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Abstract

This paper proves a conjecture from [LO17]: A nearly flat, acutely
triangulated convex cap C has an edge-unfolding to a non-overlapping
polygon in the plane. “Nearly flat” means that every face normal forms a
sufficiently small angle with the z-axis. Although the result is not surpris-
ing, the proof relies on some recently developed concepts, angle-monotone
and radially monotone curves.

1 Introduction

Let P be a convex polyhedron, and let φ(f) for a face f be the angle the
normal to f makes with the z-axis. Let H be a halfspace whose bounding plane
is orthogonal to the z-axis, and includes points vertically above that plane.
Define a convex cap C of angle Φ to be C = P ∩H for some P and H, such that
φ(f) ≤ Φ for all f in C. We will only consider Φ < 90◦, which implies that the
projection C of C onto the xy-plane is one-to-one. Note that C is not a closed
polyhedron; it has no “bottom,” but rather a boundary ∂C.

Say that a convex cap C is acutely triangulated if every angle of every face is
strictly acute, i.e., less than 90◦. Note that P being acutely triangulated does
not always imply that C = P ∩H is acutely triangulated. But any convex cap
can be acutely triangulated; see Section 9.1. We allow flat (π) dihedral angles
along edges, which could result from partitioning an obtuse triangle into several
acute triangles.

An edge unfolding of a convex cap C is a cutting of edges of C that permits
C to be developed to the plane as a simple (non-self-intersecting) polygon, a
“net.” The cut edges must form a boundary-rooted spanning forest F : A forest
of trees, each rooted on the boundary rim ∂C, and spanning the internal vertices
of C.

Our main result is:

Theorem 1 Every acutely triangulated convex cap C with face normals bounded
by a sufficiently small angle Φ from the vertical, has an edge unfolding to a non-
overlapping polygon in the plane.
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An example is shown in Fig. 1, and another example later in Fig. 24. Loose
bounds (Eq. 9) suggest that “sufficiently small” means that, e.g., for 86◦ acute-
ness, Φ < 5◦ suffices.

Figure 1: (a) A convex cap of 98 vertices, Φ ≈ 33◦, with spanning forest F
marked. C is non-obtusely triangulated (rather than acutely triangulated).
(b) Edge unfolding by cutting F . The quadrant lines are explained in Sec-
tion 4.2.

It is a long standing open problem whether or not every convex polyhedron
has a non-overlapping edge-unfolding, often called Dürer’s problem [DO07] [O’R13].
Theorem 1 can be viewed as an advance on a very narrow version of this problem.
This theorem (without the acuteness assumption) has been a folk-conjecture for
many years, but a specific line of attack was conjectured in [LO17], and it is
that line I follow for the proof.

One might loosely view Theorem 1 as obtaining an edge unfolding for suffi-
ciently flat polyhedra. In that sense, it could serve as a counterpart to Ghomi’s
result that sufficiently thin polyhedra have edge unfoldings [Gho14].

2 Overview of Proof

The proof relies on two results from earlier work: the angle-monotone spanning
forest result in [LO17], and a radially monotone unfolding result in [O’R16].
However, the former result needs generalization, and the latter is more gen-
eral (and complex) than needed here. So those results are incorporated and
explained as needed to allow this paper to stand alone. It is the use of angle-
monotone and radially monotone curves and their properties that constitute the
main novelties.

The approach is very roughly: project, lift, develop. The proof outline has
these seven high-level steps:
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1. Project C to the plane containing its boundary rim, resulting in a tri-
angulated convex region C. For sufficiently small Φ, C is again acutely
triangulated.

2. Generalizing the result in [LO17], there is a θ-angle-monotone, boundary
rooted spanning forest F of C, for θ < 90◦. F lifts to a spanning forest F
of the convex cap C.

3. For sufficiently small Φ, both sides L and R of each cut-path Q of F are
θ-angle-monotone when developed in the plane, for some θ < 90◦.

4. Any planar angle-monotone path for an angle ≤ 90◦, is radially monotone,
a concept from [O’R16].

5. Radial monotonicity of L and R, and sufficiently small Φ, imply that L and
R do not cross in their planar development. This is a simplified version of
a theorem from [O’R16], and here extended to trees.

6. Extending the cap C to an unbounded polyhedron C∞ ensures that the
non-crossing of each L and R extends arbitrarily far in the planar devel-
opment.

7. The development of C can be partitioned into θ-monotone “strips,” whose
side-to-side development layout guarantees non-overlap in the plane.

We now proceed to detail the steps of the proof. I have decided to quantify
steps even if they are in some sense obvious. Various quantities go to zero as Φ→
0. Quantifying by explicit calculation the dependence on Φ lengthens the proof.
But I hope the details both solidify the proof and will assist exploring extensions
suggested in Section 11. The reader willing to accept Φ→ 0 arguments will be
invited to skip these calculations.

2.1 Notation

We attempt to distinguish between objects in R3, and planar projected versions
of those objects, either by using calligraphy (C in R3 vs. C in R2), or primes
(γ in R3 vs. γ′ in R2), and occasionally both (Q′ vs. Q). Sometimes this
seems infeasible, in which case we use different symbols (ui in R3 vs. vi in R2).
Sometimes we use ⊥ as a subscript to indicated projections or developments of
lifted quantities.

We assume the plane containing ∂C is the xy-plane, z = 0.

3 Projection Angle Distortion

1. Project C to the plane containing its boundary rim, resulting in a
triangulated convex region C. For sufficiently small Φ, C is again acutely
triangulated.
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This first claim is obvious: since every triangle angle is strictly less than
90◦, and the distortion due to projection to a plane goes to zero as C becomes
more flat, for some sufficiently small Φ, the acute triangles remain acute under
projection.

In order to obtain a definite dependence on Φ, this section derives the fol-
lowing exact bound:

Lemma 1 The maximum absolute value of the distortion ∆⊥ of any angle in
R3 projected to the xy-plane, with respect to the tilt φ of the plane of that angle
with respect to z, is given by:

∆⊥(φ) = cos−1
(

sin2 φ

sin2 φ− 2

)
− π/2 . (1)

For small Φ, for a convex cap with every normal satisfying φ ≤ Φ, the expression
becomes

∆⊥(Φ) ≈ Φ2/2− Φ4/12 +O(Φ5) , (2)

and in particular, ∆⊥(Φ)→ 0 as Φ→ 0.

Readers willing to accept the import of this lemma may skip to Section 4.1

3.1 Notation

The angle α in R3 is determined by two unit vectors a and b. The normal vector
n̂ = a × b is tilted φ from the z-axis, and spun θ about that axis. See Fig. 2.
In this figure, θ is chosen to bisect α, which we will see achieves the maximum
distortion. Let primes indicate projections to the xy-plane. So a, b, α project to
a′, b′, α′. Finally the distortion is ∆⊥(α, φ, θ) = |α′−α|; it is about 8◦ in Fig. 2.

3.2 θ = α/2

Fixing α and φ, we first argue that the maximum distortion is achieved when θ
bisects α (as it does in Fig. 2.)

Fig. 3 shows ∆⊥ as a function of θ. One can see it is a shifted and scaled
sine wave with a period of π. This remains true over all α and all φ.

Proposition 1 For fixed φ and α, the maximum distortion ∆⊥(α, φ, θ) is achieved
with θ = α/2 (and α = α/2 + π).

We leave this as a claim. An interesting aside is that for θ = α/2± π/4, α′ = α
and ∆⊥ = 0.

So now we have reduced ∆⊥(α, φ, θ) to depending only on two variables:
∆⊥(α, φ) = ∆⊥(α, φ, α/2).

1It seems likely that these calculations, and those in Section 6.1, are known, but I could
not locate them in the literature.
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Figure 2: φ = 30◦, α = 70◦ is determined by a and b. The projection to the
xy-plane (green) results in a larger angle, α′ = 78◦.
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Figure 3: For φ = 30◦ and α = 70◦, the maximum ∆⊥ is achieved at θ = α/2 =
35◦.
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3.3 Right Angles Worst

Next we show that the maximum distortion ∆⊥(α, φ) occurs when α = 90◦.
Fig. 4 plots ∆⊥ over the full range of α for a portion of the φ ∈ [0, 90◦] range
of φ.

Figure 4: ∆⊥ as a function of α and φ ∈ [0, 30◦], showing the maximum distor-
tion occurs at α = 90◦.

Proposition 2 The maximum distortion ∆⊥(α, φ) occurs when α = 90◦, for
all φ ∈ [0, 90◦].

3.4 ∆⊥ as a function of φ

Propositions 1 and 2 reduce ∆⊥ to a function of just φ, the tilt of the angle α
in R3. Those lemmas permit an explicit derivation2 of this function:

∆⊥(φ) = cos−1
(

sin2 φ

sin2 φ− 2

)
− π/2 . (1)

See Fig. 5. Note that ∆⊥(0) = cos−1(0)− π/2 = 0, as claimed earlier. Thus we
have established Lemma 1 quoted at the beginning of this section.
For small Φ, the expression becomes

∆⊥(Φ) ≈ Φ2/2− Φ4/12 +O(Φ5) . (2)

A few explicit values:

∆⊥(10◦) ≈ 0.9◦

∆⊥(20◦) ≈ 3.6◦

∆⊥(30◦) ≈ 8.2◦

2This derivation is not difficult but is likely of little interest, so it is not included.
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Figure 5: ∆⊥(φ).

4 Angle-Monotone Spanning Forest

2. Generalizing the result in [LO17], there is a θ-angle-monotone, bound-
ary rooted spanning forest F of C, for θ < 90◦. F lifts to a spanning
forest F of the convex cap C.

First we define angle-monotone paths, which originated in [DFG15] and were
further developed in [BBC+16], and then turn to the spanning forests we need
here.

4.1 Angle-Monotone Paths

Let C be a planar, triangulated convex domain, with ∂C its boundary, a convex
polygon. Let G be the (geometric) graph of all the triangulation edges in C and
on ∂C.

Define the θ-wedge W (β, v) to be the region of the plane bounded by rays
at angles β and β + θ emanating from v. W is closed along (i.e., includes) both
rays, and has angular width of θ. A polygonal path Q = (v0, . . . , vk) following
edges of G is called θ-angle-monotone (or θ-monotone for short) if the vector
of every edge (vi, vi+1) lies in W (β, v0) (and therefore Q ⊆W (β, v0)), for some
β.3 Note that if β = 0◦ and θ = 90◦, then a θ-monotone path is both x- and
y-monotone, i.e., it meets every vertical, and every horizontal line in a point or
a segment, or not at all.

3My notation here is slightly different from the notation in [LO17] and earlier papers.
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4.2 Angle-Monotone Spanning Forest

It was proved in [LO17] that every nonobtuse triangulation G of a convex region
C has a boundary-rooted spanning forest F of C, with all paths in F 90◦-
monotone. We describe the proof and simple construction algorithm before
detailing the changes necessary for acute triangulations.

Some internal vertex q of G is selected, and the plane partitioned into four
90◦-quadrants Q0, Q1, Q2, Q3 by orthogonal lines through v. Each quadrant is
closed along one axis and open on its counterclockwise axis; q is considered in
Q0 and not in the others, so the quadrants partition the plane. It will simplify
matters later if we orient the axes so that no vertex except for q lies on the axes,
which is clearly always possible. Then paths are grown within each quadrant
independently, as follows. A path is grown from any vertex v ∈ Qi not yet
included in the forest Fi, stopping when it reaches either a vertex already in
Fi, or ∂C. These paths never leave Qi, and result in a forest Fi spanning the
vertices in Qi . No cycle can occur because a path is grown from v only when v is
not already in Fi; so v becomes a leaf of a tree in Fi. Then F = F1∪F2∪F3∪F4.

We cannot follow this construction exactly in our situation of an acute trian-
gulation G, because the “quadrants” for θ-monotone paths for θ = 90◦ −∆θ <
90◦ cannot cover the plane exactly: They leave a thin 4∆θ angular gap; call
the cone of this aperature g. We proceed as follows. Identify an internal vertex
q of G so that it is possible to orient the cone-gap g, apexed at q, so that g
contains no internal vertices of G. See Fig. 6 for an example. Then we proceed
just as in [LO17]: paths are grown within each Qi, forming four forests Fi, each
composed of θ-monotone paths.

It remains to argue that there always is such a q at which to apex cone-gap
g. Although it is natural to imagine q as centrally located (as in Fig. 6), it
is possible that G is so dense with vertices that such a central location is not
possible. However, it is clear that the vertex q that is closest to ∂C will suffice:
aim g along the shortest path from q to ∂C. Then g might include several
vertices on ∂C, but it cannot contain any internal vertices of G, as they would
be closer to ∂C. Again we could rotate the axes slightly so that no vertex except
for q lies on an axis.

We conclude this section with a lemma:

Lemma 2 If G is an acute triangulation of a convex region C, then there exists
a boundary-rooted spanning forest F of C, with all paths in F θ-angle-monotone,
for θ = 90◦ −∆θ < 90◦.

That F lifts to a spanning forest F of the convex cap C is immediate. What is
not straightforward is establishing the requisite properties of F .

5 Curvature

For sufficiently small Φ, ...
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Figure 6: Here the near-quadrants Qi have width θ = 87◦, so the gap g has
angle 4∆θ = 12◦.

The “nearly flatness” of the convex cap C is controlled by Φ, the maximum
angle deviation of face normals from the z-axis. Let ωi be the curvature at
internal vertex ui ∈ C, and Ω =

∑
i ωi the total curvature. In this section we

bound Ω as a function of Φ. We will see that the reverse is not possible: even
a small Ω could be realized with large Φ. The bound is given in the following
lemma:

Lemma 3 The total curvature Ω =
∑
i ωi of C satisfies

Ω ≤ 2π(cos Φ− 1) ≈ πΦ2 − πΦ4

12
+O(Φ5) .

The reader uninterested in the derivation may skip to Section 6.
One way to prove Lemma 3 is to argue that Ω is at most the curvature at

the apex of a cone with lateral normal Φ.4 Here we opt for another approach
which makes it clear why we cannot bound Φ in terms of Ω.

The proof depends on the Gaussian sphere representation, a graph GS on
a unit-radius sphere S with nodes corresponding to each face normal, and arcs
corresponding to the dihedral angle of the edge shared by adjacent faces. An
example is shown in Fig. 7. For a convex polyhedron (and so for a convex cap
C), each vertex v of C maps to a convex spherical polygon s(v) whose area is the

4This route was followed in the first version of this paper.
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Figure 7: Gaussian sphere and GS for a convex polyhedron of 500 vertices.
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curvature at v. Each internal angle β at a face node f of s(v) is π − α, where
α is the face angle incident to v for face f . These basic properties of GS are
well-known; see, e.g., [BLS07].

For a vertex v, the largest area of its spherical polygon s(v) is achieved when
that polygon approaches a circle. So an upperbound on the area, and so the
curvature, is the area of a disk of radius Φ. This is the area of a spherical cap,
which is Ω = 2π(cos Φ − 1). For small Φ, the area is nearly that of a flat disk,
πΦ2. This establishes Lemma 3.

The reason that we cannot bound Φ in terms of Ω is that it is possible that
the s(v) is long and thin, as in Fig. 8. Then the area Ω can be small while the
maximum Φ deviation is large. In the discussion in Section 11, we call such
vertices “oblong.”

Figure 8: Spherical polygon of an “oblong” vertex: |φ(a)− φ(b)| is large but Ω
is small.

6 Curve Distortion

3. For sufficiently small Φ, both sides L and R of each cut-path Q of F
are θ-angle-monotone when developed in the plane, for some θ < 90◦.

This step says, essentially, each θ-monotone path Q′ in the planar projection
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is not distorted much when lifted to Q on C.5 This is obviously true as Φ→ 0,
but it requires proof. We need to establish that the left and right sides of the cut
Q develop to the plane as still θ-monotone paths for some (different) θ ≤ 90◦.

For intuition only, we offer an example in Fig. 9. Here an 86◦-monotone
staircase Q′ lies in the xy-plane. It is lifted to a sphere to Q, with the sphere
standing for the convex cap C. Calculating what could be the angles incident to
the left of Q were the sphere a triangulated polyhedron, we develop Q to Q⊥ in
the plane. Q⊥ is distorted compared to Q′, but by at most 3.8◦, so it remains
θ-monotone for θ < 90◦.

Figure 9: Q′ is a (blue) path on the plane, θ-monotone for θ = 86◦. Its lift to
the sphere is Q (red). Q⊥ (green) is distorted, but remains acute.

Our proof uses the Gauss-Bonnet theorem, in the form τ + ω = 2π: the
turn of a closed curve plus the curvature enclosed is 2π. See, for example, Lee’s
description [Lee06, Thm.9.3, p.164].6 To bound the curve distortion of Q′, we
need to bound the distortion of pieces of a closed curve that includes Q′ as a
subpath. Our argument here is not straightforward, but the conclusion is that,

5We use Q′ to emphasize it lies in the xy-plane.
6My τ is Lee’s κN .
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as Φ→ 0, the distortion also goes to 0. The reader willing to accept this claim
may skip to Lemma 5 below, which provides an explicit bound (Eq. 7).

The reason the proof is not straightforward is that Q′ could have an arbi-
trarily large number n of vertices, so bounding the angle distortion at each by
∆⊥ would lead to arbitrarily large distortion n∆⊥. The same holds for the rim,
as we will see below in Section 6.2. So global arguments that do not cumulate
errors seem necessary.

6.1 Angle Lifting to C
We need to supplement the angle distortion calculations presented in Section 3
for a very specific bound on the total turn of the rims of C and of C. In
particular, here we are concerned with the sign of the distortion. Let R′ = ∂C
and R = ∂C be the rims of the planar C and of the convex cap C, respectively.
Again we use primes to indicate projections to the plane. Note that R′ = R
geometrically, but we will focus on the neighborhoods of these rims on C and
C, which are different.

Let 4(a, b, c′) be a triangle in the xy-plane, and c a point vertically above
c′. We compare the angle α′ = ∠c′, a, b with angle α = ∠c, a, b; see Fig. 10(a).
(Note that, in contrast to the arbitrary-angle analysis in Section 3, here the two
triangles share a side.) We start with the fact that the area of the projected
4(c′, a, b) is cosφ times the area of the 3D 4(c, a, b), where φ is the angle the
normal to triangle4(c, a, b) makes with the z-axis. Defining B = b−a, C = c−a
and C ′ = c′ − a, we have

B · C ′ = |B||C ′| cosα′

B · C = |B||C ′| cosα

so

|B||C ′| cosα = |B||C ′| cosα′ cosφ

cosα

cosα′
=
|C ′|
|C|

cosφ

≤ |C ′|
|C|

cosφ

≤ 1

cosα ≤ cosα′

α ≥ α′ when α′ ≤ 90◦

α ≤ α′ when α′ ≥ 90◦

The last step follows because either both α′, α ≤ 90◦ or α′, α ≥ 90◦. The
conclusion is that the 3D angle α is smaller for obtuse α′, and larger for acute
α′. When α′ = 90◦, then α = 90◦.

Now we turn to the general situation of three consecutive vertices (d, a, b)
of the rim, and how the planar angle at a differs from the 3D angles of the
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incident triangles of C. We start assuming just two triangles are incident to a,
sharing an edge ca. Note that, if there is no edge of C \ R incident to a, then
the triangle 4(d, a, b) is a face of C, which implies (by convexity) that the cap
C is completely flat, and there is nothing to prove.

So we start with the situation depicted in Fig. 10(b). We seek to show that
the 2D angle α′ at a, ∠d, a, b, is always at most the 3D angle α, which is the
sum of α1 = ∠c, a, b and α2 = ∠c, a, d. Note that the projection of one of these
angles could be smaller and the other larger than their planar counterparts, so it
is not immediately obvious that the sum is always larger. But we can see that it
as follows. If α′ ≤ 90◦, then we know that both of the 3D angles α1 and α2 are
larger by our previous analysis. If α′ ≥ 90◦, then partition α′ = 90◦ + β, where
β < 90◦. Then we have that α2 = 90◦ and α1 > β, so again α1 + α2 = α ≥ α′.

The general situation is that a vertex a on the rim of the cap C will have
several incident edges, rather than just the one ca that we used above. Continue
to use the notation that d, a, b are consecutive vertices of R′, but now edges
c1, . . . , ck of C are incident to a. Consider two consecutive triangles4(ci−1, a, ci)
and 4(ci, a, ci+1) of C. These sit over a triangle 4(ci−1, a, ci+1) which is not a
face of C; rather it is below C (by convexity). The argument used above shows
that the sum of the two triangle’s angles at a are at least the internal triangle’s
angle at a. Repeating this argument shows that, in the general situation, the
sum of all the incident face angles of C is greater than or equal to the 2D angle
α′ = ∠d, a, b.

We summarize in a lemma:7

Lemma 4 The planar angle α′ at a vertex of the rim lifts to 3D angles of the
incident triangles of the cap C, whose sum α satisfies α ≥ α′.

Figure 10: (a) Lifting α′ to α according to a right tetrahedron. (b) Lifting the
planar angle at a to the sum of two 3D angles.

6.2 Rim-Turn Bound

Now we use Lemma 4 to bound the total turn of the rim R of C and R′ of C ′.
Although the rims are geometrically identical, their turns are not. The turn at

7It seems likely this is either known, or can be proved with a simpler argument.
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each vertex a′ of the planar rim R′ is 2π−α′, where α′ is the planar angle of C
incident to a′. The turn at each vertex a of the 3D rim R is 2π − α, where α is
the sum of the angles of the cap C incident to a. By Lemma 4, α ≥ α′, so the
turn at each vertex of the 3D rim R is smaller than or equal to the turn at each
vertex of the 2D rim R′. Therefore the total turn of the 3D rim τR is smaller
than or equal to the total turn of the 2D rim τR′ . And Gauss-Bonnet allows us
to quantify this:

τR′ = 2π

τR + Ω = 2π

τR′ − τR = Ω

For any subportion of the rims r′ ⊂ R′, r ⊂ R, Ω serves as an upper bound,
because we know the sign of the difference is the same at every vertex of r′, r:

τr′ − τr ≤ Ω (3)

Note that the reason we could make this inference from R to r ⊂ R is because we
know the sign of the difference at every vertex of the rim: The planar rim turns
more than the 3D rim at every vertex. Were the signs unknown, cancellation
would have prevented this inference.

6.3 Turn Distortion of γ′

We first walk through a calculation that will serve as a “warm-up” for the
calculation actually needed. I found matters complicated enough to warrant
this approach.

Let γ′ be a simple curve in the xy-plane. We aim to bound the total turn
difference ∆γ between γ′ and its lift γ to the cap C. Let r′ ⊂ R′ be the portion
of the rim counterclockwise from b to a, so that γ′ ∪ r′ is a closed curve. Of
course in the plane there is no curvature enclosed, and the total turn of this
closed curve is 2π. We describe this total turn τ ′ in four pieces: the turn of γ′,
the turn of r′, and the turn at the join points:

τ ′ = τγ′ + (τa′ + τb′) + τr′ (4)

= 2π

where τa′ and τb′ are the turn angles at a′ and b′. See Fig. 11(a).
Now we turn to the convex cap C, as illustrated in Fig. 11(b). We have a

similar expression for τ , but now the Gauss-Bonnet theorem applies: τ+ω = 2π,
where ω ≤ Ω is the total curvature inside the path γ ∪ r:

τ + ω = τγ + (τa + τb) + τr + ω (5)

= 2π

Combining Eqs. 5 and 6,

τγ′ + τa′ + τb′ + τr′ = τγ + τa + τb + τr + ω (6)

τγ′ − τγ = (τa − τa′) + (τb − τb′) + (τr − τr′) + ω
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Figure 11: (a) C, the projection of the cap C. (b) γ is the lift of γ′ to C.

Our goal is to bound ∆γ = |τγ′ − τγ |, the total distortion of the turn of γ
compared to that of γ′; the sign of the distortion is not relevant.

The turn angles at a and b are both distorted by at most ∆⊥:

|τa − τa′ | ≤ ∆⊥

|τb − τb′ | ≤ ∆⊥

Note that the analysis in Section 6.1 shows that the sign of these angle changes
could be positive or negative, depending on whether γ′ meets R′ in an acute or
obtuse angle. So we bound the absolute magnitude.

From Eq. 3, we have |τr − τr′ | ≤ Ω. Here we do know the sign of the
difference, but we only use that sign to bound r ⊆ R.

Using these bounds in Eq. 7 leads to

∆γ = |τγ − τγ′ |
≤ 2Ω + 2∆⊥

Example. Before moving to the next calculation, we illustrate the preceding
with a geometrically accurate example, the top of a regular icosahedron, shown
in Fig. 12. Here Φ = 37.4◦ and Ω = 60◦. (Eq. ?? for this Φ yields Ω = 73.9◦, an
upperbound on the true Ω.) γ′ is the (a, d) chord of the pentagon rim, which
lifts to γ = (a, b, c, d) on C. Both the turn at each rim r′ vertex, and τa′ = τd′ ,
is 72◦. So the Gauss-Bonnet theorem for the planar circuit is

τγ′ + (τa′ + τd′) + τr′ = 2π

0 + (72◦ + 72◦) + 3(72◦) = 360◦

The 3D turns τa = τd are slightly larger, 75.5◦ (consistent with the analysis in
Section 6.1), and the turn at each rim r vertex is smaller, 60◦ (consistent with
the analysis in Section 6.2). We use the Gauss-Bonnet theorem to solve for τγ :

τγ + (τa + τd) + τr + ω = 2π

τγ + (75.5◦ + 75.5◦) + 3(60◦) + 60◦ = 360◦

τγ = −31.0◦
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Figure 12: Icosahedron cap. γ′ = Q′ = (a, d). γ = Q = (a, b, c, d).

And indeed, τb = τc = −15.5◦. One can see that the final link of the developed
chain γ⊥ has turned 31◦ with respect to the planar chord, much smaller than
the crude bound of 2Ω + 2∆⊥ derived in the previous section.

6.4 Turn Distortion of Q′

What we need is not ∆γ but ∆Q, where Q′ is any prefix of an angle-monotone
path in C. The reason for prefix here is that we want to bound the turn of any
segment of Q, not just the last segment, whose turn is

∑
i τi.

It is tempting to say that Q′ is a subset of some γ′, and so the bound we
derived above holds for Q′ as well, say, by extending Q′ until it hits ∂C, and
so is indeed a chord of ∂C. But the problem is that there can be cancellations
among the τi, as we have no guarantee that they are all the same sign. (It
is a counterintuitive fact that the development of a “slice” curve formed by
the intersection of a plane with a convex polyhedron, may turn both left and
right: [O’R03].) So it is conceivable that Q turns a lot but is canceled out by
the turn of the extension. Then the total turn is not a bound on ∆Q, the turn
of Q. So we take a more complex approach.

Let Q′ be a prefix of an angle-monotone path in C, Q its lift to the 3D cap C.
We seek to bound ∆Q = |τ ′Q− τQ|. The key idea is to reduce C to a half-cap as
follows; see Fig. 13. Let a′ be the endpoint of Q′ not on ∂C, interior to C ′. Slice
the cap C with a vertical plane orthogonal to the clockwise ray of the θ-wedge
containing Q′. This choice guarantees that Q′ and therefore Q are to one side
of the plane. We now study the closed curve Q ∪ r1 ∪ r2, where r1 ⊂ R is a
portion of the original rim of C, and r2 is a portion of the rim created by the
vertical plane slicing C. These three curves meet at points a, b, c as illustrated.
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Figure 13: A “half-cap” to bound ∆Q.

As before, we apply the Gauss-Bonnet theorem and note all the contributions:

τQ′ + (τa′ + τb′ + τc′) + (τr′1 + τr′2) = 2π

τQ + (τa + τb + τc) + (τr1 + τr2) + ω = 2π

Again we use primes to indicate planar quantities. Note in particular that τr′2
is the turn of the rim portion r2 in the vertical plane, whereas τr′1 is the turn of
r1 in the xy-plane as before. Combining these equations leads to

τQ′ − τQ = (τa−τa′) + (τb−τb′) + (τc−τc′) + (τr1−τr′1) + (τr2−τr′2) + ω

∆Q < 3∆⊥ + 2Ω + Ω = 3(∆⊥ + Ω) (7)

The logic is as before: Each of the turn distortions at a, b, c is at most ∆⊥, both
rim distortions are at most Ω by Eq. 3, and ω < Ω.

Using the small-Φ bounds derived earlier in Eqs. 2 and ??:

|∆Q| ≤ 3(∆⊥ + Ω)

≈ 3Φ2(π + 1/2) (8)

Thus we have ∆Q→ 0 as Φ→ 0, as expected.
To summarize these calculations:

Lemma 5 The difference in the total turn of any prefix of Q from its planar
projection Q′ is bounded by Eq. 7, which Eq. 8 shows to be a constant times Φ2

(for small Φ). Therefore, this turn goes to zero as Φ→ 0.

These bounds are likely quite loose. A few explicit values:

Φ = 1◦ → 3Φ2(π + 1/2) ≈ 0.2◦

Φ = 2◦ → 3Φ2(π + 1/2) ≈ 0.8◦

Φ = 3◦ → 3Φ2(π + 1/2) ≈ 1.7◦

Φ = 5◦ → 3Φ2(π + 1/2) ≈ 4.8◦

We finally return to the claim at the start of this section:
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3. For sufficiently small Φ, both sides L and R of each path Q of F are
θ-angle-monotone when developed in the plane, for some θ < 90◦.

The turn at any vertex of Q is determined by the incident face angles to
the left following the orientation shown in Fig. 11, or to the right reversing
that orientation (clearly the curvature enclosed by either curve is ≤ Ω). These
incident angles determine the left and right planar developments, L and R, of Q.
Because we know that Q′ is θ-angle-monotone for θ < 90◦, there is some finite
“slack” ∆θ = 90◦ − θ. Because Lemma 5 established a bound for any prefix of
Q′, it bounds the turn distortion of each edge of Q, which we can arrange to
fit inside that slack. So the bound provided by Lemma 5 suffices to guarantee
that:

Lemma 6 For sufficiently small Φ, both L and R remain θ-angle-monotone for
some (larger) θ, but still θ < 90◦.

Using the small-Φ approximation in Eq. 8 leads to

Φ ≤
√

∆θ

√
2

3 + 6π
≈ 0.3

√
∆θ (9)

For example, if all triangles are acute by ∆θ = 3◦, then Φ ≈ 4.0◦ suffices.

7 Radially Monotone Paths

The next step in the proof is:

4. Any planar angle-monotone path for an angle ≤ 90◦, is radially mono-
tone, a concept from [O’R16].

To establish this claim, and remain independent of [O’R16], we repeat defi-
nitions in that report, sometimes directly quoting from that report’s Section 1.

Let C be a planar, triangulated convex domain, with ∂C its boundary, a
convex polygon. Let8 Q = (v0, v1, v2, . . . , vk) be a simple (non-self-intersecting)
directed path of edges of C connecting an interior vertex v0 to a boundary vertex
vk ∈ ∂C.

We offer three equivalent definitions of radial monotonicity.

(1). We say that Q = (v0, v1, . . . , vk) is radially monotone with respect to
(w.r.t.) v0 if the distances from v0 to all points of Q are (non-strictly) mono-
tonically increasing. (Note that requiring the distance to just the vertices of
Q to be monotonically increasing is not the same as requiring the distance to

8In this section we dispense with the primes on symbols to indicate objects in the xy-plane,
when there is little chance of ambiguity. We use vi for vertices in the plane and ui for their
counterparts on the cap C.
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all points of Q be monotonically increasing.) We define path Q to be radially
monotone (without qualification) if it is radially monotone w.r.t. each of its
vertices: v0, v1, . . . , vk−1. It is an easy consequence of these definitions that, if
Q is radially monotone, it is radially monotone w.r.t. any point p on Q, not only
w.r.t. its vertices.

Before exploring this definition further, we discuss its intuitive motivation.
If a path Q is radially monotone, then “opening” the path with sufficiently
small curvatures ωi at each vi will avoid overlap between the two halves of
the cut path. Whereas if a path is not radially monotone, then there is some
opening curvature assignments ωi to the vi that would cause overlap: assign a
positive curvature ωj > 0 to the first vertex vj at which radial monotonicity
is violated, and assign the other vertices zero or negligible curvatures. Thus
radially monotone cut paths are locally (infinitesimally) opening “safe,” and
non- radially monotone paths are potentially overlapping.

We now provide two more equivalent definitions of radial monotonicity to
aid intuition.

(2). The condition for Q to be radially monotone w.r.t. v0 can be interpreted
as requiring Q to cross every circle centered on v0 at most once; see Fig. 14. The
concentric circles viewpoint makes it evident that infinitesimal rigid rotation of
Q about v0 to Q′ ensures that Q∩Q′ = {v0}, for each point of Q simply moves
along its circle. Of course the concentric circles must be repeated, centered on
every vertex vi.

(a)

(b)

(c)

W(v0)

v0

vk

v0

v4

v2

v0

v1

v3

v5

v5

W(v5)
v7

Figure 14: (a) A radially monotone chain, with its monotonicity w.r.t. v0 illus-
trated. (b) A 90◦-monotone chain, with x-monotonicity indicated. (c) Such a
chain is also radially monotone.
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(3). A third definition of radial monotonicity is as follows. Let α(vi) =
∠(v0, vi, vi+1). Then Q is radially monotone w.r.t. v0 if α(vi) ≥ π/2 for all
i > 0. For if α(vi) < π/2, Q violates monotonicity at vi, and if α(vi) ≥ π/2,
then points along the segment (vi, vi+1) increase in distance from v0. Again this
needs to hold for every vertex as the angle source, not just v0.

Radially monotone paths are the same9 as backwards “self-approaching
curves,” introduced in [IKL99] and used for rather different reasons.

Many properties of radially monotone paths are derived in [O’R16], but here
we need only the above definitions.

7.1 Angle-monotone chains are radially monotone

Recall the definition of an angle-monotone path from Section 4.1.
Fig. 14(c) illustrates why a θ-monotone chain Q, for any θ ≤ 90◦, is radially

monotone: the vector of each edge of the chain points external to the quarter-
circle passing through each vi. And so the chain intersects the v0-centered circles
at most once (definition (2)), and the angle α(vi) ≥ 90◦ (definition (3)). Thus
Q is radially monotone w.r.t. v0. But then the argument can be repeated for
each vi, for the wedge W (vi) is just a translation of W (v0).

It should be clear that these angle-monotone chains are very special cases of
radially monotone chains. But we rely on the spanning-forest theorem in [LO17]
to yield angle-monotone chains, and we rely on the unfolding properties of ra-
dially monotone chains from [O’R16] to establish non-overlap. We summarize
in a lemma:

Lemma 7 A θ-monotone chain Q, for any θ ≤ 90◦, is radially monotone.

8 Noncrossing L & R Developments

5. Radial monotonicity of L and R, and sufficiently small Φ, imply that
L and R do not cross in their planar development. This is a simplified
version of a theorem from [O’R16], and here extended to trees.

We will use Q = (u0, u1, . . . , un) as a path of edges on C, with each ui ∈ R3

a vertex and each uiui+1 an edge of C. We use Q for a generic simple (non-self-
intersecting) polygonal chain in the plane.

Let Q = (v0, v1, . . . , vn) be a chain. Define the turn angle τi at vi to be the
counterclockwise angle from vi − vi−1 to vi+1 − vi. Thus τi = 0 means that
vi−1, vi, vi+1 are collinear, i.e., there is no turn at vi. τi ∈ (−π, π); simplicity
excludes τi = ±π.

Each turn of the chain Q sweeps out a sector of angles. We call the union
of all these sectors Λ(Q); this forms a cone such that, when apexed at v0,
Q ⊆ Λ(Q). The rays bounding Λ(Q) are determined by the segments of Q

9Anna Lubiw, personal communication, July 2016.
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at extreme angles; call these angles σmax and σmin. See ahead to Fig. 16 for
examples. Let |Λ(Q)| be the measure of the apex angle of the cone, σmax−σmin.
We will assume that |Λ(Q)| < π for our chains Q, although it is quite possible for
radially monotone chains to have |Λ(Q)| > π. In our case, in fact |Λ(Q)| < π/2,
but that tighter inequality is not needed for Theorem 2 below. The assumption
|Λ(Q)| < π guarantees that Q fits in a halfplane HQ whose bounding line passes
through v0.

Because σmin is turned to σmax, we have that the total absolute turn
∑
i |τi| ≥

|Λ(Q)|. But note that the sum of the turn angles
∑
i τi could be smaller than

|Λ(Q)| because of cancellations.

8.1 The left and right planar chains L & R

Again letQ = (u0, u1, . . . , un) with each ui a vertex of C. Let ωi be the curvature
at ui. We view u0 as a leaf of a cut forest, which will then serve as the end of
a cut path, and the “source” of opening that path.

Let λi be the surface angle at ui left of Q, and ρi the surface angle right of Q
there. So λi+ωi+ρi = 2π, and ωi ≥ 0. Define L to be the planar path from the
origin with left angles λi, R the path with right angles ρi. These paths are the
left and right planar developments of Q. (Each of these paths are understood
to depend on Q: L = L(Q) etc.) We label the vertices of the paths `i, ri.

In [O’R16], the medial path M with left angles λi − ωi/2 (and therefore
right angles ρi + ωi/2), played a significant role, in that a noncrossing result
was proved when M is radially monotone, even if L and/or R is not radially
monotone. Here we do not need M , and we make the stronger assumption that
both L and R are radially monotone. In fact, both are θ-monotone for θ < 90◦,
but we do not use this fact to reach Theorem 2 below.

Define ω(Q) =
∑
i ωi, the total curvature along the path Q. We will assume

ω(Q) < π, a very loose constraint in our circumstances of a nearly flat convex
cap C. For example, with Φ = 30◦, Ω for C is < πΦ2 ≈ 49◦, and ω(Q) can be
at most Ω.

8.2 Left-of Definition

Let A = (a0, . . . , an) and B = (b0, . . . , bn) be two radially monotone chains
sharing x = a0 = b0. (Below, A and B will be the L and R chains.) Let D(r)
be the circle of radius r centered on x. Recall that D(r) intersects any radially
monotone chain in at most one point. Let a and b be two points on D(r). Say
that a is left of b, a � b, if the counterclockwise arc from b to a is less than π.
If a = b, then a � b. Now we extend this relation to entire chains. Say that
chain A is left of B, A � B, if, for all r > 0, if D(r) meets both A and B, in
points a and b respectively, then a � b. If D(r) meets neither chain, or only
one, no constraint is specified. Note that, if A � B, A and B can touch but not
properly cross.
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8.3 Noncrossing Theorem

Theorem 2 Let Q be an edge cut-path on C, and L and R the planar chains
derived from Q, as described above. Under the assumptions:

1. Both L and R are radially monotone,

2. The total curvature along Q satisfies ω(Q) < π.

3. Both cone measures are less than π: |Λ(L)| < π and |Λ(R)| < π,

then L � R: L and R may touch and share an initial chain from `0 = r0, but
L and R do not properly cross, in either direction.

First we remark that the angle conditions (2) and (3) are necessary. Fig. 15(a)
shows an example where they are violated and L crosses R from the right side
of R to R′s left side. In this figure, |Λ(L)| = |Λ(R)| = π, because edge r0r1
points vertically upward and r2r3 points vertically downward, and similarly for
L. Now suppose that ω0 = π + ε, and all other ωi = 0. So L is a rigid rotation
of R about `0 = r0 by ω0, which allows L to cross R as illustrated. So some
version of the angle conditions are necessary: we need that |Λ(R)|+ω(Q) < 2π
to prevent this type of “wrap-around” intersection, and conditions (2) and (3)
meet this requirement. We address the sufficiency of these conditions in the
proof below.
Proof: We first argue that L cannot wrap around as in Fig. 15(a) and cross R
from its right side to its left side. Let ρmax be the counterclockwise bounding
ray of Λ(R). In order for L to enter the halfplane HR containing Λ(R), and
intersect R from its right side, ρmax must turn to be oriented to enter HR, a
turn of ≥ π. We can think of the effect of ωi as augmenting R’s turn angles τi
to L’s turn angles τ ′i = τi + ωi. Because ωi ≥ 0 and ω(Q) =

∑
i ωi < π, the

additional turn of the chain segments of R is < π, which is insufficient to rotate
ρmax to aim into HR. See Fig. 15(b). (Later (Section 9) we will see that we can
assume L and R are arbitrarily long, so there is no possibility of L wrapping
around the end of R and crossing R right-to-left.)

Next we show that L cannot cross R from left to right. We imagine Q right
developed in the plane, so that Q = R. We then view L as constructed from a
fixed R by successively opening/turning the links of R by ωi counterclockwise
about ri, with i running backwards from rn−1 to r0, the source vertex of R.
Fig. 16(b) illustrates this process. Let Li = (`i, `i+1, . . . , `n) be the resulting
subchain of L after rotations ωn−1, . . . , ωi, and Ri the corresponding subchain
of R = (ri, ri+1, . . . , rn), with `i = ri the common source vertex. We prove
Li � Ri by induction.

Ln−1 � Rn−1 is immediate because ωn−1 ≤ ω(Q) < π; see Fig. 16(b).
Assume now Li+1 � Ri+1, and consider Li; refer to Fig. 17. Because both Li
and Ri are radially monotone, circles centered on `i = ri intersect the chains
in at most one point each. Li is constructed by rotating Li+1 rigidly by ωi
counterclockwise about `i = ρi; see Fig. 17(b). This only increases the arc
distance between the intersections with those circles, because the circles must
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pass through the gap representing Li+1 � Ri+1, shaded in Fig. 17(a). And
because we already established that L cannot enter the R halfplane HR, we
know these arcs are < π: for an arc of ≥ π could turn ρmax to aim into HR. So
Li � Ri. Repeating this argument back to i = 0 yields L � R, establishing the
theorem.

Figure 15: (a) Angle conditions are tight. (b) Turning ρmax.

8.4 From Paths to Trees

We have just settled in Theorem 2 the “safe” separation of a radially monotone
path Q. Now we extend the result to trees, for our cut paths are (in general)
leaf-to-root paths in some tree T ⊆ F of the forest.10

Again letQ = (u0, . . . , un) be an edge cut-path on C, with L andR the planar
chains derived from Q, just as in Theorem 2. Before opening by curvatures,
the vertices in the plane are Q = (v0, . . . , vn). Assume there is path Q′ =
(v′0, . . . , v

′
k = vi) in the tree containing Q, which is incident to and joins the

path at vi from the left side. See Fig. 18(a).
We fix Q = R and open Q to L as in Theorem 2, rigidly moving the unopened

Q′ attached to L at the same angle ∠vi−1viv′k−1 at the join; see Fig. 18(b).
Now we apply the same procedure to Q′, but now rigidly moving the tail of L,
Li = (`i, . . . , `n). The logic is that we have already opened that portion of the
path, so the curvatures ωi, . . . , ωn have already been expended. See Fig. 18(c).

We continue this left-expansion process for all the branches of the tree T ,
stacking the openings one upon another. Rather than assume a curvature bound
of ω(Q) < π, we assume that bound summed over the whole tree T : ω(T ) < π.

10This extension was not described explicitly in [O’R16].
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Figure 16: (a) ωi = (17◦, 6◦, 7◦, 0◦, 5◦, 5◦, 7◦), i = 0, . . . , 6. (b) Steps in the
induction proof.

Figure 17: (a) i + 1 = 3, L3 � R3. Note: ω3 = 0 so `3`4 = r3r4. (b) i = 2,
L2 � R2.
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Figure 18: (a) Q′ joins Q at v′3 = v4. (b) After opening Q to L and R. (c) After
opening Q′.
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For it is the total curvature in all descendants of one vertex ui that rotates the
next edge uiui+1. And similarly, we assume Λ(T ) < π, where ρmax and ρmin

range over all edges in T . These reinterpretations of ω(T ) and Λ(T ) retain the
argument in Theorem 2 that the total turn of segments is less than π, and so
avoids “wrap-around” crossing of L′ with R right-to-left, for any such L′.

We can order the leaves of a tree, and their paths to the root, as they occur
in an in-order depth-first search (DFS), so that the entire tree can be processed
in this manner (this ordering will be used again in Section 10.1 below).

Corollary 1 The L � R conclusion of Theorem 2 holds for all the paths in a
tree T : L′ � R, for any such L′.

9 Extending C to C∞

6. Extending the cap C to an unbounded polyhedron C∞ ensures that
the non-crossing of each L and R extends arbitrarily far in the planar
development.

In order to establish nonoverlap of the unfolding, it will help to extend the
convex cap C to an unbounded polyhedron C∞ as follows. Define C∞ as the
intersection of all the halfspaces determined by the faces of C. Because we have
assumed Φ < 90◦, C∞ is unbounded. It will be convenient to define a “clipped,”
bounded version of C∞: let CZ be C∞ intersected with the halfspace z ≥ Z. So
limZ→−∞ = C∞.

We can imagine constructing CZ as follows. Let B be the set of boundary
faces of C, those that share an edge with ∂C. See Fig. 19(b). Extend these faces
downward. They intersect one another, and eventually the “surviving” faces
extend to infinity. We will view CZ as C ∪EZ , where EZ is the extension “skirt”
of faces. See Fig. 20.

Note that Φ for C∞ is the same Φ for the original C. C∞ will allow us to
ignore the ends of our cuts, as they can be extended arbitrarily far.

9.1 Acute Triangulation

We will apply the spanning forest construction to CZ , and for that purpose, we
need to acutely triangulate CZ . Fortunately, this is possible.

Very recently, Bishop proved that every PLSG (planar straight-line graph) of
n vertices has a conforming acute triangulation, usingO(n2.5) triangles [Bis16].11

“Conforming” means that each pair of triangles are either disjoint, share a single
vertex, or share a whole edge. He cites Burago and Zalgaller as first establishing
that acute triangulations exist [BZ80], without a bound in terms of n. For our
purposes, the exact bound is not relevant, as long as there is a bound.

11His main Theorem 1.1 is stated for nonobtuse triangulations, but he says later that “the
theorem also holds with an acute triangulation, at the cost of a larger constant in the O(n2.5).”
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Figure 19: (a) A convex cap C. (b) Normals to the boundary faces B. Note: C
is not yet acutely triangulated in this illustration.

Figure 20: Extension of the boundary faces in Fig. 19(b) to form CZ (not yet
acutely triangulated).

28



Recalling that CZ = C ∪ EZ , we need to acutely triangulate EZ . We apply
Bishop’s algorithm, introducing (possibly many) new vertices of curvature zero
on the extension skirt EZ . Then all of CZ is acutely triangulated. Note that Φ
serves as a bound for both C and CZ .

The consequence is that each cut path Q can be viewed as extending arbi-
trarily far from its source on C before reaching its root on the boundary of CZ .
This permits us to “ignore” end effects as the cuts are developed in the next
section.

10 Angle-Monotone Strips Partition

7. The development of C can be partitioned into θ-monotone “strips,”
whose side-to-side development layout guarantees non-overlap in the
plane.

The final step of the proof is to partition the planar C (and so the cap C
by lifting) into strips that can be developed side-by-side to avoid overlap.12 We
return to the spanning forest F of C (graph G), as discussed in Section 4.2.
Define an angle-monotone strip (or more specifically, a θ-monotone strip) S as
a region of C bound by two angle-monotone paths LS and RS which emanate
from the quadrant origin vertex q ∈ LS ∩RS , and whose interior is vertex-free.
The strips we use connect from q to each leaf ` ∈ F , and then follow to the
tree’s root on ∂C. For ease of illustration, we will use θ = 90◦, but we will see
no substantive modifications are needed for θ < 90◦. Although there are many
ways to obtain such a partition, we describe one in particular, whose validity is
easy to see. We describe the procedure in the Q0 quadrant, with straightforward
generalization to the other quadrants.

10.1 Waterfall Algorithm

Let T0 be the set of leaves of F in Q0, with |T0| = n. We describe an algorithm
to connect each ` ∈ T0 to q via noncrossing θ-montone paths. Unlike F , which is
composed of edges of G, the paths we describe do not follow edges of G. Consult
Fig. 21 throughout.

Center a circle of radius r on the origin q, with r smaller than the closest
distance from a leaf to the quadrant axes. We may assume (Section 4) that
no vertex aside from q lies on a quadrant axis, so r > 0. Mark off n “target
points” ci on the circle as in Fig. 21. Process the leaves in T0 in the following
order. Trees in F are processed in counterclockwise order of their root along ∂C.
Within each tree, the leaves are ordered as they occur in an in-order depth-first
search (DFS); again consult the figure.

Let yi be the height of ci, y1 > 0 and yn < r, and let `i be the i-th leaf.
Connect `1 to c1 by dropping vertically from `1 to height y1 > 0, and then

12We should imagine C replaced by CZ , which will make the strips arbitrarily long.
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Figure 21: Waterfall algorithm in Q0.

horizontally to c1. So the connection has a “L-shape.” Then connect radially
from c1 to q. Define the path p1 to be this 3-segment connection joined with
the path in F from `1 to the root on ∂C.

For the i-th step, drop vertically from `i to path pi−1, following just ε-above
pi−1 until it reaches height yi. Then connect horizontally to ci and radially to
q. We select ε to ensure noncrossing of the “stacked” paths. It suffices to use
1/(n+1) times the minimum of (a) the smallest vertical distance between a leaf
and a point of F , and (b) the smallest horizontal distance between two leaves.
We also use the same ε to separate ci−1 from ci vertically around the circle.

To handle θ < 90◦, all vertical drops instead drop at angle θ inclined with
respect to the x-axis. We take it as clear that each path pi is θ-monotone. They
are noncrossing because pi rides above pi−1, and ε is small enough so that nε
cannot bump into a later path pj for j > i. Thus we have partitioned C into
θ-monotone strips sharing vertex q. See Fig. 22 for a complete example.

Returning to Fig. 21, some strips will reach a tree junction before ∂C, such
as S3 reaching the junction between `3 and `4. In that case, the strip continues
with the path from that junction to ∂C, i.e., its “tail” is a zero-width path.
Other strips, such as S4 in Fig. 22, retain non-zero width to the boundary.

10.2 L⊥ � R⊥

Define S′i as the strip counterclockwise of leaf `i in C ′. and L′Si
and R′Si

as its
right and left boundaries (which might concide from some vertex onward). We
reintroduce the primes to distinguish between objects in the planar C ′, their
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Figure 22: Waterfall strips partition. The S4 strip highlighted.
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lifts on the 3D cap C, and the development from C back to the plane. To ease
notation, fix i, and let S = Si, L

′ = L′Si
, R′ = R′Si

. Let S be the lift of S′ to the
cap C. Let L⊥ and R⊥ be the developments of the boundaries of S back into
the plane: the left development of R and the right development of L, so that
both developments are determined by the surface angles within S. Our goal is
to prove L⊥ � R⊥, with the left-of relation � as defined in Section 8.2. We
start with proving that L′ � R′.

By construction, both L′ and R′ are θ-monotone, and therefore radially
monotone. So any circle D centered on q intersects each in at most one point,
say a′ = D ∩ L′ and b′ = D ∩ R′. The arc from a′ to b′ lies inside the strip S;
or perhaps a′ = b′ in the tail of S. To prove L′ � R′, we only need to show this
a′b′ arc is at most π. This is obvious when S lies in one quadrant. Although it
can be proved if S straddles two quadrants, it is easier to just use the quadrant
boundaries to split a boundary-straddling strip into two halves, so that always
a′b′ lies in one quadrant, and so is at most π.

Now we turn to the lift of S′ to S and the development of the boundaries L⊥
and R⊥. Lemma 6 guarantees that L⊥ and R⊥ are still θ-monotone, for some
θ < 90◦. Thus the argument is the same as above, establishing that L⊥ � R⊥
for each strip S.

10.3 Side-by-Side Layout

We now extend the � relation to adjacent strips. We drop the ⊥ subscripts,
and just let Si−1 and Si be the developments in the plane of two adjacent strips.
For Si � Si−1 to hold, we require that every circle centered on their common
source q intersects the right boundary of Si−1 at point a, the left boundary of
Si at point b counterclockwise of a, and intersects no other strip along the ab
arc.

We just established that the boundaries of both Si−1 and Si are θ-monotone,
and so a circle D centered on q will indeed meet the extreme boundaries in one
point each, a and b. Here we rely on the extension C∞ so that each strip extends
arbitrarily long, effectively to ∞. The two strips share a boundary from q to a
leaf vertex vi. Beyond that they deviate if ωi > 0; see Fig. 23(a). We established
in Theorem 2 that the two sides of the “gap” at vi, Li, and Ri, satisfy Li � Ri
(with respect to vi). This guarantees that there is no surface developed in the
gap, which again we can imagine extending to ∞. So the arc ab crosses Si−1,
then the gap, then Si. So indeed Si � Si−1. Here there is no worry about the
length of the arc ab being so long that LSi

could wraparound and cross RSi−1

from right-to-left, because each strip fits in a quadrant.
Now we lay out the strips according to their �-order. We choose S1 to

be the strip left-adjacent to the gap of the cut of the forest to q (cf. Fig. 6),
and proceed counterclockwise from there. The layout of Si will not overlap with
Si−1 because Si � Si−1. Now we argue that nor can Si wraparound and overlap
S1.13

13Note here we cannot argue that wraparound intersection doesn’t occur because of the
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Figure 23: (a) Two adjacent strips. (b) Si crosses into S1.

For suppose Si crosses into S1 from right-to-left, that is, LSi
crosses RS1

; see
Fig. 23(b). Then because Si+1 � Si, Si+1 must also cross into S1. Continuing,
we conclude that Sn crosses into S1. Now S1 and Sn are separated by the gap
opening of the path in F reaching q. The two sides of this gap are R = LSn

and L = RS1
. But we know that L � R by Theorem 2. So we have reached a

contradiction, and Si cannot cross into S1.
We continuing laying out strips until we layout Sn, which is right-adjacent

to the q-gap. The strips together with that gap fill out the 360◦ neighborhood
of q. Consequently, we have developed all of C without overlap, and Theorem 1
is proved.

11 Discussion

Many assumptions made to reach Theorem 1 seem possibly unnecessary, only
assumed to simplify the argument.

1. That the rim of C lies in a plane is unlikely to be necessary. Perhaps some
star-shaped assumption would suffice, but this would not greatly extend
the reach of theorem. In Fig. 24, ∂C does not lie in a plane.

2. Although the proof requires “sufficiently small Φ” (Φ < 0.3
√

∆θ according
to Eq. 9), limited empirical exploration suggests Φ need not be small, e.g.,
Φ = 53◦ in Fig. 24. The proof assumes a worst-case scenario, with all
the curvature concentrated on a single cut path. When the curvature is
distributed over C, likely larger Φ still will lead to non-overlap.

3. The assumption that C is acutely triangulated seems overly cautious, es-
pecially since the results of [LO17] extend to θ-monotone paths for widths
larger than 90◦ (indeed for any θ ≥ 60◦). However, note that a θ-monotone
path for θ > 90◦ need not be radially monotone, which is required in The-
orem 2.

limitation on turning < π, which only excludes Si wrapping around to Si−1.
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4. This suggests the question of whether the angle-monotone spanning for-
est could be replaced with a radially monotone spanning forest. There is
empirical evidence that radially monotone spanning forests lead to edge-
unfoldings of spherical polyhedra [O’R16]. There exist planar triangula-
tions with no radially monotone spanning forest (Appendix of [O’R16]),
but it is not clear they can be realized in R3 to force overlap.

5. It is natural to wonder if Theorem 1 leads to a “fewest nets” result.14

This asks for unfolding a convex polyhedron of n vertices into the fewest
number of non-overlapping pieces (nets) [DO07, Open Prob. 22.12]. There
is as yet no proof that this is possible for a constant number of pieces,
independent of n. I have only been able to obtain the following weak
result. Define a vertex v to be oblong if (a) the largest disk inscribed in
v’s spherical polygon s(v) (on the Gaussian sphere) has radius < Φ, and
(b) the aspect ratio of s(v) is greater than 2:1. An example was shown
in Fig. 8. Then, if an acutely triangulated convex polyhedron P has no
(or a constant number of) oblong vertices, then there is a partition of its
faces into a constant number of convex caps that edge-unfold to nets, with
the constant depending on Φ (and not n). I leave this as a claim without
providing a detailed proof.

Figure 24: (a) Two views of a convex cap of 83 vertices with spanning forest F
marked. Here Φ ≈ 53◦. (b) Edge unfolding by cutting F .

14Stefan Langerman, personal communication, August 2017.
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