fig. 9 for parent
r and back child r′. As in the single box case (Sec. 5.1), after a forward move
in the +y-direction, the spiral starts a second cycle around the support faces.
However, unlike in the single box case, the spiral stops as soon as it reaches
a y-gridedge of the same x-coordinate as the rightmost gridpoint u that the
parent shares with a back child. At that point, the parent’s spiral continues
with a gridface-thick strip S in the +y-direction, right-aligned at yu. Let s′

be the left corner of S on the boundary shared by r and r′. The unfolding of
r′ begins at gridedge ys′ and ends at gridedge yt′ immediately to the left of
ys′ on top of r′. When the child’s unfolding is complete, the unfolding of the
parent resumes at the gridedge it left off, with the spiral unwinding in reverse
direction.

As the name suggests, this suturing technique reverses the unwinding direction
(cw or ccw) of the parent’s spiral. In Fig. 9, notice that the parent’s spiral
unfolds in cw direction on top face T before the suture begins. After the child
is unfolded, the parent’s spiral resumes its unfolding in ccw direction at ys′ .
The result ξ2d of this unfolding is shown in Fig. 9b.

3 This only happens if r′ is a front child of r.
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Fig. 9. Reverse-direction suture. (a) Front view of faces of root box r and back child
r′, with mirror bottom, left and back views. (b) Result ξ2d of recursive unfolding.

5.4 Attaching Front and Back Faces

The spiral strip ξ3d covers all of the top, bottom, right, and left faces of the
base. It also covers the gridface-thick strips of a front/back face used by the
same-direction sutures (I in Fig. 8) and the gridface-thick strips of back faces
used to reverse the spiral direction in the base cases (K0 in Figs. 5 and 6).
The staircase structure of ξ2d (shown formally in Theorem 1) guarantees that
no overlap occurs.

We now show that remaining exposed front and back pieces that are not part
of ξ3d can be attached orthogonally to ξ2d without overlap. Consider the set
of top gridedges shared by top faces with front/back faces. These gridedges
occur on the horizontal boundaries of ξ2d as a collection of one or more con-
tiguous segments. We partition the front/back faces by imagining these top
gridedges emanate downward lightrays on front/back faces. Then all front
and back pieces are illuminated, and these pieces are attached to correspond-
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ing illuminating gridedges (see Figs. 5c, 6c, 8b and 9b). Although no interior
points overlap in the unfolding, we allow edge overlap, which corresponds to
the physical model of cutting out the unfolded piece from a sheet of paper. For
example, in Fig. 9b a left gridedge of F ′ overlaps a gridedge of ξ2d. It is not
difficult to avoid edge overlap (e.g. by making the portion of the strip caus-
ing the edge overlap narrower to separate it from F ′), but doing so requires
increasing the degree of refinement.

The next section summarizes the entire unfolding process for single-layer MTs.

5.5 Unfolding Algorithm for Single-Layer MTs

Consider an arbitrary base partitioned into rectangular boxes with xz-planes
Y0, Y1, . . . through each vertex. Select a root box r adjacent to Y0 (breaking
ties arbitrarily) and set the forward unwinding direction d to be cw. Let ys

and yt be top y-gridedges of r, as described in Sec. 5.1 for the single-box case.
Our recursive unfolding starts at root box r and proceeds as follows.

Algorithm UNFOLD(r, ys, yt)

1. Start unfolding the forward spiral piece adjacent to front face (§ 5.1).

2. Unfolding Front Children. For each front child r′ of r encountered
Determine gridedges ys′ , yt′ using same-direction suture (§ 5.3.1).
Recurse: UNFOLD(r′, ys′ , yt′).

3. If r has no back children then complete the unfolding of r (§ 5.1) and exit.
4. Determine start and end gridedges ys′ , yt′ for rightmost back child r′

using reverse-direction suture (§ 5.3.2).
5. Complete the unfolding of the forward spiral up to ys′ (§ 5.3.2).
6. Recurse: UNFOLD(r′, ys′ , yt′).
7. Continue unfolding the back spiral adjacent to back face (§ 5.1).

8. Unfolding Rest of Back Children. For each back child r′ of r encountered
Determine gridedges ys′ , yt′ using same-direction suture (§ 5.3.1).
Recurse: UNFOLD(r′, ys′ , yt′).

9. Complete the unfolding of r by spiraling back to yt (§ 5.1).
10.Hang front and back faces off the unfolded spiral. (§ 5.4).

This algorithm can be easily implemented to run in O(n2) time on a polyhe-
dron P with n vertices. Fig. 10 illustrates the recursive unfolding algorithm
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on a 3-legged H-shaped base. The unfolding starts at gridedge ys1 of root box
r1 and ends at gridedge yt1 . (Only the endpoints s1 and t1 of these two grid-
edges are marked in Fig 10.) The spiral strip encounters the boxes in the order
r1, r2, r3, r4, r5, r6 and r7, which corresponds to the ordering of the recursive
calls. For each i, ysi

and yti are gridedges of ri where the unfolding of ri starts
and ends. The algorithm uses reverse-direction suture to attach back child r2

to parent r1; same-direction suture to attach front child r3, and then r4, to
parent r2; reverse-direction suture to attach back child r5 to parent r2; and
same-direction suture to attach back child r6, and then r7, to parent r2. Note
that a refinement of 5 in the y direction is necessary on top of box r2 for this
unfolding.

x
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z

r1

r2

t3

r3

t2

s5t5

r5

s6

r6

s1t1

t6

s4

r7

r4

t4

t7

s2

s3

X0

Fig. 10. Unfolding a 3-legged H-shaped base.

Theorem 1 The UNFOLD(r, ys, yt) algorithm unfolds all boxes in the recursion
tree rooted at r into a staircase-like strip ξ2d completely contained between the
vertical lines passing through ys and yt.
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PROOF. The proof is by induction on the height k of the recursion tree
rooted at r. The base case is k = 0 and corresponds to single node trees. This
is the case illustrated in Figs. 5 and 6, which satisfy the claim of the theorem.

The inductive hypothesis is that the theorem is true for any recursion tree of
height k−1 or less. To prove the inductive step, consider a recursion tree T of
height k rooted at r. The staircase strip ξ2d(r) of r alone, ignoring all children,
fits between the vertical lines passing through ys and yt (see Figs. 5c and 6c).

Assume without loss of generality that r unfolds cw. There are two possible
placements of s and t on r: (i) s and t are on opposite top/bottom edges of the
front face of r (Fig. 6a), as placed by a same-direction suture, or (ii) s and t
are on a same top/bottom edge of r (Fig. 5a), as placed by a reverse-direction
suture. In either case, s and t are placed in such a way that no children exist
along the path extending cw from t to s on r. This means that all front children
of r are encountered during the unwinding of r’s front spiral from s to t on
r. That all back children are encountered during the unwinding of r’s back
spiral is clear: starting at the rightmost back child, the back spiral makes a
complete cycle around the back face.

Consider now an arbitrary child r′ of r in T and let T ′ be the subtree rooted
at r′. As noted above, r′ will be encountered during the unfolding of r. Let ys′

and yt′ be the gridedges on r′ where the unfolding of r′ starts and ends. The
inductive hypothesis applied on T ′ tells us that the strip ξ2d(r

′) corresponding
to T ′ fits between the vertical lines passing through ys′ and yt′ . Fig. 8b illus-
trates the same-direction suture: when ξ2d(r

′) is sutured to ξ2d(r), the strip
ξ2d(r) expands horizontally and remains contained between the vertical lines
passing through ys and yt. The reverse-direction suture has a similar behavior
(illustrated in Fig. 9b), thus completing this proof.

6 Multiple-Layer MTs

Few changes are necessary to make the single-layer unfolding algorithm from
Sec. 5.5 handle multiple-layer Manhattan Towers. In fact, the view of the cuts
used to form ξ3d from z = ±∞ in the multi-layer case is identical to that in the
single-layer unfolding. All the differences lie in vertical (z-parallel) strips used
to adjust for differing tower heights (here we use the term “tower” to refer to
a rectangular prism sitting on a box of the gridded MT base). When there
are multiple layers, the basic unit to unfold is a vertical slab S(r) consisting
of a box r in the partition Π of the base layer and all the towers that rest
on top of r (see Fig. 11). A slab is a Manhattan Skyline polygon parallel to
the xz-plane extruded in the y direction: the projection of the top faces of
the slab on the xy-plane forms a partition of the (unique) bottom face (face
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Fig. 11. Front view of single slab S(r), with mirror bottom, left and back views.

B in Fig. 11). It is here that we make essential use of the assumptions that
P ∩ Z0 is a simply connected orthogonal polygon, and the cross-sections at
higher levels are nested in those for lower levels.

The unfolding of a slab S(r) is similar to the unfolding of a single box:

(1) Select an arbitrary top face T of the slab.
(2) Select start and end gridedges ys and yt on T as in the single box case.
(3) Unfold S(r) using the procedure described in Sec. 5.1 for r.

The only difference is that a slab may have multiple left/right/top faces, caus-
ing the spiral ξ3d to cycle up and down over the towers of S(r). Fig. 11 illus-
trates this for the case when both ys and yt lie on the top front edge of S(r).
As a result, ξ2d lengthens horizontally, but still maintaining its staircase struc-
ture. As in the case of a single box, ξ3d covers all of the top, right, bottom
and left faces. The remaining front and back pieces are attached to ξ2d us-
ing the illumination scheme described in Sec. 5.4. In general, a multiple-layer
MT P consists of many slabs; in this case, we use the recursion tree for the
base of P to unfold P recursively (in this sense, single-layer and multiple-layer
MTs have identical recursion structures). The recursive unfolding algorithm is
similar to the algorithm described in Sec. 5.5 for single-layer MTs, with some
minor modifications to accommodate the existence of towers. In the following
we describe these modifications with the help of the MT example from Fig. 12,
whose base is the 3-legged H-shape single-layer MT from Fig. 10.

Let S(r′) be the slab corresponding to a child r′ of r. When the unfolding
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Fig. 12. Unfolding multiple-layer MTs. (a) Spiral ξ3d; bottom and back mirror views
are as shown in Fig. 10 (b) ξ2d, strips J1 and J2 attached above; transitions between
towers are striped; piece labels correspond to MT boxes to which they belong.

strip for S(r) first encounters a top/bottom face f of S(r′) (when viewed
from z = +∞), the unfolding of S(r) is suspended in favor of S(r′). Next we
discuss the two suturing techniques used to glue the unfolding of S(r′) to the
unfolding of S(r).

Same-direction suture. In this case, the bottom/top face opposite to f
is used to accommodate the start unfolding gridedge ys′ for S(r′); the end

16



unfolding gridedge yt′ is selected as in the single-layer case.

Consider first the case when r′ is a front child of r. If S(r′) is encountered while
ξ3d runs along the top of S(r), the suture is identical to the single-layer case: a
vertical strip across the front of S(r) is used to reach the bottom of S(r′) (see
strip I2 in Fig. 12, reaching front child S(r3)). If S(r′) is encountered while ξ3d

runs along the bottom of S(r), the suture is similar to the single-layer case,
with two simple modifications:

(1) After using a vertical strip to reach the top of S(r), a small “bite” is
taken out of the top of S(r) to reach the top of S(r′) in the single-layer
case. In the multiple-layer case, it may be necessary to extend such a bite
up/down a z-face in order to reach the point of the same x-coordinate as
ys′ . This is the case of slab S(r4) in Fig. 12: strip I3 is used to get from
the bottom of S(r2) to the top of S(r2), after which the “bite” labeled L
extends up a right face of S(r2) to reach the x-coordinate of ys4 .

(2) Unlike the single-layer case, a top bite used in the same-direction suture
is not necessarily adjacent to child S(r′). In this case, a second z-strip
(such as I4 in Fig. 12) is used to reach the top of S(r′).

The case in which r′ is a back child of r is similar and is illustrated in Fig. 12:
strips I7 and I9 (visible in Fig. 12b, but not in 12a) are used to make the
transition from S(r2) to S(r6) and S(r7) respectively, and strips I8 and I10 are
used to return to S(r2).

Reverse-direction suture. As in the same-direction suture case, a vertical
strip may be needed to make transitions between the top of a parent S(r) and
the top of a child S(r′) that uses reverse-direction suture. This is the case for
S(r3) in Fig. 12, where the vertical strip I6 (I7) is used to move from (to)
S(r2) to (from) S(r5).

The result of these alterations is that ξ2d may lengthen vertically, but it re-
mains monotone in the horizontal direction.

One final modification is necessary due to the difference in height between
towers that belong to a same slab (see for instance towers Ta and Tb of S(r2)
in Fig. 12a). In such cases it is possible that the spiral ξ3d does not completely
cover the left/right faces of the slab. We resolve this problem by thickening ξ3d

in the y-direction to cover the uncovered pieces. To be more precise, consider
the vertical strip labeled J1 in Fig. 12 (in the mirror view of right face R).
The reason J1 remains uncovered is because in unfolding S(r3), the unfolding
of S(r2) suspends at the top y-gridedge of J1 and resumes at the bottom y-
gridedge of J1. Similarly, ξ3d skips over the strip marked J2 in Fig. 12: when
the back spiral of S(r2) meets S(r6), the unfolding of S(r2) suspends at the
top y-gridedge of J2 and resumes at the bottom y-gridedge of J2.
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We resolve the problem of uncovered strips as follows. First, note that every
uncovered strip is on a left/right face (never a back/front face) of a slab. This
means that each left/right piece of ξ3d adjacent to an uncovered strip can
be thickened until it completely covers it. This results in vertically thicker
pieces in the planar embedding ξ2d of ξ3d. Because ξ2d is monotonic in the
horizontal direction, thickening it vertically cannot result in overlap. It also
cannot interfere with the hanging of the front/back faces, since front/back
faces attach along horizontal (x-parallel) sections of ξ3d, whereas the thickened
strips occur along otherwise unused vertical (z-parallel) sections of ξ3d. Thus
we have the following result.

Theorem 2 Every Manhattan Tower polyhedron can be edge-unfolded with a
4× 5× 1 refinement of each face of the vertex grid.

7 Conclusion

We have established that every 4×5×1-refined Manhattan Tower polyhedron
may be edge-unfolded. This is the second nontrivial class of objects known to
have a refined grid-unfolding, besides orthostacks. This is the first unfolding
algorithm for orthogonal polyhedra that uses recursion, something we believe
will be useful in developing algorithms to unfold more general shapes that can
branch in many directions. The algorithm works on some orthogonal polyhedra
that are not Manhattan Towers, and we are exploring how to widen its range
of applicability. Finally, we note that if the Manhattan tower base polygon is a
rectangle (rather than an arbitrary orthogonal polygon), then a nonrecursive
1×1×1 (i.e., unrefined) grid-unfolding algorithm is recently available [O’R07].
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