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Abstract

We establish that certain classes of simple, closed, polygonal curves on
the surface of a convex polyhedron develop in the plane without overlap.
Our primary proof technique shows that such curves “live on a cone,” and
then develops the curves by cutting the cone along a “generator” and flat-
tening the cone in the plane. The conical existence results support a type
of source unfolding of the surface of a polyhedron, described elsewhere.

1 Introduction

Nonoverlapping development of curves plays a role in unfolding polyhedra with-
out overlap [2]. Any result on simple (non-self-intersecting) development of
curves may help establishing nonoverlapping surface unfoldings. One of the
earliest results in this regard is [8], which proved that the left development of
a directed, simple, closed convex curve does not self-intersect. The proof used
Cauchy’s Arm Lemma. Here we extend this result to a wider class of curves
without invoking Cauchy’s lemma. Our results support a “source unfolding”
based on these curves, described in [6].

Development. Let C be a simple, closed, polygonal curve on the surface of a
convex polyhedron P. For any point p ∈ C, let L(p) be the total surface angle
incident to p at the left side of C, and R(p) the angle to the right side. The left
development of C with respect to x ∈ C is an isometric drawing Cx of C in the
plane, starting from x, such that the angle to the left of Cx at every point in the
plane is L(p). The right development is defined analogously. The left and right
developments of a curve are different if C passes through one or more vertices
of P . And in general the development depends upon the cut point x.
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†Department of Computer Science, Smith College, Northampton, MA 01063, USA.

orourke@cs.smith.edu.
‡Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764,

RO-014700 Bucharest, Romania. Costin.Vilcu@imar.ro.

1



Curve Classes. To describe our results, we introduce several different classes
of curves on convex polyhedra, which exhibit different behavior with respect to
living on a cone. Define a curve C to be convex (to the left) if the angle to the
left is at most π at every point p: L(p) ≤ π; and say that C is a convex loop if
this condition holds for all but one exceptional loop point x, at which L(x) > π
is allowed. Analogously, define C to be a reflex curve if the angle to one side
(we consistently use the right side) is at least π at every point p: R(p) ≥ π; and
say that C is a reflex loop if this condition holds for all but an exceptional loop
point x, at which R(x) < π.

The loop versions of these curves arise naturally in some contexts. For
example, extending a convex path on P until it self-intersects leads to a convex
loop.

Summary of Results.

1. Every convex curve C left-develops to Cx without intersection, for every
cut point x. Here we give a new proof for the result in [8].

2. There are convex loops C such that, for some x, the left-development Cx

self-intersects. However, for every convex loop, there exists a y for which
Cy left-develops without overlap.

3. Every reflex curve C right-develops to Cx without intersection, for every
cut point x.

4. Every reflex loop C whose other side is convex, right-develops to Cx with-
out intersection, for every cut point x.

These results may be combined to reach conclusions about the left- and right-
developments of the same curve: Every convex curve C that passes through
at most one vertex, both left-develops, and right-develops without overlap, for
every cut point x.

Living on a Cone. Our primary proof technique relies on the notion of a
curve C “living on a cone,” which is based on neighborhoods of C. An open
region NL is a vertex-free left neighborhood of C to its left if it includes C as its
right boundary, and it contains no vertices of P. In general C will have many
vertex-free left neighborhoods, and all will be equivalent for our purposes. We
say that C lives on a cone to its left if there exists a cone Λ and a neighborhood
NL so that NL may be embedded isometrically onto Λ, and encloses the cone
apex a.

A cone is an unbounded developable surface with curvature zero everywhere
except at one point, its apex, which has total incident surface angle, the cone
angle, of at most 2π. Throughout, we will consider a cylinder as a cone whose
apex is at infinity with cone angle 0, and a plane as a cone with apex angle 2π.
We only care about the intrinsic properties of the cone’s surface; its shape in
R3 is not relevant for our purposes. So one could view it as having a circular
cross section, although we will often flatten it to the plane.

2



We should remark that the cone on which a curve C lives has no direct
relationship (except in special cases) to the surface that results from extending
the faces of P crossed by C.

a

C

ΛL

g

x
NL

Figure 1: A 4-segment curve C that lives on cone ΛL to its left. One possible
NL is shown, and a generator g = ax is illustrated.

To say that NL embeds isometrically into Λ means that we could cut out
NL (including its right boundary C) and paste it onto Λ with no wrinkles or
tears: the distance between any two points of NL on NL ∩ P is the same as it
is on NL ∩ Λ. See Figure 1. We say that C lives on a cone to its right if NR

embeds isometrically on the cone, where NR is a vertex-free right neighborhood
of C such that the cone apex a is inside (the image of) C. We will call the
cones to the left and right of C, ΛL and ΛR respectively. We will see that all
four combinatorial possibilities occur: C may not live on a cone to either side,
it may live on a cone to one side but not to the other, it may live on different
cones to its two sides, or live on the same cone to both sides.

Cone Generators and Visibility. A generator of a cone Λ is a ray starting
from the apex a and lying on Λ. A curve C that lives on Λ is visible from the apex
if every generator meets C at one point. Although it is possible for a curve to
live on a cone but not be visible from its apex, when we can establish visibility
from the apex, then cutting C at any point x ∈ C will develop Cx without
overlap, because cutting Λ along g develops the cone and C simultaneously.
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2 Preliminary Tools and Lemmas

C partitions P into two half-surfaces. We call the left and right half-surfaces
PL and PR respectively, or P if the distinction is irrelevant. We view each
half-surface as closed, with boundary C.

Curvature. The curvature ω(p) at any point p ∈ P is the “angle deficit”: 2π
minus the sum of the face angles incident to p. The curvature is only nonzero at
vertices of P; at each vertex it is positive because P is convex. The curvature
at the apex of a cone is similarly 2π minus the cone angle.

Define a corner of curve C to be any point p at which either L(p)6=π or
R(p)6=π. Let c1, c2, . . . , cm be the corners of C, which may or may not also be
vertices of P. C “turns” at each ci, and is straight at any noncorner point.
Let αi = L(ci) be the surface angle to the left side at ci, and βi = R(ci) the
angle to the right side. Also let ωi = ω(ci) to simplify notation. We have
αi + βi + ωi = 2π by the definition of curvature. These definitions will be used
to further detail the relationships among the curve classes in Section 5.

The Gauss-Bonnet Theorem. We will employ this theorem in two forms.
The first is that the total curvature of P is 4π: the sum of ω(v) for all vertices
v of P is 4π. It will be useful to partition the curvature into three pieces. Let
ΩL(C) = ΩL be the total curvature strictly interior to PL, ΩR the curvature
to the right, and ΩC the sum of the curvatures on C (which is nonzero only at
vertices of P). Then ΩL + ΩC + ΩR = 4π.

The second form of the Gauss-Bonnet theorem relies on the notion of the
“turn” of a curve. Define τL(ci) = τi = π − αi as the left turn of curve C at
corner ci, and let τL(C) = τL be the total (left) turn of C, i.e., the sum of τi
over all corners of C. Thus a convex curve has nonnegative turn at each corner,
and a reflex curve has nonpositive turn at each corner. Then τL + ΩL = 2π,
and defining the analogous term to the right of C, τR + ΩR = 2π.

Alexandrov’s Gluing Theorem. In our proofs we use Alexandrov’s theo-
rem [1, Thm. 1, p. 100] that gluing polygons to form a topological sphere in such
a way that at most 2π angle is glued at any point, results in a unique convex
polyhedron.

Vertex Merging. We now explain a technique used by Alexandrov, e.g., [1,
p. 240]. Consider two vertices v1 and v2 of curvatures ω1 and ω2 on P, with
ω1 + ω2 < 2π, and cut P along a shortest path γ(v1, v2) joining v1 to v2.
Construct a planar triangle T = v̄′v̄1v̄2 such that its base v̄1v̄2 has the same
length as γ(v1, v2), and the base angles are equal to 1

2ω1 and respectively 1
2ω2.

Glue two copies of T along the corresponding lateral sides, and further glue the
two bases of the copies to the two “banks” of the cut of P along γ(v1, v2). By
Alexandrov’s Gluing Theorem, the result is a convex polyhedral surface P ′. On
P ′, the points v1 and v2 are no longer vertices because exactly the angle deficit
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at each has been sutured in; they have been replaced by a new vertex v′ of
curvature ω′ = ω1 + ω2 (preserving the total curvature). Figure 2(a) illustrates
this. Here γ(v1, v2) = v1v2 is the top “roof line” of the house-shaped polyhedron
P. Because ω1 = ω2 = 1

2π, T has base angles 1
4π and apex angle 1

2π. Thus the
curvature ω′ at v′ is π. (Other aspects of this figure will be discussed later.)

Note this vertex-merging procedure only works when ω1+ω2 < 2π; otherwise
the angle at the apex v̄′ of T would be greater than or equal to π.

v1

v2

v'

π/2

π/2

π/4

v'

π

a

b

c

d

a

b c

d

(a) (b)
3

√2

Figure 2: (a) C = (a, b, c, d) is a convex curve with angle 3
4π to the left at each

vertex. The curvature at v1 and at v2 is 1
2π. (b) Cutting along the generator

from v′ through the midpoint of ad and developing C shows that it lives on a
cone with apex angle π at v′. (Base of P is 3×

√
2.)

Lemma 1 A curve C that lives on a cone Λ (say, to its left) uniquely deter-
mines that cone.

Proof: Suppose that C lives on two cones Λ and Λ′. We will show that the
regions of these two cones bounded by C are isometric. First note that the apex
curvature of both Λ and Λ′ is ΩL, the total curvature inside and left of C. This
follows from the Gauss-Bonnet theorem: τL + ΩL = 2π, and τL is the same
whether on Λ or Λ′. Let x ∈ C be a point of C that has a tangent t to one
side, and let x1 be a point in the plane and t1 a direction vector from x1. Roll
Λ in the plane so that x and t coincide with x1 and t1. Continue rolling until
x is encountered again; call that point of the plane x2. The resulting positions
of x1 and x2 are the same as would be produced by cutting the cone along a
generator ax.

If x1 = x2, then both Λ and Λ′ are planar and so isometric. So assume
x1 6= x2. If ΩL ≥ π, then the cone angle α ≤ π, as in Figure 3(b). The segment
x1x2 determines two isosceles triangles with apex angle α, only one of which can
correspond to the left side of C. Analogously, if ΩL < π, then x1x2 determines
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ΩL

Figure 3: (a) Cone Λ on which C lives. (b) Positions of x1 and x2 after cutting
open Λ along ax.

a unique isosceles triangle of apex angle ΩL, the equal sides of which bound,
together with C, the region of Λ to the left of C. Note that C doesn’t actually
depend on the cones Λ and Λ′, but only on the left neighborhood of C in P , and
hence this development is the same for Λ and Λ′. So, up to planar isometries,
the planar unfolding of the cone supporting C is unique, and thus the cone itself
and the position of C on it are unique up to isometries.
Note that this lemma does not assume that C is convex; rather it holds for any
closed curve C.

3 Convex Curves

Convexity of Half-Surfaces. In order to apply vertex merging, we use a
lemma to guarantee the existence of a pair to merge. We first remark that it
is not the case that every half-surface P ⊂ P bounded by a convex curve C is
convex in the sense that, if x, y ∈ P , then a shortest path γ of P connecting x
and y lies in P .

Example 1. Let P be defined as follows. Start with the top half of a regular
octahedron, whose four equilateral triangle faces form a pyramid over a square
base abcd. Remove the base and flex the pyramid by squeezing a toward c
slightly while maintaining the four equilateral triangles, a motion that separates
b from d. Define P to be the convex hull of these four moved points a′b′c′d′ and
the pyramid apex. Let C = (a′, b′, c′, d′) and let P be the half-surface including
the four equilateral triangles. Then a′ and c′ are in P , but the edge a′c′ of P,
which is the shortest path connecting those points, is not in P : it crosses the
“bottom” of P.

Although P may not be convex, P is relatively convex in the sense that
it is isometric to a convex half-surface: there is some P# and a half-surface
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P# ⊂ P# such that P is isometric to P# and P# is convex.

Lemma 2 Every half-surface P ⊂ P bounded by a convex curve C is relatively
convex, i.e., P is isometric to a half-surface that contains a shortest path γ
between any two of its points x and y. More particularly, if neither x nor y is
on C, then the shortest path γ contains no points of C. If exactly one of x or y
is on C, then that is the only point of γ on C.

Proof: We glue two copies of P along ∂P = C. Because C is convex, Alexan-
drov’s Gluing Theorem says the resulting surface is isometric to a unique poly-
hedral surface, call it P#. Because P# has intrinsic symmetry with respect to
C, a lemma of Alexandrov [1, p. 214] applies to show that the polyhedron P#

has a symmetry plane Π containing C.
Now consider the points x and y in the upper half P of P#, at or above

Π. If γ is a shortest path from x to y, then by the symmetry of P#, so is its
reflection γ′ in Π. Because shortest paths on convex surfaces do not branch, γ
must lie in the closed half-space above Π, and so lies on P .

If neither x nor y are on C, they are strictly above Π, and γ must be as well
to avoid a shortest-path branch. If, say, x ∈ C but y 6∈ C, and if γ touched C
elsewhere, say at z, then from y to x we have a shortest path γ and another
shortest path, composed of the arc of γ from y to z and the arc of γ′ from z
to x, hence we would have a shortest-path branch at z. If both x and y are on
C, then either γ meets C in exactly those two points, or γ ⊂ C, for the same
reason as above.

Lemma 3 Let C be a convex curve on P, convex to its left. Then C lives on a
cone ΛL to its left side, whose apex a has curvature ΩL.

Proof: By the Gauss-Bonnet theorem, τL + ΩL = 2π. Because τL ≥ 0 for
a convex curve, we must have ΩL ≤ 2π. Let V be the set of vertices of the
half-surface PL not on C.

Suppose first that ΩL < 2π. If |V | = 1, then PL is a pyramid, which is
already a cone. So suppose |V | ≥ 2, and let v1 and v2 be any two vertices
in V . Lemma 2 guarantees that a shortest path γ between them is in P#

L

and disjoint from C. This shortest path corresponds to a geodesic γ in PL.
Perform vertex merging along γ, resulting in a new vertex v′ whose curvature
is the sum of that of v1 and v2. Note that merging is always possible, because
ω1 + ω2 ≤ ΩL < 2π. Also note that v′ is not on C, by Lemma 2. Let NL be
some small left neighborhood of C in PL. Then NL is unaffected by the vertex
merging: neither v1 nor v2 is in NL because it is vertex free, and NL may be
chosen narrow enough (by Lemma 2) so that no portion of γ is in NL. Replace
V by (V \ {v1, v2}) ∪ {v′}.

Continue vertex merging in a like manner between vertices of V until |V | = 1,
at which point we have C and NL living on a cone, as claimed.

If ΩL = 2π, then the last step of vertex merging will not succeed. However,
we can see that a slight altering of the two glued triangles so that ΩL < 2π will
result in the cone apex approaching infinity, as follows. Cut along a geodesic
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between the two vertices, say vi and vi+1, and insert double triangles of base
angles 1

2ωi and respectively 1
2ωi+1−εn, with εn > 0 and limn εn = 0. And so in

this case, C and NL live on a cylinder, which we earlier defined as a degenerate
cone.

Lemma 4 A convex curve C on P is visible from the apex a of the unique cone
Λ on which it lives to its convex side.

Proof: Let z be a closest point of C to a. Then az must be orthogonal to C at
p, by [4, Cor. 1] (repeated in [5, Lem. 1]). Now cut Λ along az, which clearly
cannot intersect C except at z. Continue cutting around C, and call the result
P . Insert an isosceles “curvature triangle” at the cut az with apex angle ω(a).
This flattens P to a planar domain with a convex boundary, convex because
the angles at the two images z1 and z2 of z are each less than π; see Figure 4.
Visibility of all of C from a follows.

a

z
1

z
2

C

ω

Figure 4: All of C is visible from a. Here z1 and z2 are images of z when the
cone is cut along az.

A different proof of this lemma is given in [9, Lem. 4].

Example 2. In Figure 2, the two vertices inside C, of curvature 1
2π each, are

merged to one of curvature π, which is then the apex of a cone on which C lives.

Example 3. Figure 5(a) shows an example with three vertices inside C. P is a
doubly covered flat pentagon, and C = (v4, v5, v4) is the closed curve consisting
of a repetition of the segment v4v5. C has π surface angle at every point to
its left, and so is convex. The curvatures at the other vertices are ω1 = π and
ω2 = ω3 = 1

2π. Thus ΩL = 2π, and the proof of Lemma 3 shows that C lives on
a cylinder. Following the proof, merging v1 and v2 removes those vertices and
creates a new vertex v12 of curvature 3

2π; see (b) of the figure. Finally merging
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v12 with v3 creates a “vertex at infinity” v123 of curvature 2π. Thus C lives on
a cylinder as claimed. If we first merged v2 and v3 to v23, and then v23 to v1,
the result is exactly the same, although not obviously so.

v3

v5v4

v2

v1

v3

v5v4 v5v4

v12

v123

(a) (b) (c)

Figure 5: (a) A doubly covered flat pentagon. (b) After merging v1 and v2.
(c) After merging v12 and v3.

We summarize the preceding lemmas in a theorem:

Theorem 1 Let C be a left-convex curve on P. Then C lives on a unique cone
ΛL to its left side, whose apex a has curvature ΩL, and so has cone apex angle
2π − ΩL. C is visible from the apex a of Λ.

4 Convex Loops

Convex Loops and Cones. We first show that the technique that proved
successful for convex curves cannot apply to all convex loops: not every convex
loop lives on a cone. Consider the polyhedron P shown in Figure 6(a), which is
a variation on the example from Figure 2(a). Here C = (a, b, b′, x, c′, c, d) is a
convex loop, with loop point x. The cone on which it should live is analogous
to Figure 2(b): vertex merging of v1 and v2 again produces the cone apex v′

whose curvature is π. But C does not “fit” on this cone, as Figure 6(b) shows;
the apex a = v′ is not inside C.

Overlapping development of convex loop. In light of the preceding neg-
ative result, it is perhaps not surprising that there are convex loops C and
points x ∈ C such that Cx left-develops with overlap. Indeed Figure 7 shows
an example where x is the loop point.

Despite the negative result illustrated above, we can show that there always
exists some cut point y that develops a convex loop without overlap.
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v'

a
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(a) (b)

a

c

x

x

b

d

b'

c'

v1

v2

b' c'3
3

β

Figure 6: (a) A convex loop C that does not live on a cone. (b) A flattening of
the cone on which it should live. (Base of P is 3× 3.)

x

x1 x2

a1

a2

a1
a2

(a)

(b) y1 y2

a1
a2

(c)

x

y

Figure 7: (a) P with convex loop C. (b) Cx overlaps when cut at loop point x.
(b) Cy does not overlap when cut at y.
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Lemma 5 Every convex loop C contains a point y different from its loop point
x, such that Cy left-develops without overlap.

Proof: Let τ1 and τ2 be the tangent directions at x pointing into C.
Case 1. Assume first there exists a shortest path γ = xy from x to some

y ∈ C whose tangent direction at x lies between τ1 and τ2; see Figure 8(a).
Then γ splits P = PL into two convex regions Pi sharing a common boundary
γ. We perform vertex merging within each Pi, just as in the proof of Lemma 3,
producing two cones Λi (with apices ai), sharing a common boundary γ.

τ1

C

N1=N2

T1 T2

τ2

x

y

γ

β π−β
a2

R1

R2

x

γ

(a) (b)

C2

≤ (π−β)+π/2

N2 y'

y

P1

P2

F2F1

F2

Figure 8: Case 1. (a) PL = P1 ∪P2 on P: γ = xy is a shortest path. (b) Planar
development of cone Λ2.

Now cut each cone along the generators aiy, and unfold both cones, joining
them along γ. We now describe the geometry of this planar layout P , and show
that Cy is thereby developed without overlap.

Let T1 and T2 be rays tangent to C at y; if y is not a corner of C, then T1

and T2 are collinearly opposing; we will assume this, as it is only easier if y is a
corner. This situation is illustrated on P in Figure 8(a). Now we describe the
planar layout, using over-bars to represent elements embedded in the plane; see
Figure 8(b).

The two cone unfoldings Λi are joined along γ. Let N1 and N2 be rays from
y, making with γ angles β+π/2 and (π−β)+π/2, respectively. Informally these
correspond to “normals” pointing to the reflex side of C at y. We stress that N1

and N2 are defined uniquely by their angles with γ, and not relative to T1 and
T2. We have N1 = N2 when y is not a corner of C. Let F2 be the ray tangent
to P at x, directed opposite to τ1, and define F1 similarly. Define Ri to be the
regions of the plane bounded by Ni∪γ∪Fi. The angle at y in R1 is β+π/2, and
that in R2 is (π − β) + π/2. Let y′ be the second image of y in Λ2 that results
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from cutting a2y, so that 4a2yy′ is an isosceles “curvature triangle” apexed at
a2 with angle ω(a2) there. First note that ∠a2yx < π − β because that is the
angle at y formed between γ and T2 on P. The angle at the base of the isosceles
triangle 4a2yy′ is at most π/2. Therefore the angle ∠y′yx < (π − β) + π/2, as
marked in Figure 8(b). This shows that y′ ∈ R2. Thus the curve C ′2 = C2 ∪ yy′
remains in R2. This curve C ′2 is itself either convex, or a convex loop (with loop
point y). In the former case, Corollary 4 in [5] shows that the flat surface it
bounds is planar and so without overlappings. In the second case, we can split
the flat surface it bounds into two flat, convex domains, each of which is planar,
whence their join is planar. This implies that C ′2 is without overlappings, and
hence so is C2.

Applying analogous reasoning to Λ1 and C1 yields the claim that C = C1∪C2

does not overlap.
Case 2. Assume now that Case 1 does not hold. This means that all

shortest paths falling between τ1 and τ2 do not reach C, i.e., they hit the cut
locus with respect to x first. The cut locus X = X(x) is the closure of the locus
of points with more than one shortest path to x. X is a tree (it is also known
as the “ridge tree”) with its leaves at the vertices of P. The cut locus plays
a role in related work, including our work in [5, 6], but here we only need its
most basic properties. In particular, we established in [5] that the branch of X
that is the target of the shortest paths between τ1 and τ2 meets C in a single
point w. Then there are two shortest paths from x to w, enclosing that branch,
which start at or outside of τ1 and τ2. These two segments determine what we
called a “fat digon” D, “fat” because it consumes all the potential γ segments
that would keep us in Case 1 above. (A metrically accurate polyhedral example
is provided in [5, Fig. 12].) Let the angle of D at x be α. See Figure 9(a).

N1=N2

F2

F1

τ1

C

T1 T2

τ2

x

w

α
α

R1

R2

(a) (b)
N1

P1

P2

D

w1

C2

C1

N2

D

x a2

a1

w2

w1'

w2'

Figure 9: Case 2: (a) The digon D on P. (b) Planar layout.

Call the convex regions that remain outside of D to either side Pi. Again we
perform vertex merging within each Pi to obtain two cones Λi, with apices ai,
and we unfold each by cutting along aiw. Now, in contrast to Case 1, here we
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layout the cone unfoldings to share only the point x, and such that the angle
between xw1 and xw2, where w1 and w2 are the two images of w, is precisely
α, the digon angle at x on P. This guarantees we obtain a development of Cw

in the neighborhood of x. In analogy with Case 1, define F1 and F2 to oppose
τ2 and τ1 respectively. See Figure 9(b).

The regions Ri bounded by Ni∪xwi∪Fi contain Ci, following the same logic
as in Case 1: analyzing the angles at wi shows that the second images w′i are
inside Ri, and the curves Ci ∪ xwi are flat convex loops. Thus, Cw = C1 ∪ C2,
the development of C when cut at w, avoids overlap.

This result on convex loops is best possible in the sense that there are curves C
that are convex except at two exceptional points—call them convex 2-loops—
for which Cx overlaps for every x. The basic construction that illustrates this
derives from a “sliver tetrahedron,” which has long been known to overlap from
a particular edge unfolding. Figure 10 illustrates how doubling the cut tree
leads to overlap.

a b

c d

a b

c d

a b

c d

b

c

(a) (b)

Figure 10: Overlap from a sliver tetrahedron by cutting a convex 2-loop. The
curve is a doubling of the cut path (a, b, c, d), nonconvex at one turn at b, and
one turn at c.

The degeneracy of this example may leave it not entirely convincing, but it
may be mimicked to be nondegenerate. Figure 11 shows an example of a curve
that is convex except at two points, all of whose developments overlap.

5 Reflex Curves and Reflex Loops

Recall that, for each corner ci of a curve C, αi + ωi + βi = 2π, where αi and
βi are the left and right angles at ci respectively, and ωi is the curvature at ci.
When C is vertex-free, ωi = 0 at all corners, and the relationships among the
curve classes is simple and natural: the other side of a convex curve is reflex,
the other side of a reflex curve is convex. The same holds for the loop versions:
the other side of a convex loop is a reflex loop (because αm ≥ π implies βm ≤ π,
where cm is the loop point), and the other side of a reflex loop is a convex loop.

13



BRF

L

T

B

F

L

T

F
L

R

B

T

(a)

(b) (c)

(d)

x
L

x
R

a

b c

d

x
L

x
R

a

b c

d

x

b c

a

d

Figure 11: (a) A curve C = (xL, a, b, c, d, xR), convex except at the two reflex
corners c and d. Here xL and xR are slightly separated points near the midpoint
x of the back bottom cube edge, and the two “spikes” are too thin for both sides
to be distinguished at this resolution. The cube faces are labeled F , L, R, T ,
B for Front, Left, Right, Top, and Back, respectively. (b) The left portion
(xL, a, b) on an unfolding of the faces it crosses. (c) The right portion (c, d, xR).
(d) Development of curve C. Note that because C encloses no vertices of the
cube, it is isometric to a planar polygon. Thus its development is independent
of a cut point: all of its developments are congruent.
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When C includes vertices, the relationships between the curve classes are more
complicated. The other side of a convex curve is reflex only if the curvatures at
the vertices on C are small enough so that αi +ωi ≤ π; C would still be convex
even if it just included those vertices inside. The same holds for convex loops.

On the other hand, the other side of a reflex curve is always convex, because
nonzero vertex curvatures only make the other side more convex. The other
side of a reflex loop is a convex loop, and it is a convex curve if the curvature
at the loop point cm is large enough to force αm ≤ π, i.e., if βm + ωm ≥ π.

This latter subclass of reflex loops—those whose other side is convex—
especially interest us, because any convex curve that includes at most one vertex
is a reflex loop of that type. All our results in this section hold for this class of
curves.

Lemma 6 Let C be a curve that is either reflex (to its right), or a reflex loop
which is convex to the other (left) side, with βm < π at the loop point cm. Then
C lives on a cone ΛR to its reflex side.

Proof: Again let c1, c2, . . . , cm be the corners of C, with cm the loop point if
C is a reflex loop. Because C is convex to its left, we have ΩL ≤ 2π. Just as in
Lemma 3, merge the vertices strictly in PL to one vertex a. Let ΛL be the cone
with apex a on which C now lives. It will simplify subsequent notation to let
Λ = ΛL.

(b)(a)

a

(c)

a
C

2/3

1

a

C

Figure 12: A convex curve C on an icosahedron, with αi = 2
3π, βi = π, and

ωi = 1
3π at each corner. The cone Λ for C opened (b) and doubly covered (c).

Let NR be a (small) right neighborhood of C, a neighborhood to the reflex
side of C. For subsequent subscript embellishment, we use N to represent NR.
Its shape is irrelevant to the proof, as long as it is vertex free and its left
boundary is C.

Join a to each corner ci by a cone-generator gi (a ray from a on Λ). Lemma 4
ensures this is possible. Cut along gi beyond ci into N . There are choices how
to extend gi beyond ci, but the choice does not matter for our purposes. For
example, one could choose a cut that bisects βi at ci. Insert along each cut into
N a curvature triangle, that is, an isosceles triangle with two sides equal to the
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cut length, and apex angle ωi at ci. (If ci does not coincide with a vertex of P,
then ωi = 0 and no curvature triangle is inserted.) This flattens the surface at
ci, and “fattens” N to N ′ without altering C or the cone Λ left of C. Now N ′

lives on the same cone Λ that C and its left neighborhood NL do.
From now on we view Λ and the subsequent cones we will construct as

flattened into the plane, producing a doubly covered cone with half the apex
angle. (Notice that here “doubly covered” above refers to a neighborhood of
the cone apex, and not to the image of the curve C.) It is always possible
to choose any generator ax for x ∈ C and flatten so that ax is the leftmost
extreme edge of the double cone. We start by selecting x = c1, so that g1 is the
leftmost extreme; let h1 be the rightmost extreme edge. We pause to illustrate
the construction before proceeding.

(a)

a

c1 c3

c2

g1

h1

(b)

a1

c3

c2

N'

g'1

h1

N1

Figure 13: (a) After insertion of curvature triangles, N ′ lives on Λ. (b) Removing
the doubly covered half curvature triangle at c1 leads to a new cone Λ1. (In
this and in Figure 14 we display the full icosahedron faces to the right of C,
although only a small neighborhood is relevant to the proof.)
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Let C be the curve on the icosahedron illustrated in Figure 12(a). This curve
already lives on the pentagonal pyramid cone Λ without any vertex merging.
Figure 12(b) shows the five equilateral triangles incident to the apex, and (c)
shows the corresponding doubly covered cone. Figure 13(a) illustrates Λ after
insertion of the curvature triangles to the right of C, each with apex angle
ωi = 1

3π. A possible neighborhood N ′ is outlined.
After insertion of all curvature triangles, we in some sense erase where they

were inserted, and just treat N ′ as a band living on Λ. Now, with g1 the leftmost
extreme, we identify a half-curvature triangle on the front side, matched by a
half-curvature triangle on the back side, incident to c1 in N ′. Each triangle has
angle 1

2ω1 at c1. See again Figure 13(a). Now rotate g1 counterclockwise about
c1 by 1

2ωi, and cut out the two half-curvature triangles from N ′, regluing the
front to the back along the cut segment. Extend the rotated line g′1 to meet
the extension of h1. Their intersection point is the apex a1 of a new (doubly
covered) cone Λ1, on which neither a nor c1 are vertices. Note that the rotation
of g1 effectively removes an angle of measure ω1 incident to c1 from the N ′

side, and inserts it on the other side of C. See Figure 13(b). Call the new
neighborhood N1, and the new convex curve C1. C1 is the same as C except
that the angle at c1 is now α1 + ω1, which by the assumption of the lemma, is
still convex because β1 ≥ π.

Now we argue that g′1 does not intersect N1 other than where it forms the
leftmost boundary. For if g′1 intersected N1 elsewhere, then, taking N1 to be
smaller and smaller, tending to C1, we conclude that g′1 must intersect C1 at a
point other than c1. But this contradicts the fact that either of the two planar
images (from the two sides of Λ) of C1 is convex. Indeed g′1 is a supporting line
at c1 to the convex set constituted by Λ1 up to C1.

Note that we have effectively merged vertices c1 and a to form a1, in a
manner similar to the vertex merging used in Lemma 3. The advantage of the
process just described is that it does not rely on having a triangle half-angle no
more than π at the new cone apex.

Next we eliminate the curvature triangle inserted at c2. Let g2 be the gener-
ator from a1 through c2 (again, Lemma 4 applies). Identify a curvature triangle
of apex angle ω2 in N1 bisected by g2; see Figure 14(a). Now reflatten the cone
Λ1 so that g2 is the left extreme, and let h2 be the right extreme, as in (b) of
the figure. Rotate g2 by 1

2ω2 about c2 to produce g′2, cut out the half-curvature
triangles on both the front and back of N1, and extend g′2 to meet the exten-
sion of h2 at a new apex a2. Now we have a new neighborhood N2, with left
boundary the convex curve C2, living on a cone Λ2.

We apply this process through c1, . . . , cm−1. It could happen at some stage
that g′i and the hi extension meet on the other side of Ci, in which case the cone
apex is to the reflex side. (Or, they could be parallel and meet “at infinity,”
which is what occurs with the icosahedron example.) From the assumption of
the lemma that βi ≥ π for i < m, αi + ωi ≤ π and so the curves Ci remain
convex throughout the process. So the argument above holds.

For the last, possibly exceptional corner cm, Cm−1 from the previous step is
convex, but the final step could render Cm nonconvex (if αm +ωm > π). But as
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Figure 14: (a) Generator g2 from a1 through c2 into N1. (b) Reoriented so g2
is left extreme.
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there is no further processing, this nonconvexity does not affect the proof.

For the icosahedron example, five insertions of 1
3π curvature triangles, together

with the original 1
3π curvature at a, produces a cylinder. And indeed, βi = π

for the five ci corners of C, and C forms a circle on a cylinder.

Lemma 7 Let C be a curve satisfying the same conditions as for Lemma 6.
Then C is visible from the apex a of the cone Λ on which it lives to its reflex
side.

Proof: Again letting c1, . . . , cm be the corners of C, with cm the possibly
exceptional vertex, we know that βi ≥ π for i = 1, . . . ,m−1, but it may be that
βm < π. Just as in the proof of Lemma 6, we flatten Λ into the plane, this
time choosing cm to lie on the leftmost extreme generator L1 of Λ. Let b be the
point of C that lies on the rightmost extreme generator L2 in this flattening.
Finally, let Cu be the portion of C on the upper surface of the flattened Λ,
and Cl the portion on the lower surface. See Figure 15. Now that we have

cm

a

a

Cl

Cu

b

L2
L1

½βm

Figure 15: The apex a could lie either to the reflex or to the convex side of C.

placed the one anomalous corner on the extreme boundary L1, both Cu and Cl
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present a uniform aspect to the apex a, whether it is to the convex or reflex
side of C: every corner of Cu and Cl is reflex (or flat) toward the reflex side,
and convex (or flat) toward the convex side. In particular, cmb∪Cu is a planar
convex domain. Each line through a intersects cmb exactly once, and therefore
intersects Cu exactly once; and similarly for Cl.

Just as we observed for convex loops, this visibility lemma does not hold for
all reflex loops—the assumption that the other side is convex is essential to the
proof.

We summarize this section in a theorem (recall that ΩL + ΩC + ΩR = 4π).

Theorem 2 Let C be a curve that is either reflex (to its right), or a reflex
loop which is convex to the other (left) side, with βm < π at the loop point cm.
Then C lives on a cone ΛR to its reflex side, and is visible from its apex a. If
ΩR > 2π, then the reflex neighborhood NR is to the unbounded side of ΛR, i.e.,
the apex of ΛR is left of C; if ΩR < 2π, then NR is to the bounded side, i.e., the
apex of ΛR is to the right side of C. If ΩR = 2π, C ∪NR lives on a cylinder.

Proof: The uniqueness follows from Lemma 1. The cone ΛR constructed in the
proof of Lemma 6 results in the cone apex to the convex side of C as long as
ΩL + ΩC ≤ 2π, when ΩR ≥ 2π. Excluding the cylinder cases, this justifies the
claims concerning on which side of ΛR the neighborhood NR resides. The apex
curvature of ΛR is min{ΩL + ΩC ,ΩR}.
Example 4. An example of a reflex loop that satisfies the hypotheses of Lemma 6
is shown in Figure 16(a). Here C has five corners, and is convex to one side at
each. C passes through only one vertex of the cuboctahedron P, and so it is
reflex at the four non-vertex corners to its other side. Corner c5 coincides with a
vertex of P, which has curvature ω5 = 1

3π. Here α5 = β5 = 5
6π. Because β5 < π,

C is a reflex loop. We have ΩL = 2
3π because C includes two cuboctahedron

vertices, u and v in the figure. ΩC = ω5 = 1
3π. And therefore ΩR = 3π. The

apex curvature of ΛL is ΩL = 2
3π, and the apex curvature of ΛR is π. NR lives

on the unbounded side of this cone, which is shown shaded in Figure 16(b).
Note the apex a is left of C, in accord with the lemma.

6 Discussion

We summarize the results claimed in the Introduction in a theorem:

Theorem 3 On a convex polyhedron, every convex curve left-develops without
overlap, and every reflex curve, and reflex loop whose other side is convex,
right-develops without overlap, for every cut point. Every convex loop has some
cut-point from which it left-develops without overlap.

Proving that a curve on a convex polyhedron lives on a cone is a powerful
technique for establishing that these polyhedron curves develop without overlap.
Even when a curve—such as a convex loop—does not live on a cone, still the cone
perspective can help prove nonoverlapping development (as it did in Lemma 5).

Many questions remain.
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Figure 16: (a) A curve C of five corners passing through one polyhedron vertex.
C is convex to one side, and a reflex loop to the other, with loop point c5, at
which β5 = 5

6π(= 150◦) < π. (b) The cone ΛR with apex a is shaded.

Overlapping Developments. First, it is not the case that every curve that
lives on a cone develops without overlap. Here we show that there exist C such
that Cx is nonsimple for every choice of x. We provide one specific example,
but it can be generalized.

The cone Λ has apex angle α = 3
4π; it is shown cut open and flattened in

two views in Figure 17(a,b). An open curve C ′ = (p1, p2, p3, p4, p5) is drawn on
the cone. Directing C ′ in that order, it turns left by 3

4π at p2, p3, and p4. From
p5, we loop around the apex a with a segment S = (p5, p6, p

′
5), where p′5 is a

point near p5 (not shown in the figure). Finally, we form a simple closed curve
on Λ by then doubling C ′ at a slight separation (again not illustrated in the
figure), so that from p5 it returns in reverse order along that slightly displaced
path to p1 again. Note that C = C ∪ S ∪ C ′ is closed and includes the apex a
in its (left) interior.

Now, let x be any point on C from which we will start the development Cx.
Because C is essentially C ′ ∪ C ′, x must fall in one or the other copy of C ′, or
at their join at p1. Regardless of the location of x, at least one of the two copies
of C ′ is unaffected. So Cx must include C ′ as a subpath in the plane.

Finally, developing C ′ reveals that it self-intersects: Figure 17(c). Therefore,
Cx is not simple for any x. Moreover, it is easy to extend this example to force
self-intersection for many values of α and analogous curves. The curve C ′ was
selected only because its development is self-evident.
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Slice Curves. There are curves already known to develop without overlap
that are not known to live on a cone. One particular class we could not settle
are the slice curves. A slice curve C is the intersection of P with a plane. Slice
curves in general are not convex. The intersection of P with a plane is a convex
polygon in that plane, but the surface angles of P to either side along C could
be greater or smaller than π at different points. Slice curves were proved to
develop without intersection, to either side, in [7], so they are good candidates
to live on cones. However, we have not been able to prove that they do.

Convex Loops. Although we have shown that there is some cut point from
which every convex loop develops without overlap (Lemma 5), we have not
determined all the cut points that enjoy this property.

Cone Curves. Finally, we have not obtained a complete classification of the
curves on a cone that develop, for every cut point x, as simple curves in the
plane. It would equally interesting to identify the class of curves on cones
for which there exists at least one cut-point that leads to simple development.
Indeed, the same questions for curves on a sphere are also unresolved [3].
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