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Abstract

We show that cutting shortest paths from every vertex of a convex
polyhedron to a simple closed quasigeodesic, and cutting all but a short
segment of the quasigeodesic, unfolds the surface to a planar simple poly-
gon.

1 Introduction

There are two general methods known to unfold the surface P of any convex
polyhedron to a simple polygon in the plane: the source unfolding and the star
unfolding. Here we define a third general method that is based on the existence
of simple closed quasigeodesics on P .

Both the source and the star unfolding are based on a point x ∈ P . The
source unfolding cuts the cut locus of x: the closure of set of all those points
y to which there is more than one shortest path from x. Alternatively, the cut
locus is the set of all extremities (different from x) of maximal (with respect to
inclusion) shortest paths starting at x. The notion of cut locus was introduced by
Poincaré [Poi05] in 1905, and since then has gained an important place in global
Riemannian geometry; see, e.g., [Kob67] or [Sak96]. The source unfolding has
been studied for polyhedral surfaces since [SS86] (where the cut locus is called
the “ridge tree”). The star unfolding cuts the shortest paths from x to every
vertex of P . The idea goes back to Alexandrov [Ale50, p. 181];1 that it unfolds
P to a simple polygon was established in [AO92].

In this note we describe a third method to unfold any convex polyhedron to
a simple polygon, answering a question raised in [DO07, p. 307].
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Quasigeodesics. A geodesic is a locally shortest path on a smooth surface.
A quasigeodesic is a generalization that extends the notion to nondifferentiable,
and in particular, to polyhedral surfaces. Let Γ be any directed curve on a
convex surface P , and p ∈ Γ be any point in the relative interior of Γ, i.e., not
an endpoint. Let λ(p) be the total face angle incident to the left side of p ∈ Γ,
and ρ(p) the angle to the right side. If Γ is a geodesic, then λ(p)=ρ(p) = π. A
quasigeodesic Γ loosens this condition to λ(p) ≤ π and ρ(p) ≤ π, again for all
p interior to Γ [AZ67, p. 16] [Pog73, p. 28]. Quasigeodesics can pass through
vertices of P , whereas a geodesic can never include a vertex (because such a
path is never locally shortest). A closed quasigeodesic is a closed curve on P
that is quasigeodesic throughout its length. Pogorelov showed that any convex
polyhedron P has at least three simple closed quasigeodesics [Pog49], extending
the celebrated earlier result of Lyusternik-Schnirelmann showing that the same
holds for geodesics on differentiable convex surfaces.

Although both the source and the star unfolding have found applica-
tion [AAOS97], there is an impediment to employing this new quasigeodesic
unfolding in any application: there is no algorithm known that will find a sim-
ple closed quasigeodesic in polynomial time: Open Problem 24.2 [DO07, p. 374].

Curvature. Let γ(p) be the curvature at any point p ∈ P , i.e., the angle
deficit : 2π minus the sum of the face angles incident to p. The curvature is only
nonzero at vertices of P ; at each vertex it is positive because P is convex. By the
Gauss-Bonnet theorem, a simple closed geodesic partitions the curvature into
2π in each “hemisphere” of P . For quasigeodesics that pass through vertices,
the curvature in each half is ≤ 2π.

Let Q be a simple closed quasigeodesic on P , and let the two surface “halves”
delimited by Q be P1 and P2, with Q = P1 ∩ P2.

2 Quasigeodesic Unfolding

We now describe the unfolding procedure, which consists of three main steps
after identifying a simple closed quasigeodesic Q:

1. Select shortest paths sp(v) from each v ∈ Pi to Q.

2. Cut along sp(v) and flatten each half.

3. Cut along Q, joining the two halves at an uncut segment s.

We will use a cube as an illustrative example throughout. LetQ be the closed
quasigeodesic (v0, v5, v7) on the surface of the cube labeled as in Figure 1. There
is π angle incident to the right at v5, and π/2 incident to the left; and similarly
at v0 and v7. At all other points p ∈ Q, λ(p)=ρ(p) = π. Thus Q is indeed a
quasigeodesic. We will call the right half (including v1) P1, and the left half P2.
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Figure 1: Cube and quasigeodesicQ = (v0, v5, v7). Shortest paths sp(vi) marked
in red.

2.1 Shortest Paths.

The unfolding begins by cutting shortest paths from each vertex to Q. For any
vertex v ∈ Pi (and not on Q), select one shortest path sp(v) from v to a point
q(v) ∈ Q that realizes the shortest distance in Pi between v and (any point
of) Q. (There could be several shortest paths tied for this minimum; sp(v) is
chosen arbitrarily among these.)

In Figure 1, the paths from {v1, v3, v6} are uniquely shortest. From v2 there
are three paths tied for shortest, and from v4 also three are tied.

A central fact that enables the construction is this key lemma from [IIV07,
Cor. 1]:

Lemma 1 Let Q be a simple closed quasigeodesic on a convex surface S, and
p any point of S not on Q. Then sp(p) is the unique shortest path from p to
q(p), and it is orthogonal to Q.

The orthogonality is evident in Figure 2(a) below. (Note that this lemma
does not say that the shortest path from p to Q is unique, but that, among
those that are tied for shortest, each is the unique shortest path between its two
endpoints.)

A second fact we need concerning these shortest paths is that they are dis-
joint:

Lemma 2 Any two shortest paths sp(v1) and sp(v2) are disjoint, for distinct
vertices v1, v2 ∈ P1.

We defer the proof (which is not difficult) to Section 3. The lemma assures that
the cuttings along sp(v) do not interfere with one another.
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2.2 Flattening the Halves.

The next step is to flatten each half P1 and P2 (independently) by suturing in
additional surface along each sp(v) path. The basic idea goes back to Alexandrov
[Ale05][p. 241, Fig. 103], and was used also in [IV08]. Let L be the length
| sp(v)| of a shortest path, and let γ = γ(v) > 0 be the curvature at v. We
glue into sp(v) = (v, q(v)) the isosceles triangle 4 with apex angle γ gluing
to v, and incident sides of length L gluing along sp(v). This is illustrated in
Figure 2, where we show the faces incident to Q in a planar development in (a)
and (c), and after gluing in the triangles in (b) and (d). We display this in the
plane for convenience of presentation; the triangle insertion should be viewed
as operations on the manifolds P1 and P2, each independently.

v5=q(v2)q(v1)v0 v0

v6

v7

v3

v2 v2v2v2

v1

q(v6) q(v3)

v5

v5

v6

v3

v2

v1

v0

v7

v0

v0

v4

v7

v5q(v4)

(a) (b)

(c) (d)

v0

v4

v5

v7

Figure 2: (a,b) Flattening P1 by insertion of triangles (red) along the shortest
paths sp(vi). (c,d) Flattening P2.

This procedure only works if γ < π, for γ becomes the apex of the inserted
triangle 4. If γ ≥ π, we glue in two triangles of apex angle γ/2, both with
their apexes at v.2 Slightly abusing notation, we use 4 to represent these two
triangles together. By the Gauss-Bonnet theorem, the total curvature in Pi is
≤ 2π, and in fact we must have γ < 2π for any one vertex v (else there would
be no face angle at v), so γ/2 < π and this insertion is indeed well defined.

2 One can view this as having two vertices with half the curvature collocated at v.
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We should remark that an alternative method of handling γ ≥ π would be
to simply not glue in anything to the at most one vertex v with γ(v) ≥ π, in
which case we still obtain the lemma below (for a different P ′

i ), leading to the
exact same unfolding.

Now, because γ is the curvature (angle deficit) at v, gluing in4 there flattens
v to have total incident angle 2π. Thus v disappears from Pi (and two new
vertices are created along Q).

Call the new manifolds with boundary after insertion of all 4’s P ′
1 and P ′

2.

Lemma 3 P ′
i is a planar convex polygon.

Proof: P ′
i is clearly a topological disk: Pi is, and the insertions of4’s maintains

it a disk. At every interior point of P ′
i , the curvature is zero by construction.

So the interior is flat. It only remains to show that the surface angle at each
point of the boundary is convex. This follows from the orthogonality of sp(v)
guaranteed by Lemma 1, as the base angle of the inserted triangle(s) is π/2−γ/2
for γ < π, or π/2 − γ/4 for γ ≥ π (see Figure 3), so the new angle is smaller
than π by γ/2 or γ/4. Thus P ′

i is a planar convex polygon.

γ

π/2−γ/2

γ/2

π/2−γ/4

(a) (b)

Figure 3: Lemma 3: (a) γ < π; (b) γ ≥ π.

See Figure 2(b,d). Note that, when the total curvature in Pi is 2π then the
straight development of Q is turned 2π by the 4 insertions, as in (b) of the
figure. When the total curvature in Pi is < 2π, the development of Q is not
straight, but the 4 insertions turn it exactly the additional amount needed to
close it to 2π, as in (d) of the figure.

2.3 Joining the Halves.

The third and final step of the unfolding procedure is to select a segment s of
Q whose interior contains no v nor q(v), and to cut all of Q except for s. In our
example, we choose s = (v5, q(v6)). Then lay out s horizontal in the plane, and
arrange the convex polygons P ′

i above and below, joined along s. Because they
are convex and separated by the line through s, they do not overlap. Removing
the inserted triangles 4 results in an unfolding of the original P . See Figure 4.
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Figure 4: Unfolding of the cube shown in Figure 1. The top and bottom “halves”
derive from the convex polygons shown in Figure 2 (d) and (b) respectively.
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It should be clear now that this procedure works for any convex polyhedron:

Theorem 4 Let Q be a simple closed quasigeodesic on a convex polyhedron
surface P . Cutting shortest paths from every vertex to Q, and cutting all but
a segment s of Q free of vertices and shortest path endpoints, unfolds P to a
simple planar polygon.

As s is choosen arbitrarily, the position of P ′
i with respect to the support line

of s depends on this choice.

3 Proof of Lemma 2

Lemma 2 Any two shortest paths sp(v1) and sp(v2) are disjoint, for distinct
vertices v1, v2 ∈ P1.

Proof: Suppose for contradiction that at least one point x is shared: x ∈
sp(v1) ∩ sp(v2). We consider four cases: one shortest path is a subset of the
other, the shortest paths cross, the shortest paths touch at an interior point but
do not cross, or their endpoints coincide.

1. sp(v2) ⊂ sp(v1). Then sp(v1) contains a vertex v2 in its interior, which
violates a property of shortest paths [SS86, Lem. 4.1].

2. sp(v1) and sp(v2) cross properly at x. It must be that |(x, q(v1))| =
|(x, q(v2))|, otherwise both paths would follow whichever tail is shorter.
But now it is possible to shortcut the path in the vicinity of x via σ as
shown in Figure 5(a), and the path (v1, σ, q(v2)) is shorter than sp(v1).

3. sp(v1) and sp(v2) touch at x but do not cross properly there. Then there is
a shortcut σ to one side (the side with angle < π), as shown in Figure 5(b).

4. q(v1) = q(v2). Then from Lemma 1, we know the two paths are orthogonal
to the quasigeodesic Q. If we are not in the previous case, then it must
be that there is an angle α > 0 separating the paths in a neighborhood of
the common endpoint; see Figure 5(c). Then Q has more than π angle to
one side at this point, violating the definition of a quasigeodesic.

4 Further Examples

We illustrate the unfolding procedure on two more Platonic solids. Figure 6
shows one half of an unfolding of an octahedron; the other half is symmetric.

Figure 7 shows one half of an unfolding of a dodecahedron; the other half is
again symmetric.
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q(v1)=q(v2)

α
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σ σ

Figure 5: Lemma 2: (a) paths cross; (b) paths touch at an interior point;
(c) paths meet at endpoint.
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Figure 6: Cutting from v to the closed geodesic Q that forms a square at the
plane of symmetry of an octahedron (a). The convex polygon from Lemma 3 (c)
is the same for both halves P1 and P2.
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Q
(a)

(d)
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(b)

Figure 7: Q here is a geodesic; it includes no vertices, as is evident in the
layout (b). The convex polygon from Lemma 3 is shown in (d).
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5 Future Work

Given the apparent computational difficulty of finding a simple closed quasi-
geodesic, it would be useful to replace Q in Theorem 4 with a more easily
computed closed curve.
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