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Draining a Polygon
–or–

Rolling a Ball out of a Polygon
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Abstract

We introduce the problem of draining water (or balls repre-

senting water drops) out of a punctured polygon (or a poly-

hedron) by rotating the shape. For 2D polygons, we obtain

combinatorial bounds on the number of holes needed, both

for arbitrary polygons and for special classes of polygons.

We detail an O(n2 log n) algorithm that finds the minimum

number of holes needed for a given polygon, and argue that

the complexity remains polynomial for polyhedra in 3D. We

make a start at characterizing the 1-drainable shapes, those

that only need one hole.

1 Introduction

Imagine a closed polyhedral container P partially filled
with water. How many surface point-holes are needed
to entirely drain it under the action of gentle rotations
of P? It may seem that one hole suffices, but we will
show that in fact sometimes Ω(n) holes are needed for
a polyhedron of n vertices. Our focus is on variants of
this problem in 2D, with a brief foray in Sec. 5 into 3D.
We address the relationship between our problem and
injection-filling of polyhedral molds [BvKT98] in Sec. 4.

A second physical model aids the intuition. Let P be
a 2D polygon containing a single small ball. Again the
question is: How many holes are needed to ensure that
the ball, regardless of its initial placement, will escape
to the exterior under gentle rotation of P? Here the ball
is akin to a single drop of water. We will favor the ball
analogy, without forgetting the water analogy.

Models. We consider two models, the (gentle) Rota-
tion and the Tilt models. In the first, P lies in a vertical
xy-plane, and gravity points in the −y direction. The
ball B sits initially at some convex vertex vi; vertices
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Université Libre de Bruxelles (ULB), CP212, Bld. du Triomphe,
1050 Brussels, Belgium.
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are labeled counterclockwise (ccw). Let us assume that
vi is a local minimum with respect to y, i.e., both vi−1

and vi+1 are above vi. Now we are permitted to ro-
tate P in the vertical plane (or equivalently, alter the
gravity vector). In the Rotation model, B does not
move from vi until one of the two adjacent edges, say
ei = vivi+1, turns infinitesimally beyond the horizontal,
at which time B rolls down ei and falls under the in-
fluence of gravity until it settles at some other convex
vertex vj . For example, in Fig. 1, B at v4 rolls ccw
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Figure 1: Polygon with several ball paths.

when v4v5 is horizontal, falls to edge v15v0, and comes
to rest at v0. Similarly, B at v10 rolls clockwise (cw) to
v6 after three falls. Note that all falls are parallel, and
(arbitrarily close to) orthogonal to the initiating edge
(in the Rotation model). After B falls to an edge, it
rolls to the endpoint on the obtuse side of its fall path.

The only difference in the Tilt model is that any grav-
ity vector may be selected. Only vectors between ei−1

and ei will initiate a departure of B from vi, i.e., the en-
tire wedge is available rather than just the two incident
edges. For example, in Fig. 1, B at v4 rolls to {v0, v3}
in the Rotation model, but can roll to {v0, v1, v2, v3}
in the Tilt model. The Rotation model more accu-
rately represents physical reality, for rain drops or for
balls. The Tilt model mimics various ball-rolling games



20th Canadian Conference on Computational Geometry, 2008

(e.g., Labyrinth) that permit quickly “tilting” the poly-
gon/maze from the horizontal so that any departure vec-
tor from vi can be achieved. We emphasize that, aside
from this departure difference, the models are identical.
In particular, inertia is ignored, and rotation while the
ball is “in-flight” is forbidden (otherwise we could direct
B along any path).

There are two “degenerate” situations that can occur.
If B falls exactly orthogonal to an edge e, we arbitrarily
say it rolls to the cw endpoint of e. If B falls directly on
a vertex, both of whose edges angle down with respect
to gravity, we stipulate that it rolls to the cw side.

Questions. Given P , what is the minimum number of
point-holes needed to guarantee that any ball, regardless
of starting position, may eventually escape from P un-
der some sequence of rotations/tilts? Our main result
is that this number can be determined in O(n2 log n)
time. In terms of combinatorial bounds, we show that
some polygons require bn/6c and bn/7c holes (in the
Rotation/Tilt models respectively), but dn/4e holes al-
ways suffice. We make a start at characterizing the 1-
drainable polygons, those that only need one hole Fi-
nally we argue that the minimum number of holes can
be computed for a 3D polyhedron in polynomial time.

2 Traps

We start by exhibiting polygons that need Ω(n) holes
to drain. The basic idea is shown in Fig. 2(a) for the
Rotation model. We create traps with 5 vertices forming
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Figure 2: (a) Trap for Rotation model. (b) Trap for
Tilt model. (c,d) Details of traps.

an “arrow” shape, connected together around a convex
polygonal core so that 6 vertices are needed per trap.
A ball in v4 rolls to fall on edge v0v1, but because of
the slightly obtuse angle of incidence, rolls to v2; and
symmetrically, v2 leads to v4. So there is a cycle (defined

precisely in Sec. 3) that “traps” ball between {v2, v3, v4}
and isolates it from the other two traps. Therefore three
holes are required to drain this polygon. In the Tilt
model, Fig. 2(a) only needs one hole, because B could
roll directly from v3 through the v1−v5 “gap.” However,
the polygon in Fig. 2(b) requires 3 holes. Here the range
of effective gravity tilt vectors from v4 is so narrow that
the previous analysis holds. These examples establish
the necessity half of this theorem:

Theorem 1 (Combinatorial Bounds) In the Rota-
tion (resp. Tilt) model, bn/6c (resp. bn/7c) holes
are sometimes necessary to drain an n-vertex polygon.
dn/4e holes suffice to drain any polygon.

Proof. We will show below that a sequence of rotations
leads to a cycle (in a graph defined in Sec. 3) of length
≥ 3. So any trap must have at least 3 vertices. In order
for this cycle not to include the entire polygon, there
must be at least one reflex vertex in a path for an arc
of the cycle that leads to a fall that “hides” part of the
polygon. So any trap needs at least 4 vertices. This
establishes the sufficiency half of the claim. �

Although we believe that at least two reflex vertices
are needed in every cycle, we were unable to show that
they could not be shared between traps. We neverthe-
less conjecture that dn/5e holes suffice. (A variation
on Fig. 2(a) permits the formation of two traps with
n = 11.)

Proposition 2 bn/28c holes are sometimes necessary
to drain an n-vertex orthogonal polygon, and dn/8e
holes suffice.

Proof. The example that establishes the lower bound
is shown in Fig. 3. A ball at v1 can only reach v2 with a
narrow range of angles, and that range of angles “skips
over” the corridor C. A ball on e1 can only move under
leftward gravity vectors, and so cannot exit from the
left “lobe” of the shape. Similar reasoning from e2 and
e3 shows that a ball anywhere in the trap can never
reach C. Putting several such traps together, attached
to a common “bus” rectangle, leads to k traps, where
k = n/28.

The upper bound follows by classifying all convex ver-
tices as one of four types {q0, q1, q2, q3}, depending on
the quadrant that includes the polygon interior in a
neighborhood of the vertex. There are > n/2 convex
vertices, so there is one quadrant q∗ type that occurs
≤ n/8 times. A ball at any qi vertex can roll to some
qj vertex, for each j 6= i. So piercing each of the q∗

vertices suffices to drain P . �

3 The Pin-Ball Graph

Let G be a directed graph whose nodes are the convex
vertices of P , with vi connected to vj if B can roll in one
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Figure 3: Orthogonal polygon trap of 28 vertices.

“move” from vi to vj . Here, a move is a complete path to
the local y-minimum vj , for some fixed orientation of P .
We conceptually label the arcs of G with the sequence
of vertices and edges along the path ρ(vi, vj). Thus, the
(v10, v6) arc in Fig. 1 is labeled (v9, e13, v14, e7, v7, e5).
We use GR and GT to distinguish the graphs for the
Rotation and Tilt models respectively, and G when the
distinction is irrelevant.

We gather together a number of basic properties of G
in the following lemma.

Lemma 3 (G Properties)

1. Every node of GR has out-degree 2; a node of GT

has out-degree at least 2 and at most O(n).

2. Both GR and GT have O(n) nodes (one per convex
vertex). GR has at most 2n arcs, while GT has
O(n2) arcs, and sometimes Ω(n2) arcs.

3. Each path label has length O(n) (in either model).

4. The total number of path labels on the arcs of GR

is O(n2), and sometimes Ω(n2).

5. The total number of labels in GT is O(n3), and
sometimes Ω(n3).

Proof. We only mention those properties which are not
obvious.

1. Assume for the purposes of contradiction that there
is a node of GR that has out-degree 1, i.e., that both
cw and ccw departures from vi lead to the same vj .
A ray from vi toward vi−1 until ∂P is hit bounds
a subpolygon on the left of the ray that contains
the termination vertex vj . A second ray from vi

toward vi+1 to ∂P is hit bounds a subpolygon on
the right of the ray that contains vj . These two
subpolygons only intersect at vi, which cannot be
the destination in either case. (Notice that when
an adjacent vertex neighbor of vi is a convex ver-
tex, the subpolygon degenerates to a digon, i.e., it
consists of two coincident edges.)

2. GT has Ω(n2) arcs when P is a convex polygon.

3. A single path travels monotonically with respect
to gravity, and so can only touch O(n) edges and
vertices.

4. Fig. 4 shows that the total number of path labels
for GR is sometimes Ω(n2).

a
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b

Figure 4: The paths from each of Ω(n) vertices
a, b, c, d, . . . could touch Ω(n) edges.

5. A modification of this figure establishes an Ω(n3)
bound for the total number of labels in GT .

�
We will see below that GT can be constructed more
efficiently than what the cubic total label size in
Lemma 3(5) might indicate.

Noncrossing Paths. A ball path corresponding to one
arc of G is a polygonal curve, monotone with respect
to gravity −→g . The path is composed of subsegments of
polygon edges, as well as fall segments, each of which is
parallel to −→g and incident to a reflex vertex. A directed
path ρ naturally divides P into a “left half” L = L(ρ) of
points left of the traveling direction, and a “right half”
R = R(ρ), where L and R are disjoint, and L∪R∪ρ = P .
Two ball paths ρ1 and ρ2 (properly) cross if ρ2 contains
points in both L(ρ1) and R(ρ1). For example, in Fig. 1,
ρ(v0, v6) crosses ρ(v10, v6). Let L = L(ρ) ∪ ρ be the
closure of L(ρ), and similarly define R.

Two paths can only cross at a reflex vertex (as do
ρ(v4, v0) and ρ(v6, v3) in Fig. 1) or on fall segments of
each (as do ρ(v0, v6) and ρ(v10, v6)).

Lemma 4 (Noncrossing) Two paths ρ1 and ρ2 from
the same source vertex v0 never properly cross (in either
model). See Fig. 5.
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Figure 5: Paths from the same source v0 do not cross.
Fall segments are dashed. L and R indicate polygon
“halves” left and right of the directed paths.

Proof. Let −→g1 and −→g2 be the gravity vectors for ρ1 and
ρ2. Orient P so that −→g1 is vertically downward, as in
Fig. 5. Now we argue that ρ2 ⊂ R1.

We first assume that the angular separation between
the two gravity vectors is ≤ π (as illustrated in the
figure). The path ρ2 is in R1 at v0, and it cannot cross
into L(ρ1) along an edge of P . So it could only cross
into L(ρ1) at either the upper endpoint of a fall segment
(a reflex vertex), or in the interior of a fall segment. But
both are impossible because −→g2 is pointing right-to-left.

If the angular separation between the two gravity vec-
tors is > π, then the same result is obtained by reversing
the roles of −→g1 and −→g2 . �

Lemma 5 (Label Intervals) In the Tilt model, a
particular label λ appears on the arcs of GT originating
at one particular vi within an interval [−→g1 ,−→g2 ] of gravity
directions.

Proof. Suppose to the contrary that λ appears on the
paths ρ1 and ρ2 for −→g1 and −→g2 but not on the path ρ′

for
−→
g′ , −→g1 <

−→
g′ < −→g2 . Then, because ρ′ cannot cross ρ1

by Lemma 4, the element corresponding to λ is inside
a region Q between ρ1 and ρ′. If we let x be the first
point at which ρ1 and ρ′ deviate, and let the arcs of GT

induced by −→g1 and −→g2 be (vi, vj) and (vi, vk) respectively,
then Q is bounded by the portion of ρ1 from x to vi, the
boundary ∂P from vi to vj , and the portion of ρ′ from
x to vj . Now, for ρ2 to include λ, it must cross into Q,
and since it cannot cross ∂P , it must cross either ρ1 or
ρ′, contradicting Lemma 4. �

Cycles and Strongly Connected Components. The
directed path from any vertex vi of G leads to a cycle in
G, because every node has at least two outgoing edges
by Lemma 3(1). Any maximal cycle in G has length

at least 3. Anything less would involve a pair (vi, vj)
connecting only to each other, which would contradict
Lemma 3(1). Note that any pair of convex vertices ad-
jacent on ∂P form a non-maximal cycle of length 2.

A cycle is a particular instance of a strongly connected
component (SCC) of G, a maximal subset C ⊂ G in
which each node has a directed path to all others.

Define a graph G∗ as follows. Let C1, C2, . . . be the
SCC’s of G. Contract each Ck to a node ck of G∗, while
otherwise maintaining the connectivity of G. Then G∗

is a DAG (because all cycles have been contracted).

Lemma 6 (Sinks) The minimum number m of holes
needed to drain P is the number of sinks of G∗.

Proof. Certainly m holes suffice, for, by the construc-
tion of G∗, we can roll any ball to the SCC containing
its terminal cycle. Piercing each ck with one hole en-
sures that the ball can escape.1 Leaving any sink un-
pierced constitutes a trap from which balls in the sink’s
connected component cannot escape. So m holes are
necessary. �

Lemma 7 The locations of the minimum number m of
holes needed to drain P can be found in linear time in
the size |G| of G, once G has been constructed.

Proof. Finding the SCC’s of a graph is linear in |G|
(via, e.g., two depth-first searches [CLRS01, p. 552ff]).
Both contracting to G∗, and finding the sinks of G∗, are
again linear in |G|. �

Construction of G. Our goal is to construct the unla-
beled G. Labels merely represent the paths that realize
each arc of G. The example in Fig. 4 seems to require
Ω(n2) ray-shooting queries in the Rotation model, and
as we do not know how to avoid this, our goal becomes
an O(n2 log n) algorithm. This is straightforward for
GR, so we focus on GT , which by Lemma 3(5) is poten-
tially cubic.

We first preprocess P for efficient ray-shooting
queries, using fractional cascading to support ray shoot-
ing in a polygonal chain. This takes O(n log n) pre-
processing time and supports O(log n) time per query
ray [CEG+94]. Next we construct the visibility polygon
from each vertex of in overall O(n2) time [JS87]. From
these visibility polygons, for each vi we construct a grav-
ity diagram Di. This partitions all gravity vectors −→g
into angular intervals labeled with the next vertex that
B will roll to from vi with tilt −→g . For example, Fig. 6(a)
shows the gravity diagram for v4 in Fig. 1. Note that
Di only records the next vertex encountered, not the
ultimate destination. We maintain each diagram in a

1We should note that, after the ball exits the polygon, it still
might be “trapped” in the exterior of P , unable to roll to ∞. We
do not pursue this possibility.
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Figure 6: (a) Gravity diagram for v4 in Fig. 1. (b) Grav-
ity diagrams for paths ρ0 and ρ1.

structure that permits any −→g to be located in O(log n)
time.

We now argue that we can construct all paths with
source vi, and therefore all arcs of GT leaving vi, in
O(n log n) time. Compute the path ρ0 for the cw ex-
treme gravity vector −→g0 that leaves vi (perpendicular
to vivi+1). This uses O(n) ray-shooting queries for
the fall segments of ρ0, totaling O(n log n) time. Let
ρ0 = (vi, vi1 , vi2 , . . . , vj). During its construction, we
locate −→g0 within each diagram Dik

. Now we find the
minimum angle between −→g0 and the next ccw event over
all diagrams. This can be done in O(log n) time us-
ing a priority queue. Call the next event −→g1 , and sup-
pose it occurs at vik

in diagram Dik
. We now construct

the path ρ1 from vik
onward, until it terminates at a

new vertex, or rejoins ρ0 (recall from Fig. 5 that paths
might rejoin, i.e., the suffixes from vik

are not necessar-
ily disjoint). In our “update” from ρ0 to ρ1, let V0 be
the set of vertices lost from ρ0, and V1 those gained
in ρ1. The priority queue of minima is updated by
deleting those for V0 and inserting those for V1. The
angular sweep about vi continues in the same manner
until the full gravity vector range about vi is exhausted.
Fig. 6(b) illustrates one step of this process, where vi1

determines the transition event between g0 and g1, at
which point the path changes from ρ0 = (vi, vi1 , vi2 , vj)
to ρ1 = (vi, vi1 , v

′
i2

, vk).
By Lemma 5, each diagram abandoned in this sweep

is never revisited. Thus the number of invocations of
the minimum operation to find the next event is O(n),
or O(n log n) overall. Repeating for each vi we obtain:

Lemma 8 G can be constructed in O(n2 log n) time.

Theorem 9 The locations of the minimum number of
holes needed to drain P can be found in O(n2 log n).

For orthogonal polygons, all fall segments are (arbitrar-
ily close to) parallel to the two directions determined

by the polygon edges, and the situation illustrated in
Fig. 4 cannot occur. We leave it as a claim that this
permits GR to be constructed (and the holes located)
in O(n log n) time.

4 1-Drainable Shapes

Define a k-drainable polygon as one that can be drained
with k holes but not with k−1 holes. For example,
Fig. 1 is 1-drainable with a hole at v6. We make a
start here at exploring the 1-drainable shapes under
each model. Note that these shapes do depend on the
model: Fig. 2(a) is 1-drainable in the Tilt model but
3-drainable in the Rotation model.

Our definition of k-drainable polygons is inspired by
the k-fillable polygons of [BT94][BvKT98], those mold
shapes that can be filled with liquid metal poured into
k holes. Despite the apparent inverse relationship be-
tween filling and draining, the two concepts are rather
different. In particular, there are star-shaped polygons
k-drainable in the rotation model (Proposition 13 be-
low), but Theorem 7.2 of [BvKT98] shows that these
are all “2-fillable with re-orientation.” Also, there are
1-drainable polygons that are k-fillable (with or without
reorientation). In Fig. 7, a hole at v0 suffices to drain
each spiral piece, because a ball at, say, vi, can roll to v0

(in several moves). However, the tip of each spiral needs
to be filled separately, and so the shape is k-fillable.

v0

v
i

Figure 7: A polygon 1-drainable (in either the Rotation
or Tilt model), but k-fillable, with or without reorien-
tation.

Proposition 10 Monotone polygons are 1-drainable.

Proof. Let P be a polygon monotone with respect to
the y-axis, and select −→g to point in the −y direction.
Then the lowest vertex v is the only local y-minimum,
and no ball can stop before arriving at v. So, in either
model, a hole at either y-extreme vertex suffices to drain
it. �

Let the ccw roll from vi be the roll toward vi+1 in the
Rotation model, or equivalently, the tilt according to −→g
perpendicular to vivi+1 in the Tilt model.
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Lemma 11 (Kernel) Let P be star-shaped with kernel
K. Then for each arc (vi, vj) ∈ G corresponding to the
ccw roll path ρ from vi, K is in L(ρ), i.e., K is on or
to the left of ρ.

Proof. Let −→g be the gravity vector for the roll, perpen-
dicular to vivi+1. Then K must be in the closed half-
plane H left of vivi+1, because P is star-shaped from K.
On the other hand, ρ(vi, vj) is monotonic with respect
to −→g , and so lies in the closure of the complementary
halfplane H. Therefore, vj ∈ H, and thus K is left or
on the path ρ, and so K ⊂ L(ρ). See Fig. 8. �

vi+1

vi

vj

K

Figure 8: Star-shaped polygon.

A fan is a star-shaped polygon whose kernel includes a
convex vertex.

Proposition 12 Fans are 1-drainable.

Proof. Let v ∈ K be the vertex in the kernel. Starting
at any vertex vi, let C = (vi, . . . , vj , vk, . . . , vi) be the
cycle generated by successive ccw rolls. If v 6∈ C, then
there must be an arc (vj , vk) of G whose path ρ “skips
over” v, which, because these are ccw rolls, must have
v ∈ R(ρ) in the right region for ρ. This contradicts
Lemma 11. �

Proposition 12 cannot be extended to star-shaped poly-
gons in the Rotation model:

Proposition 13 For any k > 1, there is a k-drainable
star-shaped n-gon in the Rotation model, with k = Ω(n).

Proof. Fig. 9 shows the construction for k = 2. A ball
in “well” 0 rolls ccw to well 2, 4, . . ., and cw also to an
even numbered well. A ball in well 1 rolls ccw and cw to
odd numbered wells. Thus, two holes are needed when
there are an even number of wells. The construction
can be generalized to any k > 1. �
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Figure 9: A star-shaped polygon that requires two holes
to drain.

5 3D

Define the Tilt model for 3D polyhedra to permit de-
parture from a vertex v at a direction vector lying in
any of the faces of P incident to v. We do not see how
to mimic the efficient construction of G previously de-
scribed, so we content ourselves with showing that it
can be accomplished in polynomial time: O(n7 log n).

For the start vertex v0, define the gravity diagram D0

to partition the unit sphere S into regions that indicate
the next edge crossed by the ball. Now let ei be some
edge. We define a gravity diagram Di over the Carte-
sian product of all the possible crossing positions on ei,
with all the possible approach vectors. This is, topolog-
ically, a segment crossed with a circle—a cylinder. We
partition this diagram into regions each of which iden-
tifies the next edge to be encountered by the ball. Each
Di has complexity O(n2).

Overlay all of the O(n) gravity edge diagrams. This
can be viewed as an arrangement of O(n3) arcs on a
cylinder, and so partitions it into O(n6) regions. Any
gravity vector within a particular region r leads to the
same path and therefore arc of G. For each region,
compute the path as before, using O(n log n) time. This
will construct G in O(n7 log n) time. From here on the
logic of Lemmas 6 and 7 applies as before.

6 Open Problems

1. Can the upper bound of dn/4e in Theorem 1 be
improved?

2. Are star-shaped polygons 1-drainable in the Tilt
model? More generally, characterize 1-drainable
polygons.

3. Suppose the ball B has finite radius r. Perhaps
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a retraction of P by r would suffice to lead to a
similar algorithm to that in Sec. 3.2

4. We phrased our problem as draining water/balls
to the exterior of P , and noted in the proof of
Lemma 6 that this is not the same as draining to
infinity. What is the analog of our combinatorial
bounds (Theorem 1) for the draining-to-∞ model?

5. Suppose m balls are present in P at the start, and
P is k-drainable. What is the computational com-
plexity of finding an optimal schedule of rotations,
say, in terms of the total absolute angle turn, or in
terms of the number of angular reversals?
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